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Abstract

Propagation of mechanical waves in unidimensional systems is a fundamental part of physics, necessary
for learning subjects such as acoustics and vibrations. The vibration of transverse waves in strings is
the easiest case of elastic system. Usually, this is the first continuous elastic system in which students
apply fundamental mathematical concepts as vibration mode, equation of motion and boundary condition.
In this work the use of simulation methods is proposed to reinforce the understanding of vibratory and
acoustic simple phenomena. This will be applied to the case of a string, a beam and a membrane of finite
length with different physical characteristics and boundary conditions.

La propagacion de ondas mecdnicas en sistemas unidimensionales es una parte fundamental de la fisica,
necesaria para el aprendizaje de asignaturas como acustica y vibraciones. La vibracion de ondas trans-
versales en cuerdas es el caso mds sencillo de sistema eldstico. Habitualmente, este es el primer sistema
elastico continuo en el cual los alumnos aplican conceptos matemdticos fundamentales como modo de
vibracion, ecuacion de movimiento y condicion de contorno. En este trabajo se propone el uso de los
métodos de simulacion para reforzar la comprension de fendmenos simples en acustica y vibraciones. Lo
aplicaremos a los casos de cuerda vibrante, barras y membranas de longitud finita con diferentes carac-
teristicas fisicas y condiciones de contorno.

Keywords: Acoustics; vivration; continuum elastic system; finite Element Method: vibrating string, beam
Palabras clave: Actstica; vibracion; sistema eldstico continuo; método de elementos finitos, cuerda vibrante;
membrana; barra
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1. Introduction

Models are essential to the production, dissemination and acceptance of scientific knowledge
(Giere, 1988; Gilbert, 1991; Tomas, 1988). The value of models in the field of science educa-
tion has been increasingly recognized among the science education reform movements (Gobert,
2000). Both the design of and implementation of experimental practices in modern science are
often based on the use of computational modeling (Gilbert, 2004). Simulation softwares ha-
ve evolved significantly over the last years, which has gifted these new technologies plenty of
increasingly important advantages, such as an easy visualization of some phenomena and the
possibility of having an intermediate step between the theoretical and the experimental phase
of the work. In this sense, the method can be applied in many fields like biomechanics (Kinzl,
2013), the analysis of surface acoustic wave devices (Mohibul et al., 2017) or the development of
fatigue tests (Yu et al., 2017), among many others, as well as in the validation of experimental
results obtained.

Nevertheless, the computational cost can be huge due to the number of parameters to be
studied or the wide range of some of them and it will always depend on the power of the device
to be used. Thus, it is necessary to reach a compromise that allows getting a result that satisfies
the requirements of the study with a reasonable time consumption, for which it is indispensable
to optimize the available resources. The more complete is the model, the more computational
power will be required to calculate its solution.

In this work authors show the application of modelling in the field of vibrations, applying
simulation techniques to solve numerically the equations of different simple continuous elastic
systems. These systems, understood as those systems whose characteristics are continuous along
their whole domain (as opposite to discrete systems), are strings, beams and membranes. The
main goal is to show the utility of this learning tool for science and engineering students at
universities as a way to secure fundamental mathematical concepts due to its simplicity and
easy use and, by extension, as a teaching tool for a more easy explanation and visualization of
some phenomena.

Models presented in this work are implemented using COMSOL Multiphysics, which is a
software based on the Finite Element Method (FEM). It is applicable to all fields of engineering
and science (Oladejo, Abu & Adewale, 2012). This method is based in the discretization of one
or more domains and calculating the approximated solution of the equations that govern the
phenomena to be studied for each of the resulting elements.

The application of this method is particularly interesting when hand calculations cannot
provide accurate results (Oladejo, Abu & Adewale, 2012), the model to be developed has a
complex geometry or the range of parameters to be studied is very wide. In this last case, FEM
allows analysing different parameters simultaneously in order to choose the optimum one.

