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Abstract

Modern radar and communication systems require the detection and parameter estimation of signal under a
broadband radio frequency (RF) environment. The Nyquist folding receiver (NYFR) is an efficient analog-to-
information (A2I) architecture. It can use the compressive sensing (CS) techniques to break the limitations of the
analog-to-digital converter (ADC). This paper demonstrates the restricted isometry property (RIP) of the NYFR
deterministically by applying the Gershgorin circle theory. And, the NYFR suffers a poor RIP for the broadband
signal, which will lead the conventional CS algorithms to be invalid. So, we derive the Fourier spectrum of the
broadband signal, which covered multiple Nyquist zones and received by the NYFR. Then, the broadband signal
can be regarded as the block-sparse signal. And, the block CS algorithms are applied for recovering the signal
based on the analysis of the block-RIP. Finally, the simulation experiments demonstrate the validity of the findings.

Keywords: Nyquist folding receiver, Compressive sensing, Restricted isometry property, Block restricted isometry
property, Signal reconstruction

Abbreviations: RF, Radio frequency; A2I, Analogy-to-information; ADC, Analog-to-digital converter; RIP, Restricted
isometry property; block-RIP, Block restricted isometry property; OMP, Orthogonal matching pursuit; DFT, Discrete
Fourier transform; NYFR, Nyquist folding receiver; CS, Compressive sensing; EW, Electronic warfare; RIC, Restricted
isometry constant; block-RIC, Block restricted isometry constant; BOMP, Block orthogonal matching pursuit;
IDFT, Inverse discrete Fourier transform

1 Introduction
Electronic warfare (EW) plays a leading role in most
conflicts for future war, and the receiver is the core. The
modern receivers require the detection and parameter
estimation of signal across an extremely wide radio fre-
quency (RF) bandwidth [1]. Meanwhile, the receiver is a
trend to be much smaller on the size, weight, and power
with a better performance. All of these set the urgent re-
quest to the higher performance of analog-to-digital
converter (ADC), both in the sampling rate and analogy
bandwidth [2].
The receiver, in general, is based on the Nyquist the-

orem [3] to avoid aliasing with redundancy. The channel-
ized receivers use multichannel parallel alternating
sampling in the time [4] or frequency [5] domain. The
channelized receivers have a high intercept probability

and sensitivity and wide instantaneous bandwidth and
dynamic range. But, the multichannel structure is large
in the size, weight, and power. With the development of
the compressive sensing (CS) theory, the sparse signals
can be recovered exactly by solving a convex
optimization problem [6].
The Nyquist folding receiver (NYFR) is an efficient

analog-to-information (A2I) architecture [7] which sub-
stantially preserves the signal structure [1]. Reference [1]
discusses the CS framework of the NYFR and the signal
reconstruction with single-frequency applying the or-
thogonal matching pursuit algorithm (OMP). References
[8] and [9] regard the NYFR architecture as a modulated
sampling scheme. They study the detection and param-
eter estimation algorithm of signal under the different
types of the modulated signal.
On the other hand, the structure of the measurement

matrix is a core problem in CS. The structured measure-
ment matrix is constructed from the point of view of the
practical application, such as the cyclic matrix [10], the
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Toeplitz matrix [11], and the Toeplitz-block matrices
[12]. One of the main analysis tools of the measurement
matrix is the restricted isometry property (RIP) [13].
And, reference [14] proves that the Toeplitz matrix satis-
fies the RIP. Reference [15] uses various techniques for
demonstrating RIP deterministically including the Gersh-
gorin circle theory. Besides, the block-sparse signals arise
naturally, as the multiband signal [16], the radar imaging
[17], and the DNA microarrays [18]. Then, reference [19]
presents the block-RIP and the block CS algorithms as a
block version of the orthogonal matching pursuit algo-
rithm (BOMP).
In this paper, we demonstrate the RIP of the NYFR de-

terministically by applying the Gershgorin circle theory.
And, we get the same conclusion as the reference [20]
shown. That is, the NYFR suffers a poor RIP for the
broadband signal, which will lead the conventional CS
algorithms to be invalid. The broadband signal covers
multiple Nyquist zones received by the NYFR, and then,
we present its Fourier spectrum. And, the broadband
signal can be regarded as the block-sparse signal. We
demonstrate the block-RIP of the NYFR deterministic-
ally by using the property that the Toeplitz matrix satis-
fies the RIP. And finally, the simulation experiments give
the broadband signal reconstruction by comparing the
method of OMP and BOMP.
Then, the rest of this paper is organized as follows.

