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Abstract
In this paper, the authors consider the following fractional boundary value problem
for impulsive fractional differential equations:

⎧
⎪⎨

⎪⎩

tDα
T (

c
0D

α
t u(t)) + a(t)u(t) = f (t,u(t), c0D

α
t u(t)), t �= tj , a.e. t ∈ [0, T ],

�(tDα–1
T (c0D

α
t u))(tj) = Ij(u(tj)), j = 1, 2, . . . ,n,

u(0) = u(T ) = 0,

where α ∈ (1/2, 1], 0 = t0 < t1 < t2 < · · · < tn < tn+1 = T , f : [0, T ]×R×R → R and
Ij :R →R, j = 1, 2, . . . ,n, are continuous functions, a ∈ C([0, T ]) and

�(tD
α–1
T (c0D

α
t u))(tj) = tD

α–1
T (c0D

α
t u)(t

+
j ) – tD

α–1
T (c0D

α
t u)(t

–
j ),

tD
α–1
T (c0D

α
t u)(t

+
j ) = lim

t→t+j
tD

α–1
T (c0D

α
t u)(t), tD

α–1
T (c0D

α
t u)(t

–
j ) = lim

t→t–j
tD

α–1
T (c0D

α
t u)(t).

By using the variational method and iterative technique, the authors show the
existence of at least one nontrivial solution to the above boundary value problem.

Keywords: fractional differential equations; critical point theory; variational method;
impulsive equation; iterative technique

1 Introduction
Fractional calculus has applications in many areas including fluid flow, electrical networks,
probability and statistics, chemical physics and signal processing, etc. For details, see [–]
and the references therein. In recent years, there are many papers dealing with the exis-
tence of solutions of nonlinear initial (or boundary) value problems of fractional equa-
tions by applying nonlinear analysis such as fixed point theorems, lower and upper so-
lutions method, monotone iterative method, coincidence degree theory. However, up to
now, there are few results on the solutions to fractional boundary value problems that are
established by the variational methods; see, for example, [–]. It is often very difficult to
establish a suitable space and variational functional for fractional boundary value problem,
especially for the fractional equations including both left and right fractional derivatives.
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For the first time, Jiao and Zhou [] showed that the critical point theory is an effective
approach to tracking the existence of solutions to the following fractional boundary value
problem (BVP for short):

⎧
⎨

⎩

tDα
T (Dα

t u(t)) = ∇F(t, u(t)), a.e. t ∈ [, ],

u() = u(T) = .
(.)

From then on, problem (.) and its related forms have been further studied by researchers,
see, for example, [–], and interesting results on the existence of solutions, such as one
nontrivial solution, three solutions or infinitely many solutions, were obtained by using
the variational methods and the critical point theory.

On the other hand, impulsive boundary value problems for differential equations were
intensively studied by topological methods over the past decade. Such problems appear in
mathematical models with sudden changes of their states in population dynamics, phar-
macology, optimal control, etc. []. The existence of solutions of impulsive problems was
also treated by the variational methods and critical point theorems (see [–]). The pi-
oneering work in this direction is the paper of Nieto and O’Regan [], where the second-
order impulsive problem

⎧
⎪⎪⎨

⎪⎪⎩

–u′′ + λu = f (t, u), t �= tj, a.e. t ∈ [, T],

�u′(tj) = Ij(u(tj)), j = , , . . . , n,

u() = u(T),

is studied by the minimization and the mountain pass theorem.
Investigating the impulsive problems for fractional equations via variational method is

interesting. Recently, Bonanno et al. [] and Rodrínguez-López and Tersian [] first
studied the following Dirichlet boundary value problem for fractional differential equa-
tion with impulsive effects:

⎧
⎪⎪⎨

⎪⎪⎩

tDα
T (c

Dα
t u(t)) + a(t)u(t) = λf (t, u(t)), t �= tj, a.e. t ∈ [, T],

�(tDα–
T (c

Dα
t u))(tj) = μIj(u(tj)), j = , , . . . , n,

u() = u(T) = ,

where α ∈ (/, ],  = t < t < t < · · · < tn < tn+ = T , f , Ij and a are continuous functions.
Under the condition  < a ≤ a(t) ≤ a, the authors obtained the existence results of at
least one solution or three solutions by using the minimization and three critical point
theorem.

More recently, Nyamoradi et al. [] investigated the following impulsive fractional
boundary problem:

⎧
⎪⎪⎨

⎪⎪⎩

tDα
T (c

Dα
t u(t)) + a(t)u(t) = f (t, u(t)), t �= tj, a.e. t ∈ [, T],

�(tDα–
T (c

Dα
t u))(tj) = Ij(u(tj)), j = , , . . . , n,

u() = u(T) = ,

where α ∈ (/, ],  = t < t < t < · · · < tn < tn+ = T , f : [, T] × R × R → R and
Ij : R → R, j = , , . . . , n, are continuous functions, a ∈ C([, T]). Under the condition
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ess inft∈[,T] a(t) = m > –λ, the author proved the existence of at least one solution or in-
finitely many solutions by using critical point theory and variational methods.

In this paper, the authors consider the following fractional boundary value problem for
impulsive fractional differential equations:

⎧
⎪⎪⎨

⎪⎪⎩

tDα
T (c

Dα
t u(t)) + a(t)u(t) = f (t, u(t), c

Dα
t u(t)), t �= tj, a.e. t ∈ [, T],

�(tDα–
T (c

Dα
t u))(tj) = Ij(u(tj)), j = , , . . . , n,

u() = u(T) = ,

(.)

where α ∈ (/, ],  = t < t < t < · · · < tn < tn+ = T , f : [, T]×R×R →R and Ij : R →R,
j = , , . . . , n, are continuous functions, a ∈ C([, T]) and

�
(

tDα–
T

(c
Dα

t u
))

(tj) = tDα–
T

(c
Dα

t u
)(

t+
j
)

– tDα–
T

(c
Dα

t u
)(

t–
j
)
,

tDα–
T

(c
Dα

t u
)(

t+
j
)

= lim
t→t+

j
tDα–

T
(c

Dα
t u

)
(t), tDα–

T
(c

Dα
t u

)(
t–
j
)

= lim
t→t–

j
tDα–

T
(c

Dα
t u

)
(t).

Owing to the occurrence of the fractional derivative c
Dα

t u(t) included in the function f ,
the BVP (.) is not variational and it is unable to dealt with (.) directly as in [–] by
constructing some functional ϕ such that its critical point is exactly the solution to BVP
(.). To overcome the difficulty appearing here, we shall apply the iterative technique
combined with the variational method to BVP (.). Roughly speaking, for a certain u,
consider the following BVP:

⎧
⎪⎪⎨

⎪⎪⎩

tDα
T (c

Dα
t u(t)) + a(t)u(t) = f (t, u(t), c

Dα
t u(t)), t �= tj, a.e. t ∈ [, T],

�(tDα–
T (c

Dα
t u))(tj) = Ij(u(tj)), j = , , . . . , n,

u() = u(T) = ,

by using the mountain pass theorem, we can obtain one solution u corresponding to the
above BVP. Repeating this step, we will find a sequence {un}, which will converge to a
solution of BVP (.).

The paper is arranged as follows. In Section , the authors present some necessary pre-
liminary facts that will be needed in the paper. In Section , the authors establish the exis-
tence of nontrivial solutions for BVP (.) and give one example to show the effectiveness
of the result obtained.

2 Preliminaries
To apply the variational method with the iterative technique to the existence of solutions
for BVP (.), we shall state some basic notations and results, which will be used in the
proof of our main result.

Definition . ([]) Let f be a function defined on [a, b]. The left and right Riemann-
Liouville fractional integrals of order γ for function f denoted by aD–γ

t f (t) and tD–γ

b f (t),
respectively, are defined by

aD–γ
t f (t) =


�(γ )

∫ t

a
(t – s)γ –f (s) ds, t ∈ [a, b],γ > ,
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and

tD–γ

b f (t) =


�(γ )

∫ b

t
(s – t)γ –f (s) ds, t ∈ [a, b],γ > ,

provided in both cases that the right-hand side is pointwise defined on [a, b], where � is
the gamma function.

Definition . ([]) Let f be a function defined on [a, b]. The left and right Riemann-
Liouville fractional derivatives of order γ for function f denoted by aDγ

t f (t) and tDγ

b f (t),
respectively, exist almost everywhere on [a, b]. aDγ

t f (t) and tDγ

b f (t) are represented by

aDγ
t f (t) =


�(n – γ )

dn

dtn

∫ t

a
(t – s)n–γ –f (s) ds, t ∈ [a, b],

and

tDγ

b f (t) =
(–)n

�(n – γ )
dn

dtn

∫ b

t
(s – t)n–γ –f (s) ds, t ∈ [a, b],

where n –  ≤ γ < n and n ∈N. In particular, if  ≤ γ < , then

aDγ
t f (t) =


�( – γ )

d
dt

∫ t

a
(t – s)–γ f (s) ds, t ∈ [a, b],

and

tDγ

b f (t) = –


�( – γ )
d
dt

∫ b

t
(s – t)–γ f (s) ds, t ∈ [a, b].

Definition . ([]) If γ ∈ (n – , n) and f ∈ ACn([a, b],R), then the left and right Caputo
fractional derivatives of order γ for function f denoted by c

aDγ
t f (t) and c

t Dγ

b f (t), respec-
tively, exist almost everywhere on [a, b]. c

aDγ
t f (t) and c

t Dγ

b f (t) are represented by

c
aDγ

t f (t) = aDγ –n
t f (n)(t) =


�(n – γ )

∫ t

a
(t – s)n–γ –f (n)(s) ds

and

c
t Dγ

b f (t) = (–)n
tDγ –n

b f (n)(t) =
(–)n

�(n – γ )

∫ b

t
(s – t)n–γ –f (n)(s) ds,

respectively, where t ∈ [a, b]. In particular, if  < γ < , then

c
aDγ

t f (t) = aDγ –
t f ′(t) =


�( – γ )

∫ t

a
(t – s)–γ f ′(s) ds, t ∈ [a, b],

and

c
t Dγ

b f (t) = –tDγ –
b f ′(t) = –


�( – γ )

∫ b

t
(s – t)–γ f ′(s) ds, t ∈ [a, b].
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Let us recall that, for any u ∈ Lp[, T],  ≤ p < ∞, ‖u‖p = (
∫ T

 |u(t)|p dt)/p, and u ∈
C[, T], ‖u‖∞ = maxt∈[,T] |u(t)|.

Definition . Let  < α ≤  and  < p < ∞. The fractional derivative space Eα,p
 is defined

by the closure of C∞
 ([, T],R) with respect to the weighted norm

‖u‖α,p =
(∫ T



∣
∣u(t)

∣
∣p dt +

∫ T



∣
∣c
Dα

t u(t)
∣
∣p dt

)/p

, ∀u ∈ Eα,p
 .

As in [], we note the following.

Remark .
() The fractional derivative space Eα,p

 is the space of functions u ∈ Lp([, T],R) having
an α-order Caputo fractional derivative c

Dα
t u ∈ Lp([, T],R) and u() = u(T) = .

() For any u ∈ Eα,p
 , noting the fact that u() = , we have c

Dα
t u(t) = Dα

t u(t), t ∈ [, T].

Lemma . ([]) Let  < α ≤  and  < p < ∞. The fractional derivative space Eα,p
 is a

reflexive and separable Banach space.

Lemma . ([]) Let  < α ≤  and  < p < ∞. For any u ∈ Eα,p
 , we have

‖u‖p ≤ Tα

�(α + )
∥
∥c

Dα
t u

∥
∥

p.

Moreover, if α > /p and /p + /q = , then

‖u‖∞ ≤ Tα–/p

�(α)((α – )q + )/q

∥
∥c

Dα
t u

∥
∥

p.

According to Lemma ., we can also consider the space Eα,p
 with respect to the equiv-

alent norm,

‖u‖α,p =
∥
∥c

Dα
t u

∥
∥

Lp =
(∫ T



∣
∣c
Dα

t u(t)
∣
∣p dt

) 
p

, ∀u ∈ Eα,p
 . (.)

Lemma . ([]) Let  < α ≤  and  < p < ∞. If α > /p and the sequence {un} converges
weakly to u in Eα,p

 ; i.e., un ⇀ u, then un → u in C([, T],R), i.e., ‖un –u‖∞ → , as n → ∞.

In this paper, we consider problem (.) in the context of the Hilbert space Xα := Eα,
 fur-

nished with the norm ‖u‖α = ‖u‖α, as defined in (.). Note that, under certain conditions
imposed on the function a, we also consider the inner product

(u, v) :=
∫ T



((c
Dα

t u(t)
)(c

Dα
t v(t)

)
+ a(t)u(t)v(t)

)
dt,

∀u, v ∈ Xα , which induces the norm

‖u‖ :=
(∫ T



(∣
∣c
Dα

t u(t)
∣
∣+a(t)

∣
∣u(t)

∣
∣)dt

) 


;

(.)

this is equivalent to ‖u‖α, as defined in (.).
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Definition . A function u ∈ {u ∈ AC([, T]) :
∫ tj+

tj
(|cDα

t u(t)| + |u(t)|) dt < ∞, j =
, , , . . . , n} is said to be a classical solution of problem (.), if u satisfies the equation
a.e. on [, T]\{t, t, . . . , tn}, the limits tDα–

T (c
Dα

t u)(t+
j ), and the limits Dα–

T (c
Dα

t u)(t–
j ) exist

and satisfy the impulsive conditions

�
(

tDα–
T

(c
Dα

t u
))

(tj) = Ij
(
u(tj)

)
, j = , , . . . , n,

and the boundary condition u() = u(T) =  holds.

Definition . A function u ∈ Xα is said to be a weak solution of problem (.) if, for
every v ∈ Xα , the following identity holds:

∫ T



((c
Dα

t u(t)
)(c

Dα
t v(t)

)
+ a(t)u(t)v(t)

)
dt +

n∑

j=

Ij
(
u(tj)

)
v(t)

=
∫ T


f
(
t, u(t), c

Dα
t u(t)

)
v(t) dt.

By a discussion similar to [], we can obtain the following lemma.

Lemma . The function u ∈ Xα is a weak solution of (.) if and only if u is a classical
solution of (.).

For the following BVP:

⎧
⎨

⎩

tDα
T (c

Dα
t u(t)) = λu(t), t ∈ [, T],

u() = u(T) = ,
(.)

in terms of [], we call u ∈ Xα\{} is a eigenvector with respect to the eigenvalue λ, if u ∈ Xα

satisfies BVP (.). Similarly, by [], we call u ∈ Xα is a weak solution (.) if

∫ T



(c
Dα

t u(t)
)(c

Dα
t v(t)

)
dt = λ

∫ T


u(t)v(t) dt,

holds for every v ∈ Xα . Certainly, u is a classical solution of BVP (.) if only if u ∈ Xα is a
weak solution of BVP (.).

The following two lemmas are established in [].

Lemma . Suppose that  < α ≤ . Then each eigenvalue of problem (.) is real and, if
we repeat each eigenvalue according to its multiplicity, we have  < λ ≤ λ ≤ λ ≤ · · · and
λk → ∞ as k → ∞. In particular, λ can be characterized as

λ = inf
u∈Xα\{}

∫ T
 |cDα

t u(t)| dt
∫ T

 |u(t)| dt
.

Lemma . Suppose that  < α ≤ . If ess inft∈[,T] a(t) = m > –λ, then the norm ‖ · ‖ and
the norm ‖ · ‖α, are equivalent, i.e., there exist two positive constants η, η such that

η‖u‖α, ≤ ‖u‖ ≤ η‖u‖α,, ∀u ∈ Xα .
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As in the proof of Lemma  [], we can take η =
√

ε and η = ( + ‖a‖∞
λ

) 
 . We take ε =

min{ 
 , λ+m

λ
}.

To establish our result, we consider the function φw : Xα → R for any fixed w ∈ Xα as
follows:

φw(u) =



∫ T



(∣
∣c
Dα

t u(t)
∣
∣ + a(t)

∣
∣u(t)

∣
∣)dt +

n∑

j=

∫ u(tj)


Ij(s) ds

–
∫ T


F
(
t, u(t), c

Dα
t w(t)

)
dt (.)

for u ∈ Xα , where F(t, u, y) =
∫ u

 f (t, s, y) ds.
Similarly to [], by the continuity of a, f and Ij, the functional φw is clearly continuous

and differentiable on Xα and for every u, v ∈ Xα , the following relation holds:

φ′
w(u)v =

∫ T



[(c
Dα

t u(t)
)(c

Dα
t v(t)

)
+ a(t)u(t)v(t)

]
dt

+
n∑

j=

Ij
(
u(tj)

)
v(tj) –

∫ T


f
(
t, u(t), c

Dα
t w(t)

)
v(t) dt. (.)

Hence, u ∈ Xα is a weak solution of BVP (.) if and only if u ∈ Xα satisfies φ′
u(u)v =  for

all v ∈ Xα .
For convenience, we state some necessary definitions and theorem.

Definition . ([]) Suppose that X is a Banach space and φ ∈ C(X,R). We say that φ

satisfies the Palais-Smale condition if any sequence {un} ⊂ X such that φ(un) is bounded
and φ′

n(un) →  as n → ∞ possesses a convergent subsequence in X.

Lemma . ([]; mountain pass theorem) Let X be a Banach space and let φ ∈ C(X,R)
satisfy the Palais-Smale condition. Assume that there exist u, u ∈ X and a bounded open
neighborhood � of u such that u ∈ X\�̄ and max{φ(u),φ(u)} < infv∈∂� φ(v). Let

� =
{

h ∈ C
(
[, ], X

)
: h() = u, h() = u

}
, τ = inf max

h∈�,s∈[,]
φ
(
h(s)

)
.

Then τ is a critical value of φ, that is, there exists u∗ such that φ′(u∗) =  and φ(u∗) = τ ,
where τ > max{φ(u),φ(u)}.

Definition . ([]) We say that φ satisfies condition (C) if, for any {un} ⊂ X, {un} has a
convergent subsequence if φ(un) is bounded and ( + ‖un‖)‖φ′(un)‖ →  as n → ∞.

As shown in [], a deformation lemma can be proved with condition (C) replacing the
Palais-Smale condition and it turns out that the mountain pass theorem holds true under
condition (C).

3 Main result
For convenience, we first list the following conditions which will be used in this paper.



Chai and Chen Boundary Value Problems  (2017) 2017:23 Page 8 of 20

(H) There exist constants b ≥ , c ≥ , δ > , bj ≥ , j = , , . . . , n, and γ > , ξ > ,  < θ <
, γj > , j = , , . . . , n, such that

f (t, x, y) ≤ b|x|γ + c|x|ξ |y|θ , for |x| ≤ δ, y ∈R, a.e. t ∈ [, T],

Ij(s) ≥ –bj|s|γj , j = , , . . . , n, for |s| ≤ δ.

(H) There exist constants μ > , l ≥ , m ≥ , d ≥ ,  < σ , τ ,σj < , lj ≥ , j = , , . . . , n,
and L ≥ , such that

xf (t, x, y) – μF(t, x, y) ≥ –l|x|σ – m|y|τ – d, for x, y ∈R, a.e. t ∈ [, T],

μ

∫ u


Ij(s) ds – Ij(u)u ≥ –lj|u|σj , for |u| ≥ L.

(H) There exist constants β > , λ ≥ , J ≥ , M ≥ , βj ≥ , j = , , . . . , n, and ω > ,
 < ζ < ,  < ωj < , j = , , . . . , n, such that

f (t, x, y) ≥ βxω – λ|y|ζ – M, x ≥ , y ∈ R, a.e. t ∈ [, T],

Ij(s) ≤ βjsωj , s ≥ J .

(H) There exist nonnegative functions p, q ∈ L, and constants aj > , j = , , . . . , n, such
that

∣
∣f (t, x, y) – f (t, x, y)

∣
∣ ≤ p(t)|x – x| + q(t)|y – y|

for x, x ∈ [–K, K] and y, y ∈R, a.e. t ∈ [, T],

∣
∣Ij(x) – Ij(y)

∣
∣ ≤ aj|x – y|,

for all x, y ∈ [–K, K], where K = Tα–/

η�(α)
√

α– K and K is described as in the sequel.

We give some notations which will be used in the sequel:

ū =


�
u ∈ Xα , �

 = ‖u‖ =
∫ T



(∣
∣c
Dα

t u(t)
∣
∣ + a(t)u

(t)
)

dt and

u =

⎧
⎪⎪⎨

⎪⎪⎩


T t, t ∈ [, T/],

, t ∈ [T/, T/],

T (T – t), t ∈ (T/, T],

β̄ =
βT(ω + )

(ω + )(ω + )�ω+


, M̄ =
MT
�

,

β̄j =
βj(ū(tj))ωj+

ωj + 
, M̄j = Mjū(tj), d̄ =

n∑

j=

dj + dT , Mj = max
≤s≤J

∣
∣Ij(s)

∣
∣,

dj = max
|x|≤L

∣
∣
∣
∣μ

∫ x


Ij(s) ds – Ij(x)x

∣
∣
∣
∣, m̄ = T

–τ
τ η–τ

 m, l̄ = lT
–σ
σ

(
Tα

η�(α + )

)σ

,

l̄j = lj

(
Tα–/

η�(α)
√

α – 

)σj

, λ̄ =
λ

η
ζ
 �

(
T( – ζ )

 – ζ

) –ζ


,
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r̄ =
 – ζ


λ̄


–ζ

(
μζ

μ – 

) ζ
μ–

, m∗ =
 – τ


m̄


–τ

(
τ

μ – 

) τ
–τ

,

l∗ =
 – σ


l̄


–σ

(
σ

μ – 

) σ
–σ

, l∗j =
 – σj


l̄


–σj
j

(
nσj

μ – 

) σj
–σj

,

A =



+
n∑

j=

β̄j +
n∑

j=

M̄j + M̄ + r̄, B =
(ω – )A

ω + 

(
A

β̄(ω + )

) 
ω–

,

C = max{A, B}, E =


μ – 

(

μC + m∗ + l∗ +
n∑

j=

l∗j + d̄

)

, K =
√

E,

P =
Tα–/

�(α)�(α + )
√

α – η

‖p‖ +

Tα–

(�(α))(α – )η


n∑

j=

aj,

Q =
Tα–/

�(α)
√

α – η

‖q‖.

The above β , βj, d, dj, M, Mj, . . . etc., are described as in (H)-(H).
We are in a position to state our result as below.

Theorem . Suppose that 
 < α ≤ , inft∈[,T] a(t) = m > –λ and the conditions (H)-

(H) hold. Moreover, assume that P <  and Q
–P

< . Then problem (.) has a nontrivial
classical solution.

Proof The proof is divided into five steps.
Step . For any fixed w ∈ Xα with ‖w‖ ≤ K . Take δ =

√
α–�(α)ηδ

Tα–/ , then, for any u ∈ Xα

with ‖u‖ ≤ δ, it follows from Lemma . and Lemma . that |u(t)| ≤ δ for all t ∈ [, T].
Thus, by (H) we have

f
(
t, s, c

Dα
t w(t)

) ≤ b|s|γ + c|s|ξ ∣∣c
Dα

t w(t)
∣
∣θ , for a.e. t ∈ [, T], |s| ≤ ∣

∣u(t)
∣
∣,

Ij(s) ≥ –bj|s|γj , |s| ≤ ∣
∣u(tj)

∣
∣, j = , , . . . , n,

and therefore

F
(
t, u(t), c

Dα
t w(t)

)
=

∫ u(t)


f
(
t, s, c

Dα
t w(t)

)
ds

≤
∫ |u(t)|



(
b|s|γ + c|s|ξ ∣∣c

Dα
t w(t)

∣
∣θ

)
ds

=
b

γ + 
∣
∣u(t)

∣
∣γ + +

c
ξ + 

∣
∣u(t)

∣
∣ξ+∣∣c

Dα
t w(t)

∣
∣θ , for a.e. t ∈ [, T].

Thus, in view of Lemma . and Lemma ., we have

∫ T


F
(
t, u(t), c

Dα
t w(t)

)
dt

≤ bT
γ + 

‖u‖γ +
∞ +

c
ξ + 

‖u‖ξ+
∞

∫ T



∣
∣c
Dα

t w(t)
∣
∣θ dt
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≤ bT
γ + 

(
Tα–/

η�(α)
√

α – 

)γ +

‖u‖γ +

+
c

(ξ + )ηθ


(
Tα–/

η�(α)
√

α – 

)ξ+

T
–θ

 ‖w‖θ‖u‖ξ+

= b̄‖u‖γ + + c̄‖w‖θ‖u‖ξ+ ≤ b̄‖u‖γ + + c̄K θ‖u‖ξ+,

where b̄ = bT
γ + ( Tα–/

η�(α)
√

α– )γ +, c̄ = c
(ξ+)ηθ


( Tα–/

η�(α)
√

α– )ξ+T –θ
 and

∫ u(tj)


Ij(s) ds ≥ –bj

∫ |u(tj)|


|s|γj ds = –

bj

γj + 
∣
∣u(tj)

∣
∣γj+ ≥ –

bj

γj + 
‖u‖∞γj+

≥ –
bj

γj + 

(
Tα–/

η�(α)
√

α – 

)γj+

‖u‖γj+ = –bj‖u‖γj+,

where bj = bj
γj+ ( Tα–/

η�(α)
√

α– )γj+. Hence, by (.), we have

φw(u) ≥ 

‖u‖ –

n∑

j=

bj‖u‖γj+ – b̄‖u‖γ + – c̄K θ‖u‖ξ+.

Owing to the fact that γ > , γj > , j = , , . . . , n and ξ > , we can choose ρ small enough
so that




–
n∑

j=

bjρ
γj– – b̄ργ – – c̄K θρξ– >




.

Then

φw(u) ≥ 


ρ := α >  (.)

for any u ∈ Xα with ‖u‖ = ρ .
Step . We show that φw satisfies (C) condition, i.e., for any {un} ⊂ Xα has a convergent

subsequence if {φw(un)} is bounded and ( + ‖un‖)‖φ′
w(un)‖ →  as n → ∞.

Let

dj = max
|x|≤L

∣
∣
∣
∣μ

∫ x


Ij(s) ds – Ij(x)x

∣
∣
∣
∣, j = , , . . . , n.

Then by (H), we have

xf (t, x, y) – μF(t, x, y) ≥ –l|x|σ – m|y|τ – d, for x, y ∈R, a.e. t ∈ [, T],

μ

∫ u


Ij(s) ds – Ij(u)u ≥ –lj|u|σj – dj, j = , , . . . , n, u ∈R.

Thus, by Lemma . and Lemma ., it follows from (.)-(.) that

μφw(uk) – φ′
w(uk)uk

=
(

μ


– 

)

‖uk‖ +
∫ T



(
f
(
t, uk(t), c

Dα
t w(t)

)
uk(t) – μF

(
t, uk(t), c

Dα
t w(t)

))
dt
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+
n∑

j=

(

μ

∫ uk (tj)


Ij(s) ds – Ij

(
uk(tj)

)
uk(tj)

)

≥
(

μ


– 

)

‖uk‖ – (l
∫ T



(
∣
∣uk(t)

∣
∣σ dt + m

∫ T



∣
∣c
Dα

t w(t)
∣
∣τ dt

)

–

( n∑

j=

(
lj
∣
∣uk(tj)

∣
∣σj + dj

)
+ dT

)

≥
(

μ


– 

)

‖uk‖ –
(

T
–σ
σ l‖uk‖σ

L + m
∫ T



∣
∣c
Dα

t w(t)
∣
∣τ dt

)

–

( n∑

j=

lj‖uk‖σj
∞ +

n∑

j=

dj + dT

)

≥
(

μ


– 

)

‖uk‖ –
(

lT
–σ
σ

(
Tα

η�(α + )

)σ

‖uk‖σ + m
∫ T



∣
∣c
Dα

t w(t)
∣
∣τ dt

)

–

( n∑

j=

lj

(
Tα–/

η�(α)
√

α – 

)σj

‖uk‖σj +
n∑

j=

dj + dT

)

=
(

μ


– 

)

‖uk‖ –
(

l̄‖uk‖σ + m
∫ T



∣
∣c
Dα

t w(t)
∣
∣τ dt

)

–

( n∑

j=

lj‖uk‖σj +
n∑

j=

dj + dT

)

, (.)

where l̄ = lT –σ
σ ( Tα

η�(α+) )σ , l̄j = lj( Tα–/

η�(α)
√

α– )σj .
Hence, noting that the assumption  < σ ,σj < , μ >  and the fact that {φw(uk)} is

bounded and φ′
w(uk)uk →  as k → ∞, from inequality (.), we see that {uk} is bounded

in Xα . So, in view of the reflexivity of space, there exists a subsequence {ukj} with ukj ⇀

u ∈ Xα . For simplicity, we still denote {ukj} by {uk}. It follows from Lemma . that uk → u
in C[, T]. Owing to the fact that φ′

w(uk) → , uk ⇀ u as k → ∞, and boundedness of the
sequence {uk – u}, we get

∣
∣
(
φ′

w(uk) – φ′
w(u)

)
(uk – u)

∣
∣ ≤ ∣

∣φ′
w(uk)

∣
∣‖uk – u‖ +

∣
∣φ′

w(u)(uk – u)
∣
∣ → 

as k → ∞. Thus

‖uk – u‖ =
(
φ′

w(uk) – φ′
w(u)

)
(uk – u) –

n∑

j=

[
Ij
(
uk(tj)

)
– Ij

(
u(tj)

)](
uk(tj) – u(tj)

)

+
∫ T



(
f
(
t, uk(t), c

Dα
t w(t)

)
– f

(
t, u(t), c

Dα
t w(t)

))(
uk(t) – u(t)

)
dt → 

as k → ∞, because of the continuity of f and Ij, j = , , . . . , n, and the fact that uk → u in
C[, T]. Thus φw(u) satisfies the condition (C).

Step . We will show that there exists a point u∗ ∈ Xα with ‖u∗‖ > ρ satisfying φw(u∗) < .
In fact, let Mj = max≤s≤J |Ij(s)|, then by (H) we have

f (t, x, y) ≥ βxω – λ|y|ζ – M,  ≤ x < ∞, y ∈R, a.e. t ∈ [, T],

Ij(s) ≤ βjsωj + Mj,  ≤ s < ∞, j = , , . . . , n,
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and therefore

F(t, u, y) =
∫ u


f (t, s, y) ds ≥ β

ω + 
uω+ – λu|y|ζ – Mu, for u ≥ , a.e. t ∈ [, T],

∫ u


Ij(s) ds ≤ βj

ωj + 
uωj+ + Mju, for any u ≥ .

As before, for the choice ū = 
�

u ∈ Xα , � = ‖u‖, ‖ū‖ = , and

u =

⎧
⎪⎪⎨

⎪⎪⎩


T t, t ∈ [, T/],

, t ∈ [T/, T/],

T (T – t), t ∈ (T/, T],

then ū(t) > , t ∈ (, T), �
 =

∫ T
 (|cDα

t u(t)| + a(t)u
(t)) dt, and

c
Dα

t u(t) =


T�( – α)

⎧
⎪⎪⎨

⎪⎪⎩

t–α , t ∈ [, T/],

g(t), t ∈ [T/, T/],

h(t), t ∈ (T/, T],

where g(t) = t–α – (t – T/)–α , h(t) = t–α – (t – T/)–α – (t – T/)–α .
Hence, by (.), we have

φw(τ ū) =


τ  +

n∑

j=

∫ τ ū(tj)


Ij(s) ds –

∫ T


F
(
t, τ ū(t), c

Dα
t w(t)

)
dt

≤ 

τ  +

n∑

j=

(
βj

ωj + 
τωj+(ū(tj)

)ωj+ + τMjū(tj)
)

–
∫ T



(
βτω+

ω + 
ū(t)ω+ – λτ ū

∣
∣c
Dα

t w(t)
∣
∣ζ – Mτ ū

)

dt

=


τ  +

n∑

j=

(

τωj+ βj

ωj + 
(
ū(tj)

)ωj+ + τMjū(tj)
)

+ λτ

∫ T


ū(t)

∣
∣c
Dα

t w(t)
∣
∣ζ dt

+ Mτ

∫ T


ū(t) dt –

β

ω + 
τω+

∫ T



(
ū(t)

)ω+ dt (.)

for any τ > . Since  < ωj < , ω >  and
∫ T

 (u(t))ω+ dt > , from the above inequality,
we see that there exists a τ >  large enough so that φw(τū) <  with ‖τū‖ > ρ . Let
u∗ = τū, then φw(u∗) <  with ‖u∗‖ > ρ . Also, obviously, φw() = .

Now, applying Lemma . (the mountain pass theorem), we see that there exists a point
ū ∈ Xα satisfying φ′

w(ū) =  and φw(ū) ≥ α > .
Step . We show that we can construct a sequence {un}∞n= in Xα satisfying that

φ′
un– (un) =  and φun– (un) ≥ α with ‖un‖ ≤ K , n = , , . . . .
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First, for a certain u ∈ Xα with ‖u‖ ≤ K , by the conclusion proved in Step , we know
that there exists a point u ∈ Xα such that φ′

u (u) =  with φu (u) ≥ α. We claim that
‖u‖ ≤ K .

In fact, by the previous proof in Step  and noting that we have (.), we obtain

φu (u) ≤ max
τ∈[,∞)

φu (τ ū)

≤ max
τ∈[,∞)

[


τ  +

n∑

j=

(ū(tj))ωj+βj

(ωj + )
τωj+ +

n∑

j=

Mjū(tj)τ

+
λ

η
ζ


(∫ T



(
ū(t)

) 
–ζ dt

) –ζ
 ‖u‖ζ τ + Mτ

∫ T


ū(t) dt

–
β

ω + 
τω+

∫ T



(
ū(t)

)ω+ dt

]

≤ max
τ∈[,∞)

[


τ  +

n∑

j=

β̄jτ
ωj+ +

( n∑

j=

M̄j + M̄

)

τ + λ̄K ζ τ – β̄τω+

]

, (.)

where β̄j = βj(ū(tj))
ωj+

ωj+ , M̄j = Mjū(tj), M̄ = M
∫ T

 ū(t) dt, β̄ = β

ω+
∫ T

 (ū(t))ω+ dt =
β(ω+)T

(ω+)(ω+)�ω+


, λ̄ = λ

η
ζ


(
∫ T

 (ū(t))


–ζ dt)
–ζ

 = λ

η
ζ
 �

( (–ζ )T
–ζ

)
–ζ

 and the relations

∫ T


ū(t)

∣
∣c
Dα

t u(t)
∣
∣ζ dt ≤

(∫ T



(
ū(t)

) 
–ζ dt

) –ζ
 ‖u‖ζ

α,

≤
(∫ T



(
ū(t)

) 
–ζ dt

) –ζ
 

η
ζ

‖u‖ζ

and ‖u‖ ≤ K are used.
Applying the Young inequality, we have

λ̄K ζ τ ≤ 
q

(

ε

λ̄τ

)q

+

p
(
εK ζ

)p =
 – ζ


(λ̄τ )


–ζ

(
μζ

μ – 

) ζ
–ζ

+
μ – 
μ

K, (.)

where p = 
ζ

, q = 
–ζ

and ε = ( μ–
μζ

)
ζ
 .

Denote r̄ = –ζ

 λ̄


–ζ ( μζ

μ– )
ζ

μ– . Then from (.), it follows that

φu (u) ≤ max
τ∈[,∞)

[


τ  +

n∑

j=

β̄jτ
ωj+ +

( n∑

j=

M̄j + M̄

)

τ + r̄τ


–ζ – β̄τω+ +
μ – 
μ

K

]

.

Let H(τ ) = 
τ  +

∑n
j= β̄jτ

ωj+ + (
∑n

j= M̄j + M̄)τ + r̄τ


–ζ – β̄τω+. Then

φu (u) ≤ max
τ∈[,∞)

H(τ ) +
μ – 
μ

K.
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() If  ≤ τ ≤ , then

H(τ ) ≤ 


+
n∑

j=

β̄j +
n∑

j=

M̄j + M̄ + r̄ := A,

noting that  < ζ ,ωj < .
() If  ≤ τ < ∞, then

H(τ ) ≤
(




+
n∑

j=

β̄j +
n∑

j=

M̄j + r̄

)

τ  – β̄τω+ = Aτ  – β̄τω+ := �(τ ),

noting that  < ζ ,ωj < .
By �′(τ ) = Aτ – β̄(ω + )τω , if let �′(τ ) = , then τ = τ̄ := ( A

β̄(ω+) ) 
ω– and �(τ̄ ) =

maxτ∈[,∞) �(τ ) = (ω–)A
ω+ ( A

β̄(ω+) ) 
ω– := B.

Thus, summing up the above discussions () and (), we always have

�(τ ) ≤ max{A, B} := C, τ ∈ [,∞),

and therefore

φu (u) ≤ C +
μ – 
μ

K.

On the other hand, because

μφu (u) – φ′
u (u)u

=
(

μ


– 

)

‖u‖ +
∫ T



[
f
(
t, u(t), c

Dα
t u(t)

)
u(t) – μF

(
t, u, c

Dα
t u

)]
dt

+
n∑

j=

(

μ

∫ u(tj)


Ij(s) ds – Ij

(
u(tj)

)
u(tj)

)

and φ′
u (u) = , φu (u) ≤ C + μ–

μ
K, by (H) and by a discussion similar to (.), we have

(
μ


– 

)

‖u‖

≤ μφu (u) +
∫ T



[
μF

(
t, u(t), c

Dα
t u(t)

)
– f

(
t, u(t), c

Dα
t u(t)

)
u(t)

]
dt

+
n∑

j=

(

Ij
(
u(tj)

)
u(tj) – μ

∫ u(tj)


Ij(s) ds

)

≤ μ

(

C +
μ – 
μ

K
)

+ l̄‖u‖σ +
n∑

j=

l̄j‖u‖σj +
n∑

j=

dj + dT + m
∫ T



∣
∣c
Dα

t u(t)
∣
∣τ dτ

≤ μC +
μ – 


K + l̄‖u‖σ +

n∑

j=

l̄j‖u‖σj + d̄ + m̄K τ , (.)
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where d̄ =
∑n

j= dj + dT , m̄ = T –τ
τ η–τ

 m and the formulas

∫ T



∣
∣c
Dα

t u(t)
∣
∣τ dτ ≤ T

–τ
 ‖u‖τ

α, ≤ T
–τ

 η–
 ‖u‖τ ≤ T

–τ
 η–τ

 K τ

are used.
By use of the Young inequality, similarly to (.), we get

m̄K τ ≤  – τ


m̄


–τ

(
τ

μ – 

) τ
–τ

+
μ – 


K = m∗ +

μ – 


K,

l̄‖u‖σ ≤  – σ


l̄


–σ

(
σ

μ – 

) σ
–σ

+
μ – 


‖u‖ = l∗ +

μ – 


‖u‖,

l̄j‖u‖σj ≤  – σj


l̄


–σj
j

(
nσj

μ – 

) σj
–σj

+
μ – 
n

‖u‖ = l∗j +
μ – 
n

‖u‖,

where m∗ = –τ
 m̄ 

–τ ( τ
μ– ) τ

–τ , l∗ = –σ
 l̄ 

–σ ( σ
μ– ) σ

–σ , l∗j = –σj
 l̄


–σj
j ( nσj

μ– )
σj

–σj .
So, it follows from (.) that

μ – 


‖u‖ ≤ μC + m∗ + l∗ +
n∑

j=

l∗j + d̄ +
μ – 


K,

‖u‖ ≤ 
μ – 

(

μC + m∗ + l∗ +
n∑

j=

l∗j + d̄

)

+



K.

Take K =
√

E, where E = 
μ– (μC + m∗ + l∗ +

∑n
j= l∗j + d̄), then ‖u‖ ≤ K, i.e., ‖u‖ ≤ K .

Assume that ‖un–‖ ≤ K , by the same process as above, we can deduce that ‖un‖ ≤ K .
Thus for all n ∈N, ‖un‖ ≤ K .

Step . We show that {un} converges to u∗ ∈ Xα . In fact, by the proof in Step , we know
that ‖un‖ ≤ K . It follows from Lemma . and Lemma . that

‖un‖∞ ≤ Tα–/

η�(α)
√

α – 
‖un‖ ≤ Tα–/

η�(α)
√

α – 
K = K,

and therefore, by (H) we have

∣
∣
∣
∣

∫ T



[
f
(
t, un+(t), c

Dα
t un(t)

)
– f

(
t, un(t), c

Dα
t un–(t)

)(
un+(t) – un(t)

)]
dt

∣
∣
∣
∣

≤
∫ T



[
p(t)

∣
∣un+(t) – un(t)

∣
∣ + q(t)

∣
∣c
Dα

t (un – un–)(t)
∣
∣
∣
∣un+(t) – un(t)

∣
∣
]

dt

≤ ∥
∥un+(t) – un(t)

∥
∥∞

(∫ T


p(t)

∣
∣un+(t) – un(t)

∣
∣dt +

∫ T


q(t)

∣
∣c
Dα

t (un – un–)(t)
∣
∣dt

)

≤ ∥
∥un+(t) – un(t)

∥
∥∞

(‖p‖ · ‖un+ – un‖ + ‖q‖ · ∥∥c
Dα

t (un – un–)
∥
∥



)

≤ Tα–/

�(α)�(α + )
√

α – η

‖p‖ · ‖un+ – un‖

+
Tα–/

�(α)
√

α – η

‖q‖ · ‖un+ – un‖ · ‖un – un–‖ (.)
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and

∣
∣Ij(un+(tj) – Ij

(
un(tj)

)∣
∣
∣
∣un+(tj) – un(tj)

∣
∣

≤ aj
∣
∣un+(tj) – un(tj)

∣
∣

≤ Tα–aj

(�(α))(α – )η

‖un+ – un‖, j = , , . . . , n. (.)

On the other hand, because φ′
un (un+)(un+ – un) = , φ′

un– (un)(un+ – un) = , in view of
(.)-(.) and the following relation:

(
φ′

un (un+) – φ′
un– (un)

)
(un+ – un)

= ‖un+ – un‖ +
n∑

j=

[
Ij
(
un+(tj)

)
– Ij

(
un(tj)

)](
un+(tj) – un(tj)

)

–
∫ T



[
f
(
t, un+(t), c

Dα
t un(t)

)
– f

(
t, un(t), c

Dα
t un–(t)

)](
un+(t) – un(t)

)
dt,

we obtain

‖un+ – un‖

=
∫ T



[
f
(
t, un+(t), c

Dα
t un(t)

)
– f

(
t, un(t), c

Dα
t un–(t)

)](
un+(t) – un(t)

)
dt

–
n∑

j=

[
Ij
(
un+(tj)

)
– Ij

(
un(tj)

)](
un+(tj) – un(tj)

)

≤
(

Tα–/

�(α)�(α + )
√

α – η

‖p‖L +

Tα–

(�(α))(α – )η


n∑

j=

aj

)

‖un+ – un‖

+
Tα–/

�(α)
√

α – η

‖q‖‖un+ – un‖ · ‖un – un–‖

= P‖un+ – un‖ + Q‖un+ – un‖ · ‖un – un–‖,

where P = Tα–/

�(α)�(α+)
√

α–η

‖p‖ + Tα–

(�(α))(α–)η


∑n
j= aj, Q = Tα–/

�(α)
√

α–η

‖q‖.

Hence

‖un+ – un‖ ≤ P‖un+ – un‖ + Q‖un – un–‖.

By the assumption P < , we have

‖un+ – un‖ ≤ Q

 – P
‖un – un–‖. (.)

Owing to the assumption  ≤ Q
–P

< , it follows from (.) that the sequence {un} con-
verges to a point u∗ ∈ Xα , and so, un → u in C[, T]. Thus, ‖u∗‖ ≤ K and ‖u∗‖∞ ≤ K.
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Finally, because

∫ T



[∣
∣c
Dα

t
(
un – u∗)(t)

∣
∣
∣
∣c
Dα

t v(t)
∣
∣ +

∣
∣a(t)

∣
∣
∣
∣un(t) – u∗(t)

∣
∣
]∣
∣v(t)

∣
∣dt

≤ ∥
∥c

Dα
t
(
un – u∗)∥∥

 · ∥∥c
Dα

t v
∥
∥

 + ‖a‖∞
∥
∥un – u∗∥∥

 · ‖v‖

≤ 
η



∥
∥un – u∗∥∥ · ‖v‖ + ‖a‖∞

Tα

�(α + )η


∥
∥un – u∗∥∥ · ‖v‖

for all v ∈ Xα , the convergence un → u∗ implies

∫ T



[c
Dα

t un(t) · c
Dα

t v(t) + a(t)un(t)v(t)
]

dt

→
∫ T



[c
Dα

t u∗(t) · c
Dα

t v(t) + a(t)u∗(t)v(t)
]

dt (.)

as n → ∞. Also, obviously,

n∑

j=

Ij
(
un(tj)

)
v(tj) →

n∑

j=

Ij
(
u∗(tj)

)
v(tj) (.)

as n → ∞. By (H), observing

∣
∣
∣
∣

∫ T



[
f
(
t, un(t), c

Dα
t un–(t)

)
– f

(
t, u∗(t), c

Dα
t u∗(t)

)]
v(t) dt

∣
∣
∣
∣

≤
∫ T



[
p(t)

∣
∣un(t) – u∗(t)

∣
∣ + q(t)

∣
∣c
Dα

t
(
un– – u∗)(t)

∣
∣ · ∣∣v(t)

∣
∣
]

dt

≤ ‖v‖∞
(‖p‖ · ∥∥un – u∗∥∥

 + ‖q‖ · ∥∥c
Dα

t
(
un– – u∗)∥∥



)

≤ ‖v‖∞
(

‖p‖
Tα

�(α + )η

∥
∥un – u∗∥∥ + ‖q‖


η

∥
∥un– – u∗∥∥

)

,

we know that
∫ T


f
(
t, un(t), c

Dα
t un–(t)

)
v(t) dt →

∫ T


f
(
t, u∗(t), c

Dα
t u∗(t)

)
v(t) dt (.)

as n → ∞. Also, by (.), the fact that φ′
un– (un)v =  means that

 =
∫ T



[c
Dα

t un(t) · c
Dα

t v(t) + a(t)un(t)v(t)
]

dt

+
n∑

j=

Ij
(
un(tj)

)
v(tj) –

∫ T


f
(
t, un(t), c

Dα
t un–(t)

)
v(t) dt

for all v ∈ Xα . The above equality combined with (.)-(.) implies

 =
∫ T



[c
Dα

t u∗(t) · c
Dα

t v(t) + a(t)u∗(t)v(t)
]

dt

+
n∑

j=

Ij
(
u∗(tj)

)
v(tj) –

∫ T


f
(
t, u∗(t), c

Dα
t u∗(t)

)
v(t) dt
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for all v ∈ Xα , i.e., φ′
u∗ (u∗)v = . This means that u∗ is a weak solution of BVP (.). Similarly,

we can prove that limx→∞ φun– (un) = φu∗ (u∗). Because φun– (un) ≥ α > , we conclude that
φu∗ (u∗) ≥ α > . This means that u∗ is a nontrivial classical solution of BVP (.) taking
into account Lemma .. �

Example . Consider the following BVP:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

tD


 (c

D


t u(t)) + tu(t) = f (t, u(t), c

D


t u(t)), t �= 

 , t ∈ [, ],

�(tD
– 


 (c

D


t u(t)))( 

 ) = I(u( 
 )),

u() = u() = ,

(.)

with respect to BVP (.), where α = 
 , j = , T = , a(t) = t, and functions f , I have the

following forms, respectively:

f (t, x, y) = be–tx + ctx(sin y)

 – c(cos t)h(x)g(y), t ∈ [, ], x, y ∈R,

where b > , c, c > ,

h(x) =

⎧
⎪⎪⎨

⎪⎪⎩

, x ≤ ,

x,  ≤ x ≤ ,

,  ≤ x < ∞,

g(y) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

, y ≤ ,

y,  ≤ y ≤ ,

y 
 ,  ≤ y ≤ L,

L


 , L ≤ y < ∞,

where the constant L > , and

I(s) = –bs|s|, s ∈R, b > .

We verify that the conditions hold corresponding to (H)-(H) in Theorem ..

(H) f (t, x, y) ≤ b|x| + c|x||y| 
 , t ∈ [, ], x, y ∈ R; I(s) ≥ –b|s|, s ∈R.

(H) xf (t, x, y) – F(t, x, y) ≥ , t ∈ [, ], x, y ∈ R; 
∫ u

 I(s) ds – I(u)u ≥ , x ∈R.
(H) f (t, x, y) ≥ bx – c|y| 

 , t ∈ [, ], x ≥ , y ∈R; I(s) ≤ , s ≥ .
(H) |f (t, x, y) – f (t, x, y)| ≤ p(t)|x – x| + q(t)|y – y|, t ∈ [, ], y, y ∈ R, x, x ∈

[–K, K] and

∣
∣I(x) – I(y)

∣
∣ ≤ bK|x – y|, ∀x, y ∈ [–K, K],

where p(t) = bK
 e–t + cK

 t + cL


 cos t, q(t) = 

 cK
 t + c cos t, t ∈ [, ].

Compared with the conditions in Theorem ., here η = /, b = β > , ω = γ = , ξ = ,
θ = /, γ = , μ = , λ = c > , ζ = /, a = bK, l = m = d = L = M = J = , M = β =
d = l = , and so M = d̄ = m̄ = l̄ = , l̄ = β = M = , as well as m∗ = l∗ = l∗ = .

By direct computation, we know that β̄ = b
�


, r̄ = 

 ( 
 )


 ( c

�
)


 and A = 

 + r̄, B =
A
 ( A

b ) 
 �

, C = max{A, B}, K =
√

C and K = 
√


�( 

 )
K , P = 

�( 
 )�( 

 )
‖p‖ + 

(�( 
 )) a,
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Q = 
√


�( 

 )
‖q‖,

‖p‖
 =




c
 K

 +
(




sin  +



)

c
L



 + bcK



(

 –

e

)

+ bccK
 L



 ( cos  – sin )

+ bcL


 K

(

 +
sin  – cos 

e

)

+



bK( – e–),

‖q‖
 =




c
 K

 + c


(



sin  +



)

+ cK
 ( cos  – sin ).

Obviously, we can choose the suitably small constants b, c, c such that P <  and Q <
 – P and therefore it follows from Theorem . that BVP (.) has at least one nontrivial
classical solution.
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