2. The vibrating string

Usually in textbooks of mechanical systems, the first model of a continuous system presented
to the reader is the vibrating string. It is an idealized representation of a one dimensional system
that allows the propagation of transverse waves, that is, waves with displacement perpendicular
to the propagation direction. An application of this model is for the acoustic behaviour of
chordophones, as the vibration of the string is the main physical mechanism for the description
of the sound radiation of these musical instruments.
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The model consists of an homogeneous string of length L with tension 7" and linear mass
density per unit length p. It is assumed to be infinitesimally thin and completely flexible. If
all these suppositions are satisfied, transverse waves are supported by the system and the wave
equation describing the transverse displacement of the string y(x,t) is given by:

82y($7t> _ 02 823/(1;, t) (1)
ot? 0x?
where the speed of the travelling wave is related to the intrinsic properties of the string,
¢ = /T /u. Remark that in this system, all the frequencies travel with the same speed as
w/k = ¢, and thus, transverse waves propagating in a string are non-dispersive.

Several discrete solutions (called ‘modes’) can be found for the transverse displacement at
spatial position x and time ¢ when the wave equation 1 is solved assuming that both ends of
the string are fixed, y(z = 0,t) = y(z = L,t) = 0:

~ . .nm
yn(z,t) = Anew"tsmix, (2)
where n is an integer number corresponding to each mode, A, is the amplitude and w, is
the angular frequency of the nth mode.

The discreteness of solutions shows that only some specific frequencies (called ‘natural fre-
quencies’ or ‘eigenfrequencies’) are allowed to propagate in the system. The lowest fundamental
frequency of a vibrating string with fixed ends is termed the fundamental frequency, and the hig-
her natural frequencies are termed overtones (Kinsler et al., 2000). Natural frequencies depend
on the specific properties of the string and can be calculated as follows:

ne
fn=57- (3)
The analytical procedure describe below for the vibrating string is consistent with modelling
the the system and solving it with a numerical method. Indeed checking that analytical solutions
match with numerical calculations is a significant pedagogical support for the student. Here a
server with two Intel Xeon E5-2680v2 10C/20T 2.8GHz 25MB processors and 256 Gb DDR3-
1866 R ECC memory has been used for implementing all the simulations. Due to the simplicity
of this model, the number of elements in the mesh is very small (201 elements). The computation
time is particularly short, taking only a few seconds in our work station. For any standard
computer it will be also very short.

The mode shapes for the unidimensional string with fixed ends are obtained numerically
and represented for n=1, 2 and 3 in Figure 4. The transverse displacement y(z,t) of a string
with length L = 1 m is represented for each position x at a specific value of time ¢. Remark
that the boundary conditions are satisfied for all the modes as always a minimum of transverse
displacement (called ‘node’) appears in both ends.

3. Vibrations in beams

As in the case of the vibrating string the propagation of waves in beams is applicable to
musical instruments: idiophones (as bars of xylophones or marimbas). Other applications are
piezoelectric tubes, system calibration.

Since it is true that one of the dimensions of beams is usually greater than the others, in this
case can not be considered as infinitely greater and more than physically significant dimension
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Figure 1: First three mode shapes of a one-dimensional vibrating string of length L = 1m with fixed boundaries
at x =0 and z = L.

can be considered. Thus, the model has to be developed in the three dimensions of the space
for more confident results.

Three main types of waves propagate in beams: longitudinal waves, transverse waves and
torsional waves. Polarization of transverse waves is identical to those present at the vibrating
string. Longitudinal waves are those in which particles move parallel to the propagation axis of
the wave and torsional waves are those in which the vibration causes the rotation of the beam
on its own axis. The wave equation of every type of waves propagating in beams are as follows:

Longitudinal waves,

0%¢ 0%¢

7% = o @)
Transverse waves,

0%y My

o = Vo ©)
Torsional waves,

0?¢ 0?¢

o = o ©)

where £ is the particle displacement in the longitudinal plane, y is the particle displacement
in the transverse plane and ¢ is the rotation angle.