Section 2 shows the CS model of the NYFR and analyzes
the RIP by applying the Gershgorin circle theory. Sec-
tion 3 presents the broadband signal model under the
NYFR and demonstrates the block-RIP of the NYFR de-
terministically. Section 4 gives the simulation results and
discussions. Section 5 concludes the whole paper.

2 The RIP analysis of the Nyquist folding receiver
2.1 Compressive sensing model of the NYFR
The architecture of the NYFR is shown in Fig. 1, which
is a twice sampling structure. The analog RF input can
be subsampled by using a steam of short pulses p(t) that
have a phase modulated sampling period as the first
sampling. Followed by the low-pass interpolation filter-
ing, the output is quantized by a conventional ADC as
the second sampling.
The CS model of the NYFR based on the usual as-

sumptions shown in reference [1] is

y ¼ ϕx or y ¼ ΦX ð1Þ

where x is the analog RF input vector sampled by using
the Nyquist sampling rate in CN. The N-point discrete
Fourier transform (DFT) vector X of x is sparse or called
compressible in the frequency domain. The output of
the NYFR is the vector y in CM. The matrix ϕ ∈ CM ×N is
the sensing matrix, and Φ ∈ CM ×N is the measurement

matrix. Note that N =M ⋅ K, where K denotes the total
number of the Nyquist zones covered by the NYFR. So,
we have
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where each block of the block diagonal matrix Ψ ∈ CN ×N

is an inverse DFT (IDFT) matrix ΨM ∈ CM ×M of size M,
and each block represents a Nyquist zone. The induced
sampling modulation matrix S ∈ CN ×N is a diagonal
matrix with the function of time, whose modulation of
phase is periodic nonuniform, and it is partitioned into
blocks of size M. Then finally, each Nyquist zone is pro-
ject into the baseband of bandwidth M with the matrix
R ∈ CM ×N. Note that the sensing matrix is ϕ = RS and
the measurement matrix is Φ = RSΨ. The IDFT matrix
of length M is given by

ΨM ¼ 1ffiffiffiffiffi
M

p

1 1 1 1

1 ω1 ω2 ⋯ ωM−1

1 ω2 ω4 ⋯ ω2 M−1ð Þ

⋯ ⋯ ⋯ ⋯ ⋯
1 ωM−1 ω2 M−1ð Þ ⋯ ω M−1ð Þ M−1ð Þ

2
666664

3
777775
ð3Þ

where ω = ej2π/M is a rotation factor.

2.2 The RIP analysis of the NYFR
As we know, the measurement matrix Φ satisfies the
RIP, which is a sufficient condition for sparse recon-
struction. The RIP is defined as:
A matrix Φ ∈ CM ×N is said to satisfy the RIP with pa-

rameters (s, δ) for s ≤M, 0 ≤ δ ≤ 1, if for all subsequence
index sets I ⊂ {1, 2,…,N} of Φ such that |I| ≤ s, and for
all θ ∈ C|I|, one has

1−δð Þ θk k22≤ ΦIθk k22≤ 1þ δð Þ θk k22 ð4Þ
where | ⋅ | is the cardinality of the set, which means the
number of the set of elements. And, the infimum of all δ

Jiang et al. EURASIP Journal on Advances in Signal Processing  (2016) 2016:92 Page 2 of 9



is the restricted isometry constant (RIC) δs. There is a
relation of inequality between the RIC and the eigen-
values of the matrix ΦH

I ΦI [21]

1−δs≤λmin ΦH
I ΦI

� �
≤λmax ΦH

I ΦI
� �

≤1þ δs ð5Þ
where λmin ΦH

I ΦI
� �

and λmax ΦH
I ΦI

� �
denote the minimal

and maximal eigenvalues of ΦH
I ΦI , respectively.

Then, we can apply Gershgorin circle theorem [22] to
understand the RIP. Considering the measurement
matrix Φ = RSΨ, there are Cs

N submatrices ΦI on a ran-
dom selection of s columns. So, the eigenvalues of each
submatrix of Gram ΦH

I ΦI distributed in [1 − δs, 1 + δs]
are a complicated permutation and combination prob-
lem. According to Gershgorin circle theorem, the Gram
matrix of Φ contains all the eigenvalue information of
its submatrices. So, it is reasonable to analyze the Gram
matrix G(Φ), which is given by

G Φð Þ ¼ ΦHΦ ¼ ΨH SH RHR
� �

S
� �

Ψ

¼
IM T 10 ⋯ T K−1ð Þ0
T 01 IM ⋯ T K−1ð Þ1
⋯ ⋯ ⋯ ⋯
T0 K−1ð Þ T 1 K−1ð Þ ⋯ IM

2
664

3
775 ð6Þ

where IM is an identity matrix of size M ×M. And, the
square matrix Tij (i, j = 0, 1,⋯ K − 1; i ≠ j) of size K × K
is expressed as

where kij = ki − kj, the ki means ith-index Nyquist zone
and kj is the same. To simplify the matrix (7), we have

