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ESTIMATING THE MAGNITUDE OF ENVIRONMENTAL STOCHASTICITY
IN SURVIVORSHIP DATA

BRUCE E. KENDALL

Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721 USA, and
National Center for Ecological Analysis and Synthesis,1 University of California,

Santa Barbara, California 93106 USA

Abstract. Small populations are often at risk of extinction through processes that are
effectively stochastic. Prediction of this extinction risk requires that the observed temporal
variation in demographic rates be accurately partitioned between demographic stochasticity
(variation among individuals) and environmental stochasticity (variation among years, cor-
related across individuals). However, studies of population viability analysis that include both
forms of stochasticity parameterize the magnitude of environmental stochasticity incorrectly
(they overestimate it). I describe and evaluate tests (1) to determine whether all the year-to-
year variation in observed survivorship can be explained by demographic stochasticity alone,
and (2) if not, to estimate the magnitude of environmental stochasticity in survival. The first
issue can be resolved with a G test. I used simulated data to show that this test has an
appropriate type I error rate, unless the individual survival probability is either very low or
very high. Small amounts of environmental stochasticity often are not detected by the G test
(type II error), but the hypothesis of demographic stochasticity alone is consistently rejected
when environmental stochasticity is large. In contrast, estimating the magnitude of environ-
mental stochasticity requires explicit hypotheses about the nature of the underlying variation,
but I provide a flexible framework in which many such hypotheses can be examined. In
particular, I show, using simulated data, that if the temporal variability in individual survival
probabilities is distributed according to a beta distribution, then the maximum likelihood
estimate of the variance of the survival probability is biased, but in a consistent and correctable
way. The estimate obtained with my method is usually superior to an estimate that assumes
that all of the variation in the observed survivorship is due to environmental stochasticity. I
show how to include deterministic sources of variability, such as density dependence, and
how to apply different assumptions about the underlying environmental stochasticity. I il-
lustrate these tests with data from a population of Acorn Woodpeckers (Melanerpes formi-
civorus). With these data, I can determine that there is strong environmental stochasticity in
juvenile survival, whereas variation in adult survival can be explained either by density
dependence or by weak environmental stochasticity.

Key words: Acorn Woodpecker; demographic stochasticity; density dependence; environmental
stochasticity; Melanerpes formicivorus; stochastic population modeling; survivorship.

INTRODUCTION

A central problem in conservation biology is the un-
derstanding and prediction of the dynamics and per-
sistence of small populations (Shaffer 1987). Conser-
vation biologists frequently must assess the probability
that a population will decline to a critically small size,
and estimate the probability of subsequent population
extinction if it does so (Gilpin and Soulé 1986, Shaffer
1990). When the number of individuals is small, vari-
ation in the demographic rates reduces the long-term
growth rate of the population and can have drastic
short-term effects (such as extinction). These effects
reduce the relevance of the large body of deterministic
population dynamic theory, and require that we employ
stochastic theories.

Manuscript received 17 April 1997; accepted 13 May 1997;
final version received 19 June 1997.

1 Present address.

Ecologists use the term ‘‘stochasticity’’ to refer to a
variety of factors. In the context of population dynam-
ics, several classes of factors affect the demographic
processes of survival, reproduction, and dispersal: in-
trinsic variables whose values are either (1) unknown
or (2) deliberately ignored (such as age, nutritional
state, experience, or genotype); (3) intrinsic variables
that are inherently unpredictable (such as ‘‘accidents’’);
and (4) extrinsic variables that are inherently unpre-
dictable (such as weather). The first three categories
represent unknown variation among individuals at a
given time, which is commonly called ‘‘demographic
stochasticity’’ (Shaffer 1987, Durant and Harwood
1992); the fourth represents unknown variation over
time (or space) that affects all individuals in the pop-
ulation in a similar way, and is called ‘‘environmental
stochasticity’’ (Lacy 1993, Akçakaya and Baur 1996).

There usually will not be enough information to pre-
dict the fate of a given individual at a given time. The
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best one can do in this situation is to estimate the
‘‘probability’’ of, for example, survival over a stated
interval. This use of probabilities refers not to the pro-
cess being inherently random, but to the fact that the
investigator lacks relevant information. Furthermore,
it often will not be possible to assess the variation
among individuals, so the most parsimonious (although
not necessarily the most accurate) assumption is that
all individuals are identical, at a given time, in their
demographic processes. Nevertheless, because individ-
ual demography is framed in probabilities rather than
rates, this identity among individuals (as long as the
individual fates are themselves uncorrelated) can lead
to demographic variability at the population level. This
phenomenon is exactly analogous to statistical sam-
pling issues, such as tossing coins: if there are few
coins, the proportion that come up heads can be far
from 0.5. This process is also called ‘‘demographic
stochasticity,’’ and is what almost always is meant
when demographic stochasticity is included in models
(Lacy 1993, Akçakaya and Baur 1996).