Two boundary conditions are considered in this work discussed in the following section: a
beam with both ends fixed and a beam with a mass-loaded end.
3.1. Case 1: Clamped - Clamped

The clamped-clamped boundary condition implies that both ends of the beam are fixed to a
rigid wall with theoretically infinite mass. In this way, both the displacement and the velocity
in these points are equal to 0,
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The fundamental frequency of the beam is also determined by this boundary condition and
it is given by Eq. 7.

&n (x,t) = [Ay, cos (wnt) + By sin (wyt)] sin (k,x) (7)

where A,, and B, are amplitude coefficients, n is the mode number and w,, is the angular
frequency for the nth mode.

If the step to numerical methods is given, it is possible to implement a 3-D eigenfrequency
model considering, as in the case of the string, an homogeneous beam with length L and linear
density and supposing that the magnitudes to be studied are linear. With these requirements,
a model consisting of 7089 elements is created.

Longitudinal | Transverse Torsional
modes modes modes
1776 Hz 539 Hz 1067 Hz

| R |
3521 Hz 1268 Hz 2133 Hz

e P

P | Ly | T

5195 Hz 2148 Hz 3201 Hz

Figure 2: Vibrational modes of beams with clamped boundary condition.

Results of the eigenfrequencies of a L = 1 m beam made of steel with circular cross-section
from the numerical simulations can be observed in Figure 2. With this method, it is possible
to identify the fundamental frequency (n=1) of the system as well as its overtones. One can
also ascertain that, successive modes are result of multiplying the fundamental frequency by
n, getting a result which is very close to the analytical solution with a small error due to the
numerical approximations of the FEM. The error is greater in the case of transverse waves due
to the fact that in this wave equation the fourth derivative of the displacement is considered,
resulting in a greater dispersion and, thus, the numerical approximation is less precise.

Blue regions of every figure in Table 2 represent points with no particle displacement. As the
clamped-clamped boundary condition has been applied to the model, no particle displacement
is produced at both ends of the beam.

3.2. Case 2: Free - Mass-loaded

Not only fundamental equations, but also boundary conditions have an importante influence
on the wave propagation behaviour in the system, in particular in its eigenfrequencies. With
the purpose of studying the influence of the boundary conditions in the natural frequencies of
vibrations of a system, Figure 3 shows the difference between the eigenfrequencies of a given
beam with both ends free and in the case that of one of the ends is mass-loaded with a point
mass.

As can be seen in Figure 3 the frequency of the successive modes using the free-free boundary
condition is approximately the double, which corresponds to the fundamental frequency and its
harmonics. Note that, as was mentioned above, FEM is able to calculate approximate solutions.
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Figure 3: Influence of the boundary conditions in the eigenfrequencies of a beam.
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Figure 4: Graphic representation of functions tan (kL) and kL. The cut points correspond to the eigenfrequencies.

On the other hand, if one of the ends is mass-loaded this trend is broken. When a point
mass is added, frequencies of the modes decrease and the ratio between the first fundamental
frequency and the harmonics changes. As an example, the ratio between the first and the second
mode is 2.11 and between the first and the second mode is 3.26.

This fact can be explained by the resolution of Eq. 8. A graphic representation of the equation
is shown in Figure 4. Both, the function tan(kL) and the function kL are plotted. The curved
lines correspond to the left hand side of equation 8. The straight line drawn from the point
0 with a slope m/my, corresponds to the right hand side. The cut points correspond to the
wave numbers that satisfy the equation, and thus, the engenfrequencies of the system (the
fundamental frequency and overtones). Different to the vibrating string, these solutions are not
harmonic.

m
tan(kL) = — | — | kL 8
antr) = - (22 )
where m and my are the added mass and the mass of the beam, respectively, k£ is the
wavenumber and L is the length of the beam.
Mode shape displacement for the fundamental modes with eigenfrequencies 204 Hz and 283
Hz are represented for each boundary condition can be seen in Figure 5.