Tij ¼ 1
M

XM
m¼1

e−jkijθ tmð Þω m−1ð Þ l−nð Þ
 !

l;n

l; n ¼ 1; 2⋯Mð Þ

ð8Þ
where n and l denote the row and column of the matrix
Tij, respectively.
We begin our analysis with the 1-sparse. Because the

diagonal elements of the Gram matrix are equal to 1
identically, which means that Φ meets 1-RIP, the signal
can be recovered exactly when the input is 1-sparse.
Moreover, considering 2-sparse, we choose δd, δ0 > 0
appropriately and δd + δ0 = δs ∈ (0, 1), to be made that
the diagonal elements Gi,i of the Gram matrix satisfy
|Gi,i − 1| = 0 < δd and the off-diagonal elements meet
the relationship |Gi,j − 1| < δo/s. In other words, the
distance between the center of Gershgorin circle and 1
is no further than δd, and the radius of each Gersh-
gorin circle is less than δ0. Then, we can set δd to an
extremely tiny positive number, and we have δo ≈ δs.
So, what we need to do is that proving each of the
non-diagonal elements from the matrix G(Φ) is less
than 1.
The elements of the matrix Tij can be written as

bnl ¼ 1
M

XM
m¼1

e−jkijθ tmð Þω m−1ð Þ l−nð Þ ð9Þ
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ð7Þ

Fig. 1 The Nyquist folding receiver architecture
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and

bnlj j ¼ 1
M

XM
m¼1

e−jkijθ tmð Þω m−1ð Þ l−nð Þ
�����

�����≤ 1
M

�
e−jkijθ t1ð Þ�� ��

þ e−jkij θ t2ð Þω l−nð Þ�� ��þ⋯þ e−jkijθ tKð Þω M−1ð Þ l−nð Þ�� ��� ¼ 1

ð10Þ
where bnl is equal to 1 if and only if θ(tm) = 0. However,
θ(t) is not a fixed value; instead, it is a function.
After that

bnlj j < 1 ð11Þ
So, the eigenvalues of the matrix which is composed

of arbitrary two columns of Φ are between 0 and 1,
namely that the measurement matrix of the NYFR sat-
isfies 2-RIP. The result is the same as that OMP will
recover any two tones from their samples regardless
of any disparity on the reference [20]. However, equa-
tion (11) also shows that the sensing matrix of the
NYFR not satisfies 3-RIP or more, because there is a
case that the eigenvalues of the matrix which is com-
posed of arbitrary more than two columns of Φ may
be over one.
The RIP is a useful tool in the analysis of the meas-

urement matrix of the CS methods, even if the estima-
tion of the NYFR suffers a good RIP as is shown in
reference [20], which will not guarantee the success of
the CS algorithms in discriminating the broadband sig-
nal. So, the conversion of broadband signal based on
the CS is a challenge, and the block-RIP will offer some
improvement.

3 The block-RIP analysis of the Nyquist folding
receiver
3.1 Broadband signal model under the NYFR
To make the description easier, we use a broadband lin-
ear frequency modulation (LFM) signal which covered
multiple Nyquist zones as an example. And, the Fourier
spectrum of the broadband signal is not satisfied sparse
condition. Assuming that the signal amplitude is Ac, the
pulse width is τ, the initial frequency is ωc, the initial
phase is φc and the chirp rate is μ, then the form of the
broadband signal can be expressed as

x tð Þ ¼ Acrect
t
τ

	 

exp j ωct þ πμt2 þ φc

� �� � ð12Þ

where rect(u) is the rectangle function as follow

rect uð Þ ¼ 1 uj j≤0:5
0 uj j≥0:5



ð13Þ

The Fourier spectrum of LFM can be expressed as

X ωð Þ ¼
Ac

ffiffiffiffiffiffi
2π
μ

r
exp −j

ω−ωcð Þ2
2μ

−
π

4

 !
þ jφc

 !
ω−ωcj j≤△ω

2

0 ω−ωcj j≥△ω

2

8>><
>>:

ð14Þ
where Δω = 2πB, and B = μτ is the bandwidth.
And, the RF sample clock based on the NYFR is de-

scribed in reference [1] as follow:

p tð Þ ¼ pmodel tð Þ � ωs

XK
k¼0

ejk ωstþθ tð Þ½ � ð15Þ

where pmodel(t) is the impulse of the model. And k repre-
sents the index of Nyquist zones from zero to K, where K
denotes the number of the Nyquist zones by the NYFR
covered. From the signal modulation theory perspective,