Having made this assumption that all individuals
have the same demographic parameters, then environ-
mental stochasticity clearly represents unpredictable
temporal variation in these parameters. This variation
in demography is caused by variation in the environ-
ment, but the two are not the same: individuals can
buffer the environmental variation through behavioral
and physiological responses. Thus, environmental sto-
chasticity in demography represents the filtering (pos-
sibly highly nonlinear) of environmental variation by
the organisms in question.

Demographic and environmental stochasticity can be
quite different. Early analyses suggested that they had
qualitatively different effects on the relationship be-
tween population size and population extinction time
(Shaffer 1987). Although these analyses may be flawed
(Lande 1993), the two processes differ in the way in
which variance in the demographic parameters scales
with population size. Furthermore, the variance due to
both types of stochasticity reduces the long-term
growth rate of the population, whereas only environ-
mental stochasticity affects long-term individual fit-
ness. Thus, it is important to include both types of
stochasticity in models of small populations.

Increasing numbers of models being used for pop-
ulation viability analysis are structured in just this way
(Armbruster and Lande 1993, Lacy 1993, Lindenmayer
et al. 1993, Akçakaya and Baur 1996, Bustamante
1996, McCarthy 1996, Song 1996). However, in every
published example I have found, the models are par-
ameterized incorrectly. To model survival, for example,
each individual is given a survival probability over the
time step of the model (typically one year); all indi-
viduals are given the same probability at a given time
(the ‘‘sampling’’ definition of demographic stochastic-
ity), but the value fluctuates over time (environmental
stochasticity). The magnitude of the demographic sto-

chasticity at any given time is determined by the pop-
ulation size and the survival probability at that time.
The parameters that must be estimated empirically are
the mean and variance of the survival probability over
time: that is, the properties of the environmental sto-
chasticity. The best data for parameterizing this part of
the model are a sequence of estimates of survivorship
over multiple times. Survivorship is the the proportion
of the population that survives over each time interval,
and it fluctuates through time. The universal approach
has been to calculate the sample variance in survivor-
ship and to use that as the variance of the survival
probability in the model. However, demographic sto-
chasticity will cause the survivorship to vary even if
the survival probability is constant; in general, the vari-
ation in survivorship is a nonadditive combination of
the effects of demographic and environmental sto-
chasticity. Thus, the magnitude of environmental sto-
chasticity has consistently been overestimated. This is
likely to have produced overly pessimistic estimates of
the times to population extinction.

In this paper, I show how to extract a more accurate
estimate of the magnitude of environmental stochas-
ticity from data on population sizes and survivorships.
First, I describe simulated data, based on the model of
survival in the previous paragraph, which I will use to
test the accuracy and error rates of the tests. I then
show how to answer the question, ‘‘Is there temporal
variation in survival?’’ This is a simple hypothesis-
testing exercise. Third, I describe and analyze a tech-
nique to estimate the magnitude of environmental sto-
chasticity, if it exists, using likelihood models. Finally,
I apply these techniques to data, published by Stacey
and Taper (1992), from a population of Acorn Wood-
peckers (Melanerpes formicivorus). With these data, I
illustrate how to use alternative models of environ-
mental stochasticity and how to incorporate density
dependence in survival.

SIMULATED DATA

I generated two types of simulated data, reflecting
models with demographic stochasticity alone and in
combination with environmental stochasticity. These
models embody the verbal models developed in the
Introduction, and were designed to be qualitatively
similar to the Acorn Woodpecker data to be described.
In all cases, I generated 1000 Y-year data sets, where
Y was one of 10, 20, 30, or 40. In all data sets, the
number of individuals for each year, Nt , was drawn at
random from a uniform distribution on [10, 50].

To simulate the effects of demographic stochasticity
alone, I assumed that there was a fixed individual sur-
vival probability, p. For each year, the number of sur-
vivors, mt , was drawn at random from a binomial dis-
tribution with parameters Nt and p; I call this the bi-
nomial model. I created nine sets of simulations, with
p 5 {0.1, 0.2, . . . , 0.9}.

I simulated the combined effects of demographic and
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FIG. 1. Beta-distributed probability densities of survival
probability (p), showing variances of 0.01 (solid line), 0.04
(dashed line), and 0.08 (dash-dotted line). Means are (a) 0.3
and (b) 0.5.

FIG. 2. Type I error in the G test, showing the proportion
of data sets for which the null hypothesis of demographic
stochasticity alone was rejected at a 5 0.05, as a function of
survival probability, p, for data generated by the binomial
model.

environmental stochasticity by allowing pt, the individ-
ual survivorship probability in year t, to vary from year
to year. I drew pt from a beta distribution with param-
eters chosen to give the desired mean and variance. I
then drew mt from a binomial distribution with param-
eters Nt and pt. This is known as a beta-binomial model
(Cox and Snell 1989). I used p 5 0.5 and created eight
sets of simulations, with s2(p) 5 {0.01, 0.02, . . . , 0.08}.

A variance in survival of 0.01 may seem small, but
it is not (Fig. 1): the maximum possible variance for
a variable restricted to [0, 1] is 0.25, and a uniform
distribution has a variance of ;0.08.

I generated random numbers with the package RAN-
LIB, which generates uniform deviates (for population
sizes) with a pair of multiplicative linear congruential
generators (L’Ecuyer and Côté 1991) and binomial ran-
dom numbers (for numbers of survivors) with the BTPE
algorithm (Kachitvichyanukul and Schmeiser 1988).

IS THERE TEMPORAL VARIATION IN SURVIVAL?

As described in the Introduction, the most parsi-
monious model of individual variation in survival is
that each individual has the same probability of sur-
viving. If there is no environmental stochasticity, then
this probability is the same each year. This model of
demographic stochasticity is mathematically equiva-
lent to sampling error: the observed variation in sur-
vivorship is simply a consequence of drawing an in-
teger number of survivors from a finite population. A
straightforward way to examine this hypothesis is to
use the G test as a test of independence among years.
Sample sizes are often small, so I use the Williams
correction (Williams 1976).

In this context, the G test is an approximate test of
whether the number of survivors each year is drawn

from a binomial distribution, with an individual sur-
vival probability given by S mt / S Nt. The G test is
unreliable if the expected number of deaths or survivors
is ever less than five (Sokal and Rohlf 1995). In small
populations, this might often be the case, so either the
G test would have to be abandoned or those years of
data would have to be discarded.

I used the simulated data to test both the type I error
(the probability of incorrectly rejecting the hypothesis
of demographic stochasticity alone) and the type II
error (the probability of incorrectly failing to reject the
hypothesis). To test the former, I subjected data from
the binomial model with Y 5 10 to the G test with a
5 0.05. Except when p is close to zero or one, the type
I error rate clusters around 0.05, the desired result (Fig.
2). To test the type II error, I used data from the beta-
binomial model, for which the hypothesis of demo-
graphic stochasticity alone is false. The type II error
is large when the environmental stochasticity is small,
but declines exponentially with the true variance in
survival probability; the error also declines rapidly
with the length of the data set (Fig. 3).

The G test, as used here, is an approximation to the
underlying binomial distributions of the null model. It
is possible to construct an exact test that models those
distributions directly. For the data used here, the exact
test produces results broadly similar to those from the
G test; thus, I do not discuss it further.

ESTIMATING THE MAGNITUDE OF ENVIRONMENTAL

STOCHASTICITY

If the previous analysis shows that demographic sto-
chasticity alone cannot explain the observed variability
in survivorship, then the natural question to ask is,
‘‘How much environmental stochasticity is present?’’
As reviewed in the Introduction, the most common
approach is simply to calculate the variance of the ob-
served survivorships. There are many ways of calcu-
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FIG. 3. Type II error in the G test, showing the proportion
of data sets for which the null hypothesis of demographic
stochasticity alone was rejected at a 5 0.05, as a function of
the variance in survivorship probability, for data generated
by the beta-binomial model. Y is the number of years of
simulated data.

TABLE 1. Results of fitting the beta-binomial model to sim-
ulated data with environmental stochasticity. The estimated
variance in the survival probability for each simulation is

; Vp is the variance in survivorship. Means are taken2̂s (p)
over the 1000 simulations. The correction is described in
the text.

s2(p) Mean 2s (p)̂ Corrected mean 2s (p)̂ Mean Vp

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

0.0010
0.0078
0.0169
0.0256
0.0346
0.0431
0.0533
0.0610
0.0703

0.0011
0.0087
0.0188
0.0285
0.0384
0.0479
0.0592
0.0678
0.0781

0.0076
0.0157
0.0248
0.0334
0.0423
0.0502
0.0603
0.0675
0.0768

lating this quantity, reflecting different assumptions
about the reliability of individual estimates of survival
probability. However, it seems reasonable to weight,
in some way, by population size, because very few
values of p are possible when N is small. The formu-
lation that seems to have the least bias is

Y
2N (p 2 p̄)O t t

t51var( p) 5 (1)Y

NO t
t51

where p̄ 5 / . When applied to the sim-Y YS m S Nt51 t t51 t

ulated data, however, this estimate of the variance in
survival probability is positively biased at low levels
of environmental stochasticity and negatively biased at
high levels (Table 1).

A better answer to this question requires assumptions
about how the value of pt varies through time. Assume,
for example, that pt is a random number drawn from
a probability distribution P(s). What is the estimate of
pt, given the data in year t? Bayes’ Theorem states that

Pr(D z u)Pr(u)
Pr(u z D) 5 (2)

Pr(D)

where u is the value of the parameter of interest and
D is the data. In this case, u is the value of pt, and the
data are Nt and mt. Pr(D z u) is then just the binomial
function, , and Pr(u) is the underlyingN m N 2mt t t t( )s (1 2 s)mt

probability distribution P(s). Pr(D), the ‘‘probability of
the data,’’ is just a normalization constant; by consid-
ering likelihoods instead of probabilities, I can ignore
it. Thus, L(s), the relative likelihood that pt 5 s, given
the data and P(s), is

Nt m N 2mt t tL(s) 5 s (1 2 s) P(s). (3)1 2mt

The real quantity of interest is P(s). Let l represent
the set of parameters that control the shape of P, and
denote the dependency by Pl(s). Substituting Pl(s) into
Eq. 3 gives a joint likelihood of l and s in year t. To
get the likelihood of l, given the data in year t, I in-
tegrate Eq. 3 over all possible values of the true sur-
vival probability s:

1 Nt m N 2mt t tL (l) 5 s (1 2 s) P (s) ds. (4)t E l1 2mt0

Finally, to take into account all of the years of data, I
calculate the joint likelihood of the Lt’s by taking their
product:

Y

L(l) 5 L (l). (5)P t
t51

Each value of l has associated with it a mean and
variance of the distribution P(s). Thus, I can transform
the likelihood function that is estimated for l into a
likelihood function for the variance of P, which is what
I call the magnitude of environmental stochasticity.

The choice of a function for P is somewhat arbitrary,
as there will rarely be enough information to determine
what it truly is. It depends not only on the nature of
the environmental variability, but also on the response
of the organism to that variability. It is valuable to
parameterize P in such a way that the binomial model
is a special case of it, and that P itself is a special case
of any further extensions, such as density dependence.
Choosing P in this way allows comparisons to be made
between models of differing complexity, using the like-
lihood ratio test. Lebreton et al. (1992) describe this
test in detail; in brief, suppose l0 is a special case of
l: certain parameters are fixed, usually to zero. If 2
log(L(l)/L(l0)) is not significantly large with respect
to the x2 distribution with degrees of freedom equal to
the number of constrained parameters, then the full
model P(l) is not significantly more likely than the
constrained model P(l0).
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FIG. 4. Type I error fitting the beta-binomial model to the
binomial data. Shown is the proportion of data sets for which
the null hypothesis of demographic stochasticity alone was
rejected by the criteria s2(p) ± 0 (v), P , 0.05 (V), and P
, 0.19 (.), where the P values refer to the likelihood ratio
test between the binomial and beta-binomial models. The
third criterion has a type I error rate of ;0.05.

FIG. 5. Type II error fitting the beta-binomial model to
the beta-binomial data. Shown is the proportion of data sets
for which the null hypothesis of demographic stochasticity
alone was rejected by the criteria s2(p) ± 0 (v) and P ,
0.19 (V), where the P value refers to the likelihood ratio test
between the binomial and beta-binomial models.

Beta-distributed environmental stochasticity

In the following analysis, I use the beta distribution,
which is a two-parameter distribution with a central
tendency that is restricted to the interval [0, 1] (for
more details see any introductory probability text, such
as Ross 1994; I show some examples in Fig. 1). The
beta distribution is convenient in this context, because
Eq. 4 reduces to

N B(m 1a, N 2 m 1 b)t t t t2L (p̄, s (p)) 5 (6)t 1 2 B(a, b)mt

where B is the beta function and a and b are the pa-
rameters of the beta distribution, related to the mean
and variance by

p̄(1 2 p̄)
a 5 p̄ 2 1 (7)

2[ ]s (p)

p̄(1 2 p̄)
b 5 (1 2 p̄) 2 1 . (8)

2[ ]s (p)

This is the beta-binomial model and, hence, it is a true
model of the simulated data. I can therefore use these
data to test the reliability and bias of the likelihood
estimates.

First, consider the case where there is no environ-
mental stochasticity. Ideally, the maximum likelihood
estimate (MLE) of s2(p) would be zero; this in fact
occurs roughly two-thirds of the time (Fig. 4). In most
other cases, the MLE is very small and I need to de-
termine whether it is significantly different from zero.
I do this by using the likelihood ratio test to compare
the beta-binomial model with the binomial model. Typ-
ically, an appropriate P value for this test is larger than
the desired a (Lebreton et al. 1992). When I use a
rejection criterion of P 5 0.05, then the type I error

rate is ;1%, and a criterion of P 5 0.19 is required
to bring the error rate up to 5% (Fig. 4). I will use this
value of P for comparisons of the binomial and beta-
binomial models throughout the rest of the paper.

When this criterion is applied to the simulated data
from the beta-binomial model, then the type II error
rate is similar to that from the G test (Fig. 5). This
result is not surprising, because the G test is a form of
likelihood ratio test; the main difference here is that a
specific alternative hypothesis is being compared to the
null model.

Applied to the data from the beta-binomial model,
both the MLE of the mean survival probability and the
mean survivorship give unbiased estimates of the true
mean survival probability. The picture is rather differ-
ent for the true variance, however (Table 1). The vari-
ance estimate from the survivorships is too high at low
levels of environmental stochasticity, and too low at
high levels. In contrast, the MLE from fitting the beta-
binomial model is consistently too low. This bias can
be substantially reduced by multiplying the MLE by
Y/(Y 2 1). The remaining small negative bias seems
independent of the true variance. Why does this cor-
rection work? Recall that an ordinary sample variance
is negatively biased, which is why we divide by (n 2
1) rather than n (Sokal and Rohlf 1995). In this case,
there are Y estimates of p, and the same bias phenom-
enon seems to hold, despite the fact that the individual
estimates are likelihood distributions rather than single
values.

AN EXAMPLE: ACORN WOODPECKERS

Stacey and Taper (1992) studied a population of
Acorn Woodpeckers (Melanerpes formicivorus) in Wa-
ter Canyon, central New Mexico, United States, from
1975 through 1984. They marked all individuals in the
population (which fluctuated in size from 32 to 52
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TABLE 2. Number of individuals (N ), number surviving to
the following spring (m), and survivorships ( p) of juvenile
and adult Acorn Woodpeckers in the Water Canyon, New
Mexico population, reconstructed from Stacey and Taper
(1992). The survivorships reported here are recalculated
from the estimated N and m.

Year

Juveniles

N m p

Adults

N m p

1975
1976
1977
1978
1979
1980
1981
1982
1983

59
22
43
42

1
48
39

8
25

33
14
13
17

0
18

7
2

11

0.569
0.636
0.302
0.405
0.000
0.375
0.179
0.250
0.440

46
46
40
51
52
32
46
49
35

24
31
28
19
28
22
30
24
21

0.522
0.674
0.700
0.372
0.538
0.688
0.652
0.490
0.600

FIG. 6. Joint likelihoods of the mean ( ) and variancep̄
(s2(p)) of the individual survival probability for juvenile Acorn
Woodpeckers, as fit by the beta-binomial model. (a) Likelihood
surface; (b) the maximum likelihood value (v) and the 95%
confidence region. Symbols: ⊕ marks the weighted mean and
variance of the observed survivorships; J marks the un-
weighted mean and variance of the observed survivorships.

TABLE 3. Maximum likelihood parameter estimates for ju-
venile Acorn Woodpeckers.

Model ˆ̄p 2s (p)̂ log L

Beta-binomial 0.395 0.012 223.627
Binomial 0.401 226.945

adults), and recorded reproduction and survival. Both
the presence (Stacey and Ligon 1987) and absence (Sta-
cey and Taper 1992) of age-dependent adult survivor-
ship have been inferred from the data; I assume the
latter for this analysis, and use the annual survivorships
reported in Stacey and Taper (1992). I treat juveniles
separately, because their survivorship is often substan-
tially lower than that of adults.

Stacey and Taper (1992) reported the number of
adults, survivorships for juveniles and adults, and fe-
cundity (fledged young per breeding pair) for each year.
I estimated the number of juveniles by dividing the
number of adults by 2.64 (the mean number of adults
per breeding pair; Koenig and Stacey 1990), and mul-
tiplying the result by the fecundity. In some cases, I
then adjusted the number by a small amount until I
could find an (N, m) pair that matched the reported
survivorships. For both juveniles and adults, I esti-
mated the number surviving by multiplying the number
of individuals by the survivorship. For the adults, there
was not always an integer m that generated the reported
survivorship; I chose the value that gave the closest
value of survivorship to that reported. Juvenile sur-
vivorship ranged from 0.00 to 0.64, and adult survi-
vorship ranged from 0.37 to 0.70 (Table 2).

Is there environmental stochasticity?

In the juvenile Acorn Woodpecker data, the year
1979 must clearly be discarded, because the G test
cannot handle zero values; the year 1982 is borderline
(the expected number of survivors is 4.8). The latter
turns out not to matter: if 1982 data are included, P 5
3.72 3 1025, df 5 7 (Gadj 5 32.205); if excluded, P 5
2.41 3 1025, df 5 6 (Gadj 5 31.112). This is a clear
rejection of the hypothesis that juvenile survival prob-
ability is homogeneous across years. For adults, P 5
0.015, df 5 8 (Gadj 5 18.937). Thus, the adult survival
probability is also heterogeneous among years, al-
though the unexplained variation is not as large as it
is for the juveniles.

Fitting with the beta-binomial model

The likelihood calculations using the beta distribu-
tion for environmental stochasticity confirm that the
magnitude of environmental stochasticity is higher for
juvenile than for adult Acorn Woodpeckers (Figs. 6 and
7). The likelihood ratio test indicates that the beta-
binomial model is significantly more likely than the
binomial model for both juveniles (Table 3; P 5 0.010)
and adults (Table 4; P 5 0.081). The maximum like-
lihood estimates of the mean survival probability were
similar to the mean survivorship (juveniles: 0.401 vs.
0.395; adults: 0.576 vs. 0.571). However, the maximum
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FIG. 7. Joint likelihoods of the mean ( ) and variancep̄
(s2(p)) of the individual survival probability for adult Acorn
Woodpeckers, as fit by the beta-binomial model. (a) Likeli-
hood surface; (b) the maximum likelihood value (v) and the
95% confidence region. Symbols: ⊕ marks the weighted mean
and variance of the observed survivorships; J marks the
unweighted mean and variance of the observed survivorships.

TABLE 4. Maximum likelihood parameter estimates for adult Acorn Woodpeckers. The column marked is the estimate ofp̂
p for the binomial model, for the beta-binomial model, and p0 for the catastrophe model.p̄

Model p̂ â b̂ 2s (p)̂ p̂f ĉ log L

Density-dependent beta-binomial
Density-dependent binomial
Beta-binomial
Binomial
Density-dependent catastrophe
Catastrophe

0.576
0.572

0.622

2.359
2.388

2.388

20.046
20.046

20.046

0.001

0.006

···
0.457

0
0.274

223.946
224.017
226.303
227.827
224.017
225.968

likelihood estimates of the variance in survival prob-
ability due to environmental stochasticity were sub-
stantially less than the total variance in the survivor-
ships (juveniles: 0.0121 vs. 0.0190; adults: 0.0056 vs.
0.0111). Figure 8 shows the probability distributions
of p embodied by these estimates.

Density dependence

Environmental stochasticity is not the only potential
source of between-year variation in survival probabil-
ity. Survival often decreases with increasing density,
for reasons such as fewer resources provisioned, small-
er metabolic reserve for migration, smaller size, or few-
er safe sites. The relationship between density and sur-
vival is often straightforward enough that it can be
estimated by a regression of survival on density. The
analysis then focuses on the residual variation about
the regression: can it be explained by demographic sto-
chasticity, or is there some additional year-to-year vari-
ation in survival?

A logistic regression indicates that, in adults, the
survival probability declines with density (Fig. 9). The
question then becomes: does the apparent environmen-
tal stochasticity in adult survival merely reflect the
variation in density? To address this question, I created
a density-dependent model for which the previous sim-
pler models are special cases. That is, the number sur-
viving in any given year is drawn from a beta-binomial
distribution, but the mean of that distribution is a lo-
gistic function of density, pt 5 exp(a 1 bNt)/(1 1
exp(a 1 bNt)). The third parameter of the model is
s2(p), the variance of the beta distribution, which I
assume to be independent of population size. I can then
use the likelihood ratio test to compare this full model
to a density-dependent model without environmental
stochasticity and to the density-independent model
with environmental stochasticity.

The parameter estimates and likelihoods are in Table
4. The full model is not significantly more likely than
the simple density-dependent model (P 5 0.706, df 5
1), indicating that there is no evidence for environ-
mental stochasticity on top of density dependence. The
full model is significantly more likely than the density-
independent beta-binomial model (P 50.030, df 5 1),
and the density-dependent binomial model is more like-
ly than the simple binomial model (P 5 0.006, df 5
1). Thus, density dependence improves the model, in-

dependently of whether environmental stochasticity is
included. Unfortunately, there is no way to directly
compare the density-dependent binomial model with
the density-independent beta-binomial model.

There is no evidence of density dependence in ju-
venile survival (likelihood ratio test between density-
dependent beta-binomial and beta-binomial models: P
5 0.614, df 5 1).
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FIG. 8. The maximum likelihood distributions of the sur-
vival probability in Acorn Woodpeckers, as estimated from the
beta-binomial model: solid line, juveniles; dashed line, adults.

FIG. 9. Survival declines with density in adult Acorn
Woodpeckers. The curve shows the maximum likelihood es-
timate of the logistic regression for the density-dependent
beta-binomial model.

A different model of environmental stochasticity

A simultaneous test for homogeneity of replicates,
using the G test, reveals that either the set of years
excluding 1978 or the set of years excluding 1977 and
1980 appears homogeneous for adult survival. The stud-
ies of this population do not record anything unusual
about 1977 and 1980, but the acorn crop, which forms
the main part of the birds’ winter diet, failed in the fall
of 1978 (Koenig and Stacey 1990). This is also the year
of lowest adult survivorship. This suggests that the only
substantial source of environmental stochasticity for
adults is crop failure; all other variation in survivorship
during ‘‘good years’’ can be explained by demographic
stochasticity alone. However, 1978 was also a high-den-
sity year. Reanalyzing the density-dependent models
with the 1978 data removed suggests that there might
still be a density effect (likelihood ratio test between
density-dependent binomial and binomial models: P 5
0.080, df 5 1), but the evidence is weakened.

The phenomenon of crop failure suggests an alternate
model of environmental stochasticity in adult wood-
peckers: there is one survival probability, p0, in normal
years, and another, pf , in crop failure years; a crop failure
occurs with probability c. I allow p0 to be density de-
pendent; with only one crop failure observed, there is

no way to assess density dependence in pf . The MLE
of the density-independent catastrophe model (Table 4)
fits marginally better than that of the binomial model
(likelihood ratio test: P 5 0.156, df 5 2; although the
likelihood is higher than the beta-binomial model, it has
one more parameter). Adding density dependence to the
catastrophe model increases the likelihood significantly
(P 5 0.048, df 5 1), but the maximum likelihood es-
timate of c is zero: there are no bad years! Thus, the
catastrophe model does not seem to be a particularly
good description of adult woodpecker survival.

DISCUSSION

The first step in building a mixed model of environ-
mental and demographic stochasticity is to ensure that
the observed variation is not all due to demographic
stochasticity. The tests described in this paper perform
this task for survivorship. The G test is quite effective
at distinguishing demographic stochasticity from all
but weak environmental stochasticity, as long as the
mean survivorship is not too extreme. The exact test
(results not reported) is more reliable in these extreme
cases; however, it is more biased in favor of the null
hypothesis of demographic stochasticity than is the G
test. Thus, it would be helpful to reduce the type II
error in this range; a more detailed examination of the
distribution of P values may shed light on this issue.
Whenever the variance falls in this range and the null
hypothesis is close to being rejected, then simulations
can help. For example, one could generate 1000 (or
more) demographic stochasticity data sets with the ob-
served population sizes to generate the expected dis-
tribution of G under the hypothesis of demographic
stochasticity alone. The observed G would then be
compared to this distribution.

This approach to looking for temporal heterogeneity
in demographic parameters is sometimes applied in
long-term demographic studies (such as Berg 1994 and
Prince et al. 1994). However, it seems not to have been
used in the context of modeling small populations.

Any estimate of the magnitude of environmental sto-
chasticity requires that the alternative model be more
specific than just the negation of the null model of
demographic stochasticity alone. The cost of this re-
quirement is high, inasmuch as a poor choice for the
underlying distribution of the demographic parameter
may give spurious results; but the payoff of getting an
improved estimate of the magnitude of environmental
stochasticity is also high. Furthermore, incorporating
environmental stochasticity into population models re-
quires a specific functional form for the probability
distribution. Thus, in a sense, the analyses described
here represent an improved method for fitting those
models to the data. The technique is also extremely
flexible: many hypotheses about the sources of varia-
tion in the demographic parameter can be implemented,
as I illustrated with the density-dependent and cata-
strophic models of adult woodpecker survival.
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The analysis of simulated data is essential to this
approach. Without the simulated data, I could not have
found the appropriate P values for the likelihood ratio
test (indeed, to be rigorous, I should have done the
same sort of analysis for each model comparison), nor
would I have known about the bias in the maximum
likelihood estimate of the variance in the survival prob-
ability. The simulated data that I used are fairly rep-
resentative of small populations. For particular appli-
cations, it may be beneficial to tie the simulations even
more closely to the real data, using the actual set of
observed population sizes, for example.

There are two major unanswered questions from the
analysis of the simulated beta-binomial data. The first
concerns the source of the remaining bias in the MLE
of the variance. Is it, in fact, a constant, or does it
depend on the number of years of data or the minimum
population size? Preliminary analysis suggests that the
bias might be reduced by integrating over all values of
the mean survival probability, to get an unconditional
MLE of the variance. The second question is whether
the type II error at low levels of environmental sto-
chasticity can be reduced, given a fixed length of data
(the value of more years of data is clear from Fig. 3).
I suspect that the possibility for improvement depends,
at least in part, on the minimum population size: for
example, when pt 5 0.5 and Nt 5 10, the variance in
survivorship due to demographic stochasticity is 0.025;
when Nt 5 25, it is 0.01. Thus, in the simulated data
with s2(p) 5 0.01, the contributions of demographic
and environmental stochasticity are often approxi-
mately the same and, hence, are inherently difficult to
distinguish. This point reinforces the value of tying the
simulated data closely to the observed data.

The analyses of the Acorn Woodpecker data show clear
evidence for environmental stochasticity in juvenile sur-
vival, but the magnitude of variation in the survival prob-
ability is likely to be less than the variation in survivor-
ship. Adult survival is subject to either environmental
stochasticity or density dependence; the data do not sup-
port including both simultaneously. In either case, the
magnitude of environmental stochasticity is smaller for
adults than it is for the juveniles. Because both groups
experience the same general environment, this reinforces
the point I made in the Introduction that environmental
stochasticity is a function of the organism as well as the
underlying environmental variability.

Adult survival was unusually low in a year of acorn
crop failure, and there is no evidence of environmental
stochasticity in the remaining years. Curiously, how-
ever, there is not strong support for a catastrophic mod-
el of adult survival; perhaps this is because there is
only one such ‘‘bad year’’ in the data.

There are a number of limitations and critical sim-
plifying assumptions in this form of analysis. First, it
will often be necessary to lump adult age classes, as I
have done for the adult Acorn Woodpeckers, to obtain
a sufficient sample size. This assumed age indepen-

dence of survival implies a type II survivorship func-
tion. Thus, the method will be most useful for organ-
isms such as birds, shrubs, and trees, many of which
show type II survivorship of mature individuals.

Second, a crucial assumption of these analyses is
that the years are independent of one another. In reality,
the survival probability can be correlated among years,
both because of autocorrelations in the relevant envi-
ronmental variables and because some individuals may
be present for several years in a row, carrying along
any unobservable traits that might affect their fates
(e.g., if there are good survivors and poor survivors,
the former will tend to persist longer than the latter).
If these phenotypic differences are genetically deter-
mined, then the problem is even worse, as certain ge-
notypes may persist for multiple generations. I do not
know how such autocorrelations might bias the results;
this is an important open question.

Third, any hidden variability among individuals vi-
olates the assumption I have made of uniform survival
probability within years. There may even be variation
among individuals in the ability to buffer the effects
of environmental variability.

Fourth, the analyses presented here have assumed
that the population is completely censused and survi-
vorship is known exactly for each year. When this as-
sumption is not true, then there is an additional level
of uncertainty: each datum is only an estimate of the
true value of survivorship that is to be entered into the
model. For most sampling procedures, it is possible to
calculate a likelihood function for the value of the true
survivorship. Then, for example, Eq. 4 would have to
be integrated over all likely (Nt , mt) pairs, weighted
by the likelihood of (Nt , mt) given the data. Clearly,
this will make the overall likelihood function flatter,
and it will probably increase the variance of the max-
imum likelihood estimate; whether it introduces new
biases into the MLE is an open question.

Finally, I have focused in this paper on the maximum
likelihood estimates of the model parameters, but it is
clear that, in many cases, the uncertainty in these es-
timates is high (consider the area encompassed by the
95% confidence region for the parameters of the beta-
binomial model of juvenile woodpeckers). When using
these models to project population fates, it will be im-
portant to take this uncertainty into account. For ex-
ample, a likelihood distribution of times to extinction
is usually calculated using a point estimate of popu-
lation parameters, but it might be better calculated by
integrating over all likely parameter combinations,
weighted by their relative likelihoods.

I have focused on mortality in this analysis; repro-
duction is the other important demographic process.
However, unlike mortality, there is no widely appli-
cable null model for demographic stochasticity in fe-
cundity. Not only do species differ in their potential
for variation in fecundity, and in the structure of that
variation, but there may be circumstances in which
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variable fecundity is itself an optimal strategy (Schaffer
1974, Grey 1980). Nevertheless, with sufficient bio-
logical information, it should be possible to construct
specific models. One approach might be to look at the
distribution of fecundities among individuals within a
year, and then to test whether that distribution differs
among years. A complete population model would also
require some estimates of immigration and emigration.
With such a full model, one could make sophisticated
estimates of extinction risk, using techniques such as
those in Ludwig (1996).

This type of analysis can add important insights to
the biology of the organism under study and point to-
ward further research. For example, in the Acorn
Woodpeckers of Water Canyon, why is adult survival,
but not juvenile survival, density dependent? Why is
the variance in juvenile survival larger than that in adult
survival? Investigations into these sorts of questions
might lead to a deeper understanding of the effects of
behavior and physiology on population dynamics.

There has long been a substantial gap between the
theory of stochastic population dynamics and those pro-
cesses that are measurable in the field. Expanding our
conception of stochasticity to include the limits of an
observer’s information as well as the ‘‘true’’ variability
among individuals and environments will help to guide
this theory in more directly applicable directions.
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