4. Vibrations in membranes

Membranes are widely used in many applications. Some of the most well-known are their
use for loudspeaker manufacturing, as the cone is a circular membrane, and in the building
of percussion instruments. Likewise, membranes are also used in research (e.g., in the field of
acoustics membranes have been studied for sound absorption).
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Figure 5: Mode shape for free - mass-loaded (up) and free - free (down) boundary conditions.

4.1. Rectangular membranes

In this example, the case of a rectangular membrane with all its boundaries clamped is
studied. If the membrane is assumed to be very thin, only flexural modes will be found (dis-
placement is perpendicular to the plane of the membrane). These modes can be calculated
analytically by using the following equation:

W € [M2 M2
St ©

Jon =50 =3 212

where w,,,, is the angular frequency of the mn mode, ¢ is the wave speed and L, and L. are
the length of the membrane in the x and z axis, respectively.
The particle displacement ¢ in flexural modes can be analytically calculated as follows:

j = Asin(kyx)sin(k,z)e’! (10)

where A is the amplitude, k = w /c is the wavenumber and x and z are the position of the
membraney the z and z axis, respectively.

Figure 6 shows the numerical results of the simulations implemented for the case described.
As in the case of the beam with clamped ends, no displacement is produced in the boundaries of
the membrane, which is a proof that the simulation is accomplishing the boundary conditions
imposed.

Mode 1 (34 Hz) | Mode 2 (135 Hz)

e e

Mode 3 (304 Hz) | Mode 4 (539 Hz)

e

Figure 6: Vibrational modes of rectangular membranes.

4.2. Circular membranes

In this section, numerical simulations have been performed considering a circular membrane
of radius r and fixed boundary conditions in a similar way to rectangular membranes. In the
case of circular membranes, the analytical equation that provides the particle displacement in
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flexural waves is Eq. 9, which is composed by a radial term J,(kr), an angular term cos(m®)
and an harmonic term cos(wt).

y = ApnJn(kr)cos(mO)cos(wt) (11)

where A is the amplitude, k = w /c is the wavenumber, w is the angular frequency, t is the
time and r and © are the radial and angular components, respectively.

In membranes, the modes are labelled in terms of the number of nodes appearing in the
angular and radial components of the analytical equation (i.e., the mode (2,1) has two angular
nodes and 1 radial mode. Keeping this in mind, performing a numerical simulation of a circular
membrane gives the results shown in Table 7.

0,1 (43 Hz) | 0,2 (254 Hz) | 0,3 (625 Hz)
1,1 (119 Hz) | 1,2 (411 Hz) | 1,3 (858 Hz)
Pe—
& S
2.1 (218 Hz) | 2,2 (591 Hz) | 2,3 (1112 Hz)

Figure 7: Vibrational modes of circular membranes.

As in the case of the beam, one can observe that there is no displacement in the boundaries
of the membrane, which is a proof that boundary conditions have been respected by the model.

5. Conclusions

The application of the FEM has a great interest for the resolution of fundamental equations.
In this work simple continuous mechanical systems are analysed like the vibrating string, the
beam and membranes with different boundary conditions. The method allows an easy visuali-
zation of the phenomena that take place in the study case, which is specially useful for a better
understanding and prediction.

Results given in this work are a good example of this application. Unidimensional systems,
as the vibrating string, are quickly computed while more complex systems require more time
and means. Examples shown also demonstrate the importance of the boundary conditions
comparing, for the case of beams, the variation of the modes considering free, clamped or
mass-loaded ends.

In some cases, an experimental set-up of a work is very expensive or its study is very complex,
and FEM can also be a previous step between the theoretical /analytical and the experimental
for interpreting results and study the case in depth.

The main disadvantage of this method is the great computational cost derived from the big
number of parameters to be studied in the model or the wide range of some of them.
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