ωs

XK
k¼0

ejk ωstþθ tð Þ½ � can modulate the Nyquist zone informa-

tion of the input into the bandwidth information of the
received signal. Then, the expression can be simplified to

p tð Þ ¼ ωs

XK
k¼0

ejk ωstþθ tð Þ½ � ð16Þ

where assuming θ(t) = sin(ωθt) is the sinusoid function
for phase modulated.
Using the Jacobi identity

exp jα sinβð Þ ¼
X
ν¼−∞

þ∞

J ν αð Þ exp jνβð Þ ð17Þ

And, the sinusoid phase modulated function, we have

p tð Þ ¼ ωs

XK
k¼0

X
ν¼−∞

þ∞

J ν kð Þ exp jkωst þ j2πf θνtð Þ ð18Þ

and

P ωð Þ ¼ ωs

XK
k¼0

X
ν¼−∞

þ∞

Jν kð Þδ ω−kωs−νωθð Þ ð19Þ

Then, we have

Y ′ ωð Þ ¼ 1
2π

X ωð Þ � P ωð Þ

¼ Acωsffiffiffiffiffiffiffiffi
2πμ

p e
j φcþ

π

4

	 
 X∞
v¼−∞

XK
k¼0

Jv kð Þ exp −j
ω−ωc−kωs−vωθð Þ2

2μ

 !

¼ Acωs

2π
ejφc
X∞
v¼−∞

XK
k¼0

J v kð Þ

ffiffiffiffiffiffi
2π
μ

s
exp −j

ω− ωc þ kωs þ vωθð Þð Þ2
2μ

−
π

4

 ! ! !

ð20Þ
Then, we can see that ωc + kωs is the mid-frequency

with the edge frequencies separated by the amount of ωθ

and the amplitudes depend on Bessel.
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Through a low-pass interpolation filter of [‐ ωs/2, ωs/2],
the spectrum can be represented as:

F ωð Þ ¼ 1; 0≤ ωj j≤ωs=2
0; ωs=2 < ωj j≤2π



ð21Þ

Then, the range of the Nyquist zones of the input is
determined by F(ω) as follow

−ωs=2≤ωc þ ωskup≤ωs=2
−ωs=2≤ωc þ 2πBþ ωskdown≤ωs=2



; k∈Z ð22Þ

where kup and kdown denote the minimal and maximal
index values of the Nyquist zones of the input,
respectively.
Because the instantaneous frequency of the LFM signal

is linear with time, so we have

k1 ¼ kup; k2 ¼ kup−1; …; kΔ−1
¼ kdown þ 1; kΔ ¼ kdown ð23Þ

And, the bandwidth values correspondingly in the dif-
ferent Nyquist zones are

B1 ¼ 1=2−kup
� �

ωs−ωc

B2 ¼ B3 ¼ ⋯ ¼ BΔ−1 ¼ ωs

BΔ ¼ 1=2þ kdownð Þωs þ ωc þ 2πB

ð24Þ

Without change of the chirp rate, then the pulse width
values of different Nyquist zones are

τi ¼ Bi=μ ð25Þ

where i = 1, 2, …, Δ. Then, the initial frequencies in

the different Nyquist zones are ωc þ kiωs þ
X
l¼0

i−1

Bl ,

respectively.
The output spectrum of the NYFR after the low-pass

interpolation filter is

Y ωð Þ ¼ Y ′ ωð ÞF ωð Þ

¼ Acωs

2π
ejφc X∞

v¼−∞

XΔ
i¼1

J v kið Þ

�
ffiffiffiffiffiffi
2π
μ

s
exp −j

ω− ωc þ kiωs þ
X
l¼0

i−1

Bl þ vωθ

 ! !2

2μ
−
π

4

0
BBBBB@

1
CCCCCA

0
BBBBB@

1
CCCCCA

0
BBBBB@

1
CCCCCA

ð26Þ

where assuming B0 = 0.

With the Fourier transform pair,

ej2πat
2 ¼ e−2παt

2
���
α¼−ja; a¼jα

↔
ℑ

ffiffiffi
π

a

r
exp −j

π2f 2

a
−
π

4

� �� �
ð27Þ

where a = μ/2, then α ¼ −j μ=2ð Þ; ffiffiffiffiffiffiffiffi
π=a

p ¼ ffiffiffiffiffiffiffiffiffiffiffi
2π=μ

p
.

Then, we have

y tð Þ ¼ Acωs

2π

X∞
v¼−∞

XΔ
i¼1

J v kið Þrect t
τi

� �
e
j

ωcþkiωsþ
Xi−1
l¼0

Blþvωθ

 !
t

ejπμt
2ejφc

¼ Acωs

2π

XΔ
i¼1

rect
t
τi

� �
exp

 
j

 �
ωc þ kiωs þ

Xi−1
l¼0

Bl

�
t

þπμt2 þ φc þ ki sin ωθtð Þ
!!

ð28Þ

So, the broadband signal received by the NYFR often
has the aliasing spectrum from subsampling, especially
for the signal of the high frequency, broad bandwidth
and covering multiple Nyquist zones. Therefore, the
traditional RIP analysis and CS methods will not work.
And, the block-RIP analysis and block CS methods will
offer some improvement.

3.2 The block-RIP analysis of the NYFR
We consider that the N-point vector X can be divided
into L blocks on the sub-block index sets D = {d1, d2,…,
dL}. The length of each block is d fixation, and there is
dL = N. Denoting that X[l] is the lth sub-block of length
d, we can rewrite X as

XT ¼ ½X1⋯Xd1|fflfflfflfflffl{zfflfflfflfflffl}
X 1½ �

⋯Xdl−1þ1⋯Xdl|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
X l½ �

⋯XN−dLþ1⋯XN|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
X L½ �

�

ð29Þ

Similarly, we can represent Φ as a concatenation of
column-block Φ[l] of size M × d

Φ ¼ ½φ1⋯φd|fflfflfflffl{zfflfflfflffl}
Φ 1½ �

⋯φdl−1þ1⋯φdl|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Φ l½ �

⋯φN−dLþ1⋯φN|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Φ L½ �

� ð30Þ

Then, Φ has the block-RIP over D with parameter
δB ∈ [0, 1] if for all θ ∈ CN which is block s-sparse over
D, we have that

1−δBð Þ θk k22≤ Φθk k22≤ 1þ δBð Þ θk k22 ð31Þ

The infimum of all δB is the block restricted isometry
constant (block-RIC) δs|D. We can see that the RIP is for
all the subsequence index sets of Φ, while the block-RIP
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is for the measurement matrix Φ itself. Compared with
the inequality of RIC.

λmin ΦH
I ΦI

� �
θk k22≤ ΦIθk k22 ¼ θHΦI

HΦIθ≤λmax ΦH
I ΦI

� �
θk k22
ð32Þ

And, we can let δs ¼ max 1−λmin ΦH
I ΦI

� �
; 1þ�

λmax

ΦH
I ΦI

� �g . Correspondingly, the inequality of the block-
RIC with the parameter of the sub-coherence υ and the
block-coherence μB shown in [19] is changed into

Φθk k22 ¼ θHΦHΦθ ¼
Xs
c¼1

Xs
r¼1

θH c½ �M c; r½ �θ r½ �

¼
Xs
c¼1

θH c½ �M c; c½ �θ c½ � þ
Xs
c¼1

Xs
r¼1;r≠c

θH c½ �M c; r½ �θ r½ � ≤ θk k22

þ
Xs
c¼1

max ρ M c; c½ �−Idð Þ θk k22

þ
Xs
c¼1

Xs
r¼1;r≠c

max ρ M c; r½ �ð ÞθH c½ �θ r½ � ≤½1þ d−1ð Þυ
þ s−1ð ÞdμB� θk k22

ð33Þ
and

Φθk k22 ¼
Xs
c¼1

θH c½ �M c; c½ �θ c½ �

þ
Xs
c¼1

Xs
r¼1;r≠c

θH c½ �M c; r½ �θ r½ � ≥ θk k22

−
Xs
c¼1

max ρ M c; c½ �−Idð Þ θk k22

−
Xs
c¼1

Xs
r¼1;r≠c

max ρ M c; r½ �ð ÞθH c½ �θ r½ � ≥ 1− d−1ð Þυ− s−1ð ÞdμB½ � θk k22

ð34Þ
where M[c, r] =ΦH[c]Φ[r], and ρ(⋅) is the singular value
of the matrix. Then, we can let that

δs Dj ¼ d−1ð Þυþ s−1ð ÞdμB ð35Þ
To emphasize the advantage and the efficiency of the

block-RIP analysis, we consider a special case of the
NYFR. The measurement matrix is separated into K
blocks of M columns each, namely L = K. In this ex-
ample, the blocking is based on the unit of Nyquist zone,
and the sub-coherence parameter of each block equals
to zero approximately. Note that, for any input of block
1-sparse, which corresponds to M continuous non-zