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ABSTRACT

A new approach based on statistical estimation is proposed for the analysis of tomographic traveltime data
in cases of significant nonlinear dependence of the traveltimes on the sound-speed variations. Traditional to-
mography schemes based on linear perturbative inversions about a single, a priori fixed background state cannot
properly handle such cases since the linearized model relations will lead to considerable inversion errors,
depending on the extent of nonlinearity. In contrast, the background state is considered here as a variable
unknown quantity to be estimated from the traveltime data, simultaneously with the peak identification function
and the sound-speed perturbation. Using the maximum likelihood approach and the Gaussian assumption, the
statistical estimation problem reduces to a weighted least squares problem to be solved simultaneously for the
three unknown quantities. A posteriori inversion-error estimates are derived accounting also for uncertainties in
the background selection and the peak identification. The proposed method is applied to nine-month-long trav-
eltime data from the Thetis-2 experiment, conducted from January to October 1994 in the Western Mediterranean
Sea, where the variability of the ocean environment gives rise to significant nonlinear dependencies between
sound-speed and traveltime variations. The recovered temporal variability and stratification compare well with
independent XBT observations.

1. Introduction

A series of experiments in the past have verified that
ocean acoustic tomography introduced by Munk and
Wunsch (1979) can successfully map ocean temperature
distributions over scales of hundreds (Ocean Tomog-
raphy Group 1982; Cornuelle et al. 1985; Worcester et
al. 1993; Send et al. 1995) to thousands (Dushaw et al.
1993; Cornuelle et al. 1993; Spiesberger and Metzger
1992; Spiesberger et al. 1998) of kilometers. In many
tomography experiments conducted up to the present
the assumption of small ocean variability about a back-
ground state could be made and linear perturbative in-
version theory (Franklin 1970; Desaubies 1990; Munk
et al. 1995) could be applied.

The ongoing development of global ocean observing
systems (GOOS), and the application of data assimi-
lation techniques to general circulation models in recent
years has raised the need for systematic monitoring of
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the ocean interior on annual to interannual timescales
(Munk and Forbes 1989). Some tomography experi-
ments of such long-term nature have been conducted or
are currently under way in many parts of the world
ocean, such as the Greenland Sea experiment in 1987–
88 (GSP Group 1990; Pawlowicz et al. 1995), the Pacific
basin experiment in 1983–89 (Spiesberger et al. 1992),
the Thetis-2 experiment in the Western Mediterranean
Sea in 1994 (Send et al. 1997; Menemenlis et al. 1997a),
the Acoustic Thermometry of Ocean Climate program
in the northeastern Pacific Ocean (Munk 1994, 1996;
Menemenlis et al. 1997b), and the ongoing multiyear
tomography experiment in the Labrador Sea (Marshall
et al. 1998).

The monitoring of the ocean interior over long time
periods, associated with large sound-speed changes, sets
new requirements for the analysis of tomography data.
An important issue is that the large ocean variability
may give rise to nonlinear dependencies between sound-
speed (temperature) and acoustic traveltime variations.
This significantly complicates the peak identification
and inversion problem. For the solution of the nonlinear
inversion problem, Abel transform and iterative meth-
ods have been proposed. The Abel transform can be
used for nonperturbative ray or modal inversions in the
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range-independent case (Munk and Wunsch 1983; Jones
et al. 1986, 1993, 1994), yet its nonlinear nature com-
plicates the use of a priori information. Iterative
schemes, on the other hand, enhance the applicability
of linear inversion techniques in a straightforward man-
ner (Mercer and Booker 1983; Spiesberger 1985; Cor-
nuelle at al. 1993). Their efficiency is hampered, how-
ever, by the computational burden associated with the
forward calculations, especially when a broadband
wave-theoretic approach is used; furthermore, inver-
sion-error estimates cannot be easily obtained.

A method for simple nonlinear inversions for the total
heat content was recently applied to Thetis-2 data (Send
1996b; Send et al. 1997), exploiting information from
a single deep-turning ray; a nonlinear relation between
arrival time and heat content, derived from historical
data, was used to convert a manually obtained peak track
into a heat content time series. This approach is straight-
forward and very efficient, yet it cannot be extended to
a larger number of arrivals, which convey information
about the vertical structure of the water column.

To analyze four-month-long traveltime data from the
1987 Reciprocal Tomography Experiment, Dushaw et
al. (1993) exploited climatological information to a
priori determine a time-variable background state (his-
torical mean) to be used as reference for linearization.
This approach offers a straightforward way to apply
linear inversion methods and relevant statistical theory
to nonlinear traveltime data. Nevertheless, year-to-year
variability can cause deviations from the climatological
mean conditions. Furthermore, in cases where the peak
tracking and identification is sensitive to the proper se-
lection of the background state or where the interannual
variations give rise to a nonlinear traveltime behavior,
the a priori selection may limit the applicability of this
method for long-term monitoring systems.

An alternative approach is proposed here by consid-
ering the time-variable background state as an unknown
to be estimated directly from the tomography data, rath-
er than a priori imposed from the climatology. For this
purpose the sound-speed parameter space is discretized
in accordance with the anticipated variability and degree
of nonlinearity and the background variable is intro-
duced. The problems of background selection, peak
identification (association between model peaks and ob-
served peaks), and perturbative inversion are then em-
bedded in a global optimization, maximum likelihood
estimation problem. Under the Gaussian hypothesis, this
problem reduces to a problem of weighted least squares,
which is to be solved simultaneously for the three un-
known quantities. Furthermore, inversion-error esti-
mates are derived that also account for the uncertainty
in the background selection and the peak identification.

The proposed approach is a generalization of previous
works (Send 1996a; Skarsoulis et al. 1996), treating the
identification problem in close relation with the inver-
sion procedure for the case of small sound-speed per-
turbations about a fixed background state. At early stag-

es it was attempted to solve for the background state
independently from the remaining unknowns (Send
1996b; Skarsoulis 1996), which resulted in estimation
overshoots; this problem is remedied here by addressing
the global optimization problem.

The contents of the work are organized as follows.
The tomographic modeling problem is formulated in
section 2 and basic notions are introduced, such as the
peak arrivals, the peak identification function, and the
sound-speed parameterization, the latter leading to the
discretization of the parameter space and the introduc-
tion of the background variable. In section 3 the esti-
mation problem is addressed in a statistical framework
using the maximum likelihood approach; under the
Gaussian assumption estimates are derived for the prob-
lem unknowns and the inversion errors. The proposed
method is applied to the Thetis-2 experiment. In par-
ticular, nine-month-long tomography data are analyzed
from the longest (604.7 km) Thetis-2 transect. A de-
scription of the experiment, the data analysis and the
comparisons between the inversion results and inde-
pendent observations are presented in section 4. A dis-
cussion on the capabilities and limitations of the method
as well as the main conclusions from the work are con-
tained in section 5.

2. Formulation

a. Peak arrivals

A standard tomographic setting is considered with a
source and receiver at fixed locations in a range-inde-
pendent ocean. Due to the multipath nature of acoustic
propagation in the ocean environment, a pulsed broad-
band signal emitted by the source will arrive at the
receiver as a sequence of peaks (the acoustic arrivals)
at different time instants.

The arrival times can be modeled as functionals of
the sound-speed profile c(z) by expressing the arrival
pattern a(t; c), defined as the amplitude of the acoustic
pressure pr(t; c) at the receiver in the time domain,
through the inverse Fourier transform

a(t; c) 5 |p (t; c)|r

`1
jvt5 H (v; c)P (v)e dv , (1)E sr s) )2p

2`

in terms of the source signal Ps(v) in the frequency
domain and the Green’s function Hsr(v; c). The latter
depends on the source or receiver locations, the circular
frequency v and the sound-speed profile c(z). The peak
arrivals are defined as the local maxima of the arrival
pattern with respect to time (Athanassoulis and Skar-
soulis 1995)

]a
(t ; c) 5 0, i 5 1, . . . , I. (2)i]t

The notion of peak arrivals is generic and encompasses
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ray and modal arrivals as special cases; it can also cope
with any modeling approach for the arrival pattern, ei-
ther ray or wave theoretic. Since the arrival pattern de-
pends on the sound-speed field, the peak arrival times
do so as well, that is, t i 5 t i(c).

b. Sound-speed parameterization

The sound-speed variability in a certain area is rep-
resented through a modal expansion

L

c(z) 5 c (z) 1 q f (z), (3)O0 l l
l51

where c0(z) is a basic reference profile and {f l(z)} is
a set of sound-speed modes, for example, empirical or-
thogonal functions (EOFs). The functional dependence
of t i on the sound speed can be then written as a para-
metric dependence t i(q) on the modal parameter vector
q 5 {ql}, q ∈ Q, where Q is the parameter space
spanning the sound-speed variability expected. Al-
though the dependence t i(q) is in general nonlinear, in
the case of small variations it can be linearized about
a background state q 5 qb

L ]tit (q) 5 t (q ) 1 (q )[q 2 q ]. (4)Oi i b b l b,l]ql51 l

The derivatives ]t i/]q l can be analytically expressed in
terms of background quantities (Athanassoulis and
Skarsoulis 1995), and Eq. (4) can be used as a basis for
linear q inversions of traveltime data (Skarsoulis et al.
1996).

In the case of large sound-speed variations, where the
nonlinear dependence of the arrival times on the sound-
speed parameters becomes significant, the above line-
arization about a single background state is insufficient
and cannot be used for inversions. Nevertheless, it can
be extended in a straightforward manner by considering
a set of discrete background states, rather than a single
background state, depending on the expected sound-
speed variability and the degree of nonlinearity. Then
Eq. (4) can be used with respect to the nearest back-
ground state each time. To denote the discretization of
the parameter space the subscript b will be considered
in the following as a variable, b ∈ B, from the set B of
discrete background states. The background values of
the modal parameter vector q are denoted by

qb ∈ Q, b ∈ B. (5)

Thus the nonlinear relation t i(q) is replaced by a set
of linear ones [Eqs. (4), (5)]. The cost to be paid for
this simplification with respect to the inverse problem
is that an additional unknown is introduced: the back-
ground variable b.

c. Peak identification

A further unknown, in addition to b and q, arises
from the need to associate the model peaks (peak ar-

rivals) with the observed peaks before addressing the
inversion problem. In particular, the model peak arrival
times t i, i 5 1, 2, . . . , I are to be associated with the
observed arrival times (K), j 5 1, 2, . . . , J, in the(o)t j

Kth reception (I ± J, in general). This can be done by
introducing a one-by-one mapping J: {1, 2, . . . , I} →
{1, 2, . . . , J}, which is called the identification function
(Mauuary 1994; Skarsoulis et al. 1996). Its domain of
definition DJ is in general a subset of {1, 2, . . . , I}.

The identification set J(K), that is, the set of all pos-
sible identification functions (identifications) in the Kth
reception, is restricted in various ways to avoid unnat-
ural identifications (Send 1996a; Skarsoulis et al. 1996).
A first restriction is to exploit information from the pre-
vious step (K 2 1), for which the identification and
inversion have been already completed. The subset
J̃«(K) is introduced

(o)J̃ (K ) 5 {J ∈ J(K ) : |t (K ) 2 t̂ (K 2 1)| , «(i),« J (i) i

i ∈ D }, (6)J

where denotes the predicted traveltimes fromt̂ (K 2 1)i

(4), with b 5 b̂K21 and q 5 estimated in theq̂K21

previous step, whereas denotes the associated(o)t (K)J (i)

observed arrival times in the present step K, according
to the trial identification J. In other words, a time win-
dow of size 2«(i), i 5 1, . . . , I is set about each pre-
dicted arrival time of the previous step, and all observed
peaks of the Kth reception lying within this window are
considered as possible identifications of the particular
peak arrival.

If a single observed peak lies in the search windows
of two or more subsequent peak arrivals, all possible
alternatives have to be built associating the observed
peak with a single peak arrival each time. The trial
identifications are checked for monotonicity of the ar-
rival times and also for the number of identified peaks
in order to keep only those identifying the maximum
possible number M of peaks (M # I). The resulting set
of trial identifications is denoted by J«(K).

3. Estimation

The problem of estimating b, q, and J from the ob-
served traveltimes is addressed in this section. Adopting
a statistical setting in which the above quantities are
assumed random, hence associated with probabilities or
probability densities (Tarantola 1987), and further ap-
plying the Bayes formula, the following expression can
be obtained for the posterior likelihood of the sought
quantities, given the observation vector 5(o)t K

{ }:(o)t (K)j

(o)L (b, J, q | t )K

1
(o)5 f (t | b, J, q) f (q | b, J )Pr(b, J ),t | b,q,J K q | b,J(o)f (t )t K

(7)
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where f t is the probability density function (PDF) of
the arrival time vector, whereas f t | b,q,J is the conditional
PDF of the arrival time vector, given b, J, and q. Further,
f q | b,J is the conditional PDF of the parameter vector q,
given b and J, and finally Pr(b, J) is the probability
associated with the particular trial background state and
trial identification.

a. A priori information

The PDFs and the probabilities on the right-hand side
of Eq. (7) can be expressed in terms of model relations
and a priori statistical information available for the un-
known quantities. Starting with f t | b,q,J, the arrival time
prediction (4) is subject to a modeling error (e.g., due
to linearization or range-dependent effects); further-
more, the arrival time data are subject to an observa-
tional error as well. Considering the difference between
predicted and associated observed arrival times,

]ti (o)n 5 t (q ) 1 (q )[q 2 q ] 2 t (K ),Oi i b b l b,l J (i)]ql l

i ∈ D , (8)J

for given b, q, J, as a Gaussian, zero-mean random
vector, the PDF f t | b,q,J is written in the form

(o)f (t | b, J, q)t | b,q,J K

1 1
215 exp 2 n9R n , (9)nn5 6M 2Ï(2p) detRnn

where Rnn is the covariance matrix of the cumulative
observation and modeling error n 5 {ni}, taken in cor-
respondence with the domain of definition DJ of the
particular trial identification J. In the following all vec-
tors are considered as column matrices, whereas a prime
denotes matrix transposition.

Concerning the probability density f q | b,J, a reason-
able choice would be a uniform distribution along the
discretization directions, over the domain of validity of
each particular background state, and Gaussian distri-
butions along the remaining directions, with variances
prescribed from the historical data. However, taking dif-
ferent distributions along different directions would
complicate the analysis. For convenience a multivariate
Gaussian distribution about qb is considered:

1
f 5q | b,J

LÏ(2p) detRqq

1
213 exp 2 (q 2 q )9R (q 2 q ) , (10)b qq b5 62

with covariance matrix Rqq compatible with the cli-
matology and the discretization. In particular, along the
discretization directions, the variance is defined from
the discretization step: for example, for uniform dis-
cretization of the ql axis with step dq l, the variance is

taken equal to /12, the variance of a uniform dis-2dql

tribution in the interval [2dql/2, dql/2]. The extent of
the interval to be discretized is taken in accordance with
the historical variance of the corresponding ql com-
ponent. For the remaining (nondiscretized) q compo-
nents, the historical variance is used.

Regarding the probability Pr(b, J) in Eq. (7), all (b, J)
∈ B 3 J«(K) are taken equiprobable since there is no
a priori preference for a particular background state and/
or identification function. Finally, the PDF f t ( ) in(o)t K

Eq. (7), no matter what its form may be, is a constant
for the particular reception; that is, it plays no role in
the estimation process.

b. Maximum likelihood estimation

Under the above hypotheses the likelihood functional
(7) becomes

(o)L (b, J, q | t )K

1
215 constant exp 2 n9R nnn5 62

1
213 exp 2 (q 2 q )9R (q 2 q ) , (11)b qq b5 62

for b ∈ B, J ∈ J«(K), and q ∈ Q. Maximum likelihood
estimates b̂, Ĵ, and can be obtained by maximizingq̂
(11) with respect to b, J, and q:

(o) (o)ˆL (b̂, J, q̂ | t ) 5 max L (b, J, q | t ). (12)K K
b,J,q

In the case of diagonal covariance matrix Rnn and Rqq

this is equivalent to minimizing the square sum

(o) 2[{G (q 2 q )} 1 t (q ) 2 t (K )]b b i i b J (i)
S(b, J, q) 5 O

diag[R ]i∈D nn iJ

L 2(q 2 q )b,l1 .O
diag[R ]l51 qq l

(13)

The observation matrix Gb 5 {(]t i/]ql)(qb)} and the
error matrix Rnn in (13) are taken in correspondence
with the domain of definition of DJ of the particular trial
identification J. Thus, the maximum likelihood problem
reduces to a weighted least squares problem:

ˆS(b̂, J, q̂) 5 min S(b, J, q). (14)
b,J,q

For fixed b and J, the minimization of S with respect
to q can be performed analytically (Skarsoulis et al.
1996), resulting in

5 qb 1 Rqq (GbRqq 1 Rnn)21dt , (15)q̌(b, J) G9 G9b b

where dt(b, J; K) 5 { (K) 2 t i(qb)} . Exploiting(o)t J(i) i∈DJ

(15), the solution of the global optimization problem
(14) can be obtained through numerical search in the B
3 J«(K) space.
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c. Inversion-error estimates

In linear inversion problems, assuming Gaussian sta-
tistics, the knowledge of the a priori variance of the
model and error vector, Rqq and Rnn, respectively, and
the observation matrix Gb are sufficient for estimating
the a posteriori variance of the model vector (Tarantola
1987), that is, for obtaining inversion error estimates.
The problem studied here, with unknown background
state, model vector, and identification function, as a
whole is a nonlinear one. If the background state b and
the identification function J were known, the remaining
inversion problem for q would be linear; in that case
the estimate (15) would be the maximum likelihood
solution and the a posteriori covariance matrix, for given
t , defined by Dqq | bJ 5 ^(q 2 2 , wouldq̌)(q q̌)9& | bJt

be given by

Dqq | bJ 5 ( RnnGb 1 )21.21G9 Rb qq (16)

However, both the background state and the identifi-
cation function are unknowns to be estimated from the
tomography data and this fact introduces additional un-
certainty. The a posteriori probability density of q, for
given t , can be calculated in this case as the marginal
distribution of the joint likelihood function with respect
to b and J:

f (q | t) 5 f (q | b, J, t)Pr(b, J | t). (17)O Oq | t q | bJt
b J

In the following the quantities on the right-hand side of
(17) are expressed analytically under the Gaussian as-
sumption. In this case, the conditional probability den-
sity f q | bJt (q | b, J, t) is a Gaussian distribution as well
(Skarsoulis et al. 1996) with mean value ) andq̌(b, J
covariance matrix Dqq | bJ, that is,

f (q | b, J, t)q | bJt

1
215 constant exp 2 (q 2 q̌)9D (q 2 q̌) . (18)qq | bJ5 62

The a posteriori probability Pr(b, J | t) can be expressed
taking the marginal of the likelihood function (11) with
respect to q:

1
Pr(b, J | t) 5 L (b, J, q | t) dq, (19)EC

Q

where C is a normalizing constant defined by

C 5 L (b J, q | t) dq, (20)O O E
b J Q

such that Sb SJ Pr(b, J | t) 5 1. Using (11) the above
integral over q can be calculated in closed form:

L (b, J, q | t) dqE
Q

1/2detDqq | bJ
5 constant1 2detRnn

1
213 exp (q̌ 2 q )9D (q̌ 2 q )b qq | bJ b52

1
(o) 21 (o)2 (t 2 t )9R (t 2 t ) , (21)J b nn J b 62

where 5 { } and t b 5 {t i(qb)}, i ∈ DJ. Sub-(o) (o)t tJ J(i)

stituting the above Eqs. (18)–(21) into (17) a closed
form expression can be obtained for f q | t (q | t). The
resulting distribution is a superposition of Gaussian dis-
tributions with different mean values and covariance
matrices. Defining the global a posteriori covariance
matrix as

D 5 ^(q 2 q̂)(q 2 q̂)9&qq

5 f (q | t)(q 2 q̂)(q 2 q̂)9 dq (22)E q | t

Q

and substituting the expression (17), Dqq can be finally
expressed as

D 5 Pr(b, J | t)O Oqq
b J

3 [D 1 (q̌ 2 q̂)(q̌ 2 q̂)9]. (23)qq | bJ

This is the global covariance matrix accounting for the
cumulative error due to the linear inversion, the back-
ground state, and the identification function uncertainty.
If the background state and identification function are
known, and Dqq reduce to and Dqq | bJ, respectively.q̂ q̌

Using the parametric expression (3), the following
result is obtained for the a posteriori variance ^dc2(z)&
5 ^[c(z) 2 ĉ(z)]2& of the sound speed

^dc2(z)& 5 diag[f 9(z)Dqqf (z)], (24)

where f (z) 5 {f l(z)} is the vector containing the val-
ues of the sound-speed modes at different depths. Taking
depth averages over particular depth classes the corre-
sponding averaged sound-speed variance becomes ^dc 2&
5 f 9Dqqf , where the depth-averaged sound speed and
sound-speed modes are denoted by overbars.

4. Application

The method described in the previous sections is used
in the following to perform range-independent inver-
sions of nine-month-long tomography data from the
Thetis-2 experiment. In particular, the longest (604.7
km) transect, W3–H, is considered for which systematic
XBT measurements are also available.
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FIG. 1. The geometry of the Thetis-2 experiment in the Western
Mediterranean Sea.

FIG. 2. CTD sound-speed profiles (deviations from a linear refer-
ence profile: 1503 m s21 at the surface and 1546.9 m s21 at 2500-m
depth) measured along the section W3–H. (a) Poseidon cruise, Jan
1994. (b) Le Suroit cruise, Oct 1994.

a. The Thetis-2 experiment

The Thetis-2 experiment was conducted from January
to October 1994 in the Western Mediterranean Sea
(Send 1996b; Send et al. 1997), as a joint effort of IfM
(Institut für Meereskunde, Kiel, Germany), IFREMER
(Institut Français de Recherche pour l’Exploration de la
Mer, Brest, France), IACM (Institute for Applied and
Computational Mathematics, Heraklion, Greece), COM
(Centre d’Oceanologie de Marseille, La Seyne-sur-Mer,
France), and WHOI (Woods Hole Oceanographic In-
stitution, Woods Hole, Massachusetts).

Figure 1 shows the experimental site and geometry.
The tomographic array contained seven moored trans-
ceivers all deployed at a nominal depth of 150 m. An
HLF-5 source, marked by H in Fig. 1, with a central
frequency of 250 Hz and effective bandwidth of 62.5
Hz, insonified the basin at 8-h intervals. The remaining
six sources (W1–W5 and S), transmitting six times per
day, were of the Webb type with a central frequency
400 Hz and an effective bandwidth 100 Hz. The receiver
parts of W1–W5 were modified to listen to both the
400- and 250-Hz signals. Along the section W3–H an
XBT verification line was occupied every two weeks
using a commercial vessel connecting Marseille
(France) to Skikda (Algeria). In particular, the positions
of H and W3 were aligned with the ship’s route to allow
detailed comparisons between tomographic inversions
and XBT data. Tomography data from this transect (re-
ceptions at W3 from H) spanning the period from 24
January to 16 October 1994 (yeardays 24.4–289.4) are
analyzed below.

During the deployment and recovery cruises, carried
out with the FS Poseidon (IfM) and NO Le Suroit
(IFREMER), respectively, hydrographic temperature
and salinity profiles were collected over the area of in-
terest to be used in the tomographic analysis for ini-
tialization and calibration purposes. The CTD sound-

speed data from the Poseidon and Le Suroit cruises
along W3–H are shown in Fig. 2 in the form of devi-
ations from a linear sound-speed profile (1503 m s21 at
the surface and 1546.9 m s21 at 2500-m depth), the latter
corresponding to fully mixed conditions, typical for the
(northern) Mediterranean in winter. The poor horizontal
sampling of the Poseidon section is due to adverse
weather conditions encountered in January. Note in Fig.
2 that there is a warming gradient from north to south,
due to which the medium properties in the upper 300
m are dependent on both range and depth. Furthermore,
there are large seasonal changes from the Poseidon to
Suroit conditions. The Poseidon profiles are close to
linear, especially in the northern part of the basin (close
to H), corresponding to homogeneous fully mixed con-
ditions. In the Suroit section the surface layer is sig-
nificantly warmer and the resulting sound-speed profiles
exhibit a minimum (channel axis) at about 100-m depth.
The difference between the Poseidon and Suroit range-
averaged sound speed reaches 20 m s21 at the surface.
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FIG. 3. The acoustic data (3-day incoherently averaged arrival pat-
terns) recorded at W3 from H after correlation processing, clock-
drift, and mooring motion correction.

FIG. 4. Comparison of range-independent (RI) and range-dependent
(RD) predictions of arrival patterns at W3 from H using the Poseidon
and Suroit CTD sound-speed sections (Fig. 2) with the corresponding
offset-calibrated acoustic data.

b. Data preprocessing

Figure 3 shows the acoustic receptions of the source
H at W3 after correlation (matched filter) processing,
clock-drift and mooring-motion corrections (Send
1996b); in particular, the 3-day incoherently averaged
arrival patterns are shown in this figure. It is seen that
the early arrivals at W3 are raylike; five to six ray groups
can be distinguished in most receptions. The remaining
intermediate and late arrivals are difficult to interpret in
terms of ray arrivals because ray groups overlap with
each other in this interval. To exploit the maximum of
information contained in the intermediate and late part
of the arrival patterns, the notion of peak arrivals is used
combined with normal-mode propagation modeling.

An offset correction has to be applied to the data to
account for the fact that the mean horizontal distance
between the moorings is not known accurately enough.
This correction can be fixed by comparing the predicted
arrival patterns [based on the CTD sound-speed data
available (Fig. 2) and the nominal instrument positions]
with the corresponding acoustic data. Prior to the acous-
tic predictions the Poseidon and Suroit sound-speed data
are subjected to the earth-flattening transformation (Aki
and Richards 1980; Spiesberger and Metzger 1991) to
account for the earth curvature effects:

2e e
z9 5 z 1 1 1 and (25)1 22 3

2c9(z9) 5 c(z)(1 1 e 1 e ), (26)

where e 5 z/R0 and R0 is the earth radius, which equals
6371 km. The above transformation is accurate up to
the second order with respect to e.

The comparisons between the measured and the pre-

dicted arrival patterns are shown in Fig. 4 after offset
calibration of the tomography data by 2127 ms, cor-
responding to an offset in the horizontal mooring dis-
tance by about 2190 m. The tomography data shown
are the incoherent averages of the arrival patterns mea-
sured during or close to the period of the CTD sam-
plings. The predictions are performed with the KRA-
KEN normal/coupled-mode code (Porter and Reiss
1984) assuming the emitted signal to be a Gaussian
pulse with a central frequency of 250 Hz and bandwidth
of 62.5 Hz. Both range-independent (RI) and range-
dependent/coupled-mode (RD) predictions are shown.
For the RI predictions, range-averaged profiles are cal-
culated from the original sections. In the RD case only
the first 20 propagating modes are taken into account,
corresponding to the intermediate and late part of the
arrival pattern, where the RD effect is significant, in
order to reduce the computational burden.

It is seen in Fig. 4 that the RI prediction of the early
arrivals is in good agreement with the measured data in
both the Poseidon and Suroit cases. This is expected
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FIG. 5. Measured acoustic arrival times at W3 from H over the
9-month duration of the experiment (3-day sliding averages of the
arrival patterns are used). (a) Peak locations (light dots) and highest
peak locations (heavy dots) in each reception. (b) Highest (light) and
cutoff (heavy) peak arrival times.

FIG. 6. (a) The basic reference sound-speed profile and (b) the first
three EOFs for the western Mediterranean basin.

since early arrivals correspond to steep rays, spending
most of their travel time in the deep water layers where
the medium is practically range independent. The range-
dependence effect becomes gradually more important
for the later arrivals sampling shallower layers. The
strongest effect is in the final cutoff time, where the
difference between the RI and RD prediction ranges
from 75 ms in the Poseidon case to 120 ms in the Suroit
case. The cutoff times of the measured data are repro-
duced through the RD prediction to within 20–30 ms
in both cases, while the RI calculations predict earlier
cutoff times by 60–140 ms.

Figure 5 shows the offset calibrated W3–H acoustic
data in the form of observed peak arrival times. The
horizontal axis of this figure represents yeardays of 1994
and spans the period of the experiment, whereas the
vertical axis measures arrival time. To increase the sta-
tistical significance of the data 3-day sliding averages
are used; that is, for each calendar day the arrival pat-
terns measured from the preceding to the following day
are incoherently averaged. The 45–50 more significant
peaks in each reception are shown through dots in the
top panel of Fig. 5; the highest peaks are denoted by
heavier dots in this figure. Six early arrival groups can
be distinguished over the period of the experiment. Later
groups of arrivals get closer to each other and cannot
be easily resolved over all periods. The bottom panel
in Fig. 5 shows the evolution of the highest and the
cutoff peaks, the latter being defined as the last of the

five highest peaks in each reception. The evolution of
the cutoff peaks is significantly more stable than that of
the highest peaks that exhibit a significant variability.
In this connection, the cutoff peaks are considered to
be more reliable for performing inversions.

c. Data analysis

To prepare the framework for inversions a number of
steps have to be undertaken concerning the establish-
ment of sound-speed modes and a priori statistical in-
formation, the discretization of the parameter space (def-
inition of the background states), and the calculation of
the observation matrix, that is, the derivatives of the
peak-arrival times with respect to the sound-speed
modes at each background state.

Principal value analysis of historical data for the west-
ern Mediterranean basin resulted in a series of EOFs,
the first three of which are shown in Fig. 6, along with
the basic reference profile. The corresponding rms val-
ues of the EOF amplitudes are q1,rms 5 18.48, q2,rms 5
2.88, and q3,rms 5 0.96. EOF-1 accounts for the bulk of
the seasonal sound-speed changes taking place close to
the surface, whereas higher-order EOFs extend to in-
creasingly deeper layers. The first three EOFs explain
99.6% of the total variance. Since the large sound-speed
variations are mainly due to EOF-1 representing the
seasonal changes, a one-dimensional discretization of
the parameter space is considered in the following by
defining the background states as EOF-1 variations of
the basic reference profile in the q1 interval [240, 40]
(two standard deviations about the basic reference state)
with a step dq1 5 2. Following section 3a, the variances
used for Rqq are 4/12, 2.882, and 0.962 for EOFs 1, 2,
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FIG. 7. (a) The background sound-speed profiles for q1 5 240,
220, 0, 20, and 40 (solid lines) and the range-averaged Poseidon,
Suroit profiles (dashed lines). (b) The background peak arrival times
as functions of q1.

FIG. 8. The observation (influence) matrix for the 33 peak arrivals
calculated at three background states q1 5 240, 0, and 40 for EOF-1
(V), EOF-2, (#) and EOF-3 (M).

and 3, respectively. Figure 7a shows the dependence of
the background sound-speed profiles on q1, ranging
from an upward-refracting profile for q1 5 240 to a
channeled one for q1 5 40. The Poseidon and Suroit
range-averaged profiles are also shown in this figure
through dashed lines.

In Fig. 7b the background peak-arrival times are
shown over the q1 interval [240, 40]. In total, 33 model
peaks are traced over the considered range of variability.
It is seen in this figure that there are q1 intervals of
nonlinearity that are different for the different peaks;
earlier peaks exhibit the nonlinear behavior for larger
q1 values than later peaks. Furthermore, the arrival time
variability is larger for the late peaks than for the early
ones. The underlying reason for the nonlinear behavior
is the passage from surface-reflected propagation in win-
ter to channeled propagation in summer. In terms of ray
theory, this passage takes place when the sound-speed
value at the surface equals the value at the ray up-turning
depth; this value is larger for deep rays, which corre-
spond to early arrivals, than for shallower rays, which
correspond to late arrivals. Accordingly, in terms of q1,
the transition will take place at larger q1 values for early
arrivals than for late ones. This explains the different
intervals of nonlinearity for the different peaks in Fig.
7b.

The observation matrix Gb is calculated for the 33
peak arrivals of Fig. 7b at each background state using
the KRAKEN normal-mode code; it is shown in Fig. 8,
for three background states (q1 5 240, 0, 40). The
horizontal axis in this figure serves for identification of
the peak arrivals by traveltime, whereas the influence
coefficients are measured on the vertical axis; points

corresponding to the same EOF are connected with
lines. Note that each EOF has a different effect on the
peak arrival times and this effect is also dependent on
the background state considered; for example the effect
of EOF-1 on the last peak arrival is stronger for q1 5
240 than for q1 5 40, and this can be seen in Fig. 7b
as well.

The last quantities to be set prior to the inversion is
the error covariance matrix Rnn and the search windows
« to be used for the construction of the identification
set. The data errors are given rms values of 10 ms for
the first six arrival groups, that is, for the first 18 peak
arrivals, for which the raylike triplet character is quite
clear in the data. For the next arrivals an increasingly
larger rms error—20 ms for the first six arrivals and 30
ms for the next eight—is taken to account for the in-
creasing uncertainty in the data (no clear triplets present)
and the larger expected prediction error. The last peak
arrival is associated with the cutoff peak in the data,
defined as the last of the five highest peaks in each
reception. As seen in the previous section, the last pre-
dicted peak is subject to a significant range-dependent



FEBRUARY 2000 249S K A R S O U L I S A N D S E N D

FIG. 9. Identified peak tracks in the acoustic data received at W3
from H (heavy lines) and predicted peak arrival times (light lines). FIG. 10. (a) Estimated background states. (b) Estimated EOF am-

plitudes.

effect, which has to be taken into account in the fol-
lowing range-independent inversions (Cornuelle et al.
1985; Munk and Wunsch 1985). In appendix A it is
shown that the anticipated range-dependence of the par-
ticular environment causes a systematic delay on the
last predicted arrival, by 100 ms in the mean. After
correcting for this effect the observation error for the
last arrival is taken as 50 ms rms. For the previous peaks
the range-dependent effect lies within the observation
error considered for the inversion.

The window radius « for determining the trial iden-
tifications is set equal to 20 ms for the first 18 arrivals
corresponding to full triplets in the data. For the next
six arrivals a window radius of 30 ms is taken since the
time separation between adjacent peaks increases and,
further, the lack of triplets in the data is accompanied
with a larger variability of the peaks. For the remaining
peaks the window radius is reduced to 20 ms, which is
in agreement with the decreasing separation of late ar-
rivals.

The inversion results are described as follows. Figure
9 shows the identified acoustic peaks in the data (heavy
lines) and also the locations of the peak arrivals pre-
dicted from the model (light lines). The gaps in the
identified peak tracks are due to poor receptions in
which the tomography signal is overwhelmed by the
background noise at the receiver (cf. Fig. 5). These are
demanding conditions for the automatic identification
and tracking scheme since in the absence of peaks close
to the predicted arrival times misidentifications are high-
ly probable, which in turn may cause the subsequent
inversions to lose track of the correct peaks.

The selected background states along with the re-
trieved EOF amplitudes are shown in Fig. 10. The sea-
sonal trend is clear in both the selection of the back-
ground states as well as in the evolution of the EOF-1

amplitude. Note that the background state is selected to
account for the gross sound-speed variability respon-
sible for the nonlinear traveltime behavior, whereas the
fine tuning of the data is achieved through linear in-
version about the selected background state. It is im-
portant to note that the variance of q1 was a priori de-
termined only in the finescale through the discretization
of the parameter space. The large-scale variability,
shown in Fig. 10, is determined from the tomography
data.

In Fig. 11 the evolution of the depth-averaged tem-
peratures is shown over three layers: the surface layer,
from the surface to 150-m depth; the intermediate layer,
from 150- to 600-m depth, in which the mesoscale ac-
tivity is expected to take place; and a layer from the
surface to 2000-m depth, representing the total heat con-
tent of the water column. Note that the results represent
averages over the 600-km section. The heavy solid lines
show the inversion results, whereas the rms errors are
given through the shaded areas; these represent the cu-
mulative error due to the linear inversion, the back-
ground state, and the identification function uncertainty,
as well as the error of the sound speed–temperature
conversion relation (see appendix B). Parallel to the
tomography measurements, XBT data were systemati-
cally collected along the W3–H section. These data and
also the CTD data from the deployment and recovery
cruises are shown in Fig. 11 as crossed circles and
squares, respectively. The dashed lines in Fig. 11 rep-
resent the climatological mean conditions.

Within the error bars, the inversion generally recovers
the absolute temperatures and the trends in all three
layers. A strong seasonal signal is present in the surface
layer, whereas there appears to be no typical seasonal
trend below 150 m—the variability observed below 150
m is mainly due to mesoscale activity. The comparison
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FIG. 11. Evolution of the depth-averaged potential temperatures in
the (a) 0–150-, (b) 150–600-, and (c) 0–2000-m layers. The inversion
results (heavy solid lines) and rms inversion errors (shaded areas)
are compared with CTD data (M) from the Poseidon/Suroit cruises,
with independent XBT data (!), and also with historical monthly
mean temperatures (dashed lines). In the bottom panel results from
single-ray calculations are shown (Send et al. 1997; light solid line)
along with the corresponding error bars.

FIG. 12. Evolution of temperature profiles (deviations from
13.038C) in the upper 300-m layer. Inversion results (heavy lines)
and corresponding errors are compared with the range-averaged XBT
temperature profiles (light lines).

of the inversions with the climatological data shows that
there are deviations from the climatological mean con-
ditions in all three layers and this is also confirmed by
the XBT data. The amplitude of the seasonal signal is
10%–20% larger in the observations than in the histor-
ical data. In addition there are a number of short-term
or mesoscale fluctuations. The XBT data lie within the
estimated error limits of the inversion, with the excep-
tion of a few points in the upper layer where the spatial
variations may not be fully sampled by the XBT sec-
tions.

The light solid line and error bars in the bottom panel
(0–2000 layer) of Fig. 11 represents heat content results
from single-ray calculations (Send et al. 1997). A single
early arrival was analyzed with that method, which sam-
pled most of the water column vertically. Its propagation
time was related to the water column heat content

through a large number of acoustic propagation simu-
lations, using different historical states for the stratifi-
cation, as well as perturbations corresponding to various
oceanographic processes (convection, mesoscale eddies,
mixed layer anomalies). The ensemble of all simulations
was used to establish a single nonlinear relation between
traveltime and heat content, including error estimates
resulting from the scatter in the relation. The heat con-
tent time series obtained with this very different ap-
proach is further verification of the present inversion
results.

Figure 12 shows the evolution of temperature profiles
(deviations from 13.038C) in the upper 300 m comparing
tomographic inversions (heavy lines) with the XBT
measurements (light lines). The retrieved profiles are
averaged profiles over the time window of each XBT
sample. The inversion errors are also marked in Fig. 12.
The seasonal temperature variability reaches 138C at the
surface and nearly disappears below 150-m depth. Also
note that deviations between XBT data and inversions
are larger in the surface layer than in the deeper layers,
and this is in agreement with the inversion errors shown.
The physical reason for the reduced tomography sen-
sitivity near the sea surface lies in the particular tem-
perature and sound-speed conditions in the Mediterra-
nean, which give rise to either surface-reflected prop-
agation in winter or channeled propagation with a shal-
low axis in summer. In both cases a very small fraction
of the propagation time is spent in the near-surface layer,
resulting in a poorer acoustic sampling of smaller
depths.

5. Discussion and conclusions
In the present work a method is proposed extending

the applicability of linear traveltime tomography to the
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case of large sound-speed variations and nonlinear trav-
eltime behavior. The particular approach considers the
background state as an unknown to be estimated from
the tomography data, together with the identification
function and the model (sound speed) parameters. For
this purpose the sound-speed parameter space is dis-
cretized in accordance with the anticipated variability
and degree of nonlinearity. Using the maximum like-
lihood approach and the Gaussian assumption the sta-
tistical estimation problem reduces to a problem of
weighted least squares to be solved simultaneously for
the three unknown quantities. A posteriori inversion-
error estimates are obtained accounting for the uncer-
tainty in the inversion, the background selection, and
the peak identification.

The results of the demonstration case presented here
are encouraging. The agreement with the independent
XBT data is reasonable and consistent with the derived
error estimates, thus also giving credibility to the tech-
nique of estimating the error size. Further, the heat con-
tent results from the present method were found to be
compatible with those from the single-ray calculations
by Send et al. (1997), which is an entirely different
inversion approach.

The proposed scheme is generic and thus independent
of the particular modeling approach for the propagation
problem, either ray or wave theoretic, and the definition
of observable arrival times; that is, it can apply equally
well to ray, modal, or peak arrivals. Nevertheless, the
computational burden and the efficiency of the overall
method will be affected by the selection of the modeling
approach. The steps to be undertaken for implementing
the method are the following.

1) Definition and discretization of the parameter space
in accordance with the anticipated variability (e.g.,
from the climatology) and degree of nonlinearity.
The latter should be assessed from systematic direct
runs—seasonal changes do not necessarily mean
strong nonlinearities.

2) Solution of the direct problem for the different back-
ground states, association of peak arrivals between
the different states and calculation of the background
arrival times and observation matrices.

3) Application to the tomography data for the estima-
tion of the background state, the identification func-
tion, and the model parameters.

The performance of the method depends on the quality
of the tomography data. In the case of poor receptions,
in which the tomographic signal is corrupted by noise,
misidentifications may occur and this may have a mis-
leading effect for the identifications in the subsequent
receptions as well since the identification procedure
makes use of previous-step results. In such cases, tuning
of the search parameters and the observation errors may
improve the situation. Alternatively, a preliminary anal-
ysis can be performed using the more robust part of the
signal, for example the early arrivals, which is then used

to constrain the complete analysis. In addition, work is
in progress for solving the identification problem sep-
arately for each reception, thus minimizing the depen-
dence on the previous-step results.

The proposed adaptive inversion scheme offers an
alternative to linear inversion schemes based on an a
priori selected time-variable background state. It is ex-
pected to be useful for the analysis of nonlinear trav-
eltime tomography data, particularly in connection with
broadband wave-theoretic modeling approaches, in
which case other approaches such as iterative schemes
would require a much larger computational burden. It
may also be useful for the implementation of iterative
schemes by providing favorable background states,
based on actual receptions, to start iterations.
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APPENDIX A

Range-Dependence Effects

The inversions performed in section 4c are range in-
dependent, yet the effects of range dependence on the
late arrivals, especially on the cutoff peak, are signifi-
cant and have to be taken into account. Using the Po-
seidon and Suroit sound-speed data it was seen in sec-
tion 4b that the range-dependent calculation predicts a
cutoff peak, which is significantly delayed with respect
to the range-independent prediction by 75–120 ms. If
this time delay is a stable feature throughout the ex-
pected range of variability, one could use this infor-
mation in a quantitative way to reduce the discrepancy
between the range-independent prediction and the ob-
served data (Munk and Wunsch 1985).

The main range-dependent trend along W3–H is the
north–south warming gradient shown in Fig. 2, which
reaches an average of 10 m s21 at the surface between
H and W3. This trend is significant in the upper 200-m
layer, whereas it is very weak below 250 m. A simple
model to describe this behavior is a linear range mode
multiplied by a depth mode c(z), which is zero below
250 m. Figure A1 shows these two modes (heavy lines)
compared with the actual range-dependent anomalies
from the Poseidon/Suroit sound-speed data in normal-
ized form; for the range-mode comparisons (top panel)
the sound-speed data have been depth averaged over the
layer from 0 to 150 m.

To assess the effect of range dependence on the cutoff
peak for the different background states, the above sim-
ple range-dependent model is superposed on each range-
independent background environment. Thus, a set of
synthetic range-dependent sections is generated resem-
bling the conditions expected during the experiment:

c(r, z) 5 cb(z) 1 C(r 2 R/2)c(z), (A1)
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FIG. A1. (a) Linear normalized range mode (heavy line) compared
with the normalized range anomaly (*) of the Poseidon/Suroit sound-
speed data, depth averaged in the upper 150 m. (b) Normalized depth
mode (heavy line) and normalized deviations (light lines) of the Po-
seidon/Suroit range-dependent sound-speed profiles from the corre-
sponding range-averaged profiles.

FIG. A2. Range-independent (light lines) and range-dependent
(heavy lines) arrival pattern predictions for q1 5 240, 230, . . . ,
40.

where r is the horizontal distance from the source and
R the source–receiver range. The constant C is chosen
such that the sound-speed difference at the surface be-
tween H and W3 is 10 m s21, that is, CRc(0) 5 10 m
s21 to resemble actual conditions. The range-dependent
component (r 2 R/2)c(z) in (A1) has a zero range av-
erage, such that the synthetic range-averaged condition
is described by the background profile cb(z).

Range-dependent/independent arrival-pattern predic-
tions are performed in the following for q1 5 240,
230, . . . , 40, using the KRAKEN normal/coupled-
mode code, assuming the emitted signal to be a Gaussian
pulse with a central frequency of 250 Hz and a band-
width of 62.5 Hz. The results are shown in Fig. A2.
The prediction in both the range-independent and range-
dependent case is restricted to the first 20 propagating
modes corresponding to the intermediate and late arrival
patterns since this part is of interest here. Light lines
represent the range-independent predictions and heavy
lines, the range-dependent ones. Figure A2 confirms that

there is a systematic time delay of the cutoff peak due
to range dependence throughout the variability range of
q1.

Figure A3 shows the time delay of the cutoff peak
as a function of q1. The delay increases with increasing
q1 and ranges from dt 5 80 ms (q1 5 240) to dt 5
140 ms (q1 5 40). This trend and also the absolute
delay values are compatible with the conclusions from
the Poseidon/Suroit direct runs. The mean time delay
is 100 ms and this is an estimate for the range-depen-
dence effect on the cutoff peak anticipated during the
experiment.

Figure A4 shows the range-dependence effect on the
last 12 peak arrivals used for inversions. Three cases
are considered for the range-averaged profile (q1 5 40,
0, 240), which span the anticipated seasonal variability.
In order to track the peaks the range-dependent anomaly
is gradually increased from zero (range-independent
case) to the anticipated extent, reaching 10 m s21 at the
surface. Due to the finite bandwidth of the emitted sig-
nal, nearby peaks interact with each other and this con-
tributes to the nonsmoothness of the tracks in Fig. A4.
The range-dependence effect is strongest for the cutoff
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FIG. A3. Delay of the cutoff peak due to a fixed range dependence
(product of the range and depth modes shown in Fig. A1), as a
function of q1.

FIG. A4. The arrival times of the last 12 peak arrivals used for the
inversion as functions of the range-dependence intensity (denoted on
the vertical axis through the range-dependent anomaly at the surface)
for q1 5 (a) 40, (b) 0, and (c) 240.

peak, which is in agreement with the results shown in
Fig. A3. For the earlier peaks, separated from the cutoff
peak by more than 250 ms, the effect is significantly
weaker and lies within the rms error used for the range-
independent inversions (20 ms for the first 3 peaks and
30 ms for the remaining 8 peaks). The overall range-
dependent effect becomes weaker with decreasing q1,
which corresponds to upward-refracted, surface-reflect-
ed propagation along the entire W3–H section. In con-
clusion, after correcting for the systematic range-de-
pendent effect on the cutoff peak, the range-independent
description can be used for performing inversions.

APPENDIX B

Conversion of Sound Speed to Temperature

Some care should be applied in converting sound
speed, which is the result of the inversions, to temper-
ature. In order to construct an appropriate relation with
pertinent error bars, sound-speed formulas were com-
bined with historical data in the area of the experiment.
First, the average relation between sound speed and tem-
perature was obtained as a function of depth, which
included the effect of the mean salinity at each level.
The conversion factor thus obtained ranged from about
0.358C s m21 near the surface to 0.278C s m21 at 2000-m
depth. Since salinity also has an effect on sound speed,
this introduces an uncertainty into the conversion. Using
the salinity variability at each level from the historical
dataset, its effect on the temperature estimate based on
sound speed was calculated. It results in a strong func-
tion of depth, with rms temperature uncertainty ranging
from 0.18–0.28C in the upper 100 m to 0.0058C in the
lower layers. For the inversions presented in the main
section of the paper, the depth-dependent sound speed–

temperature conversion was used, while the uncertainty
from salinity entered the error estimates of the temper-
ature inversions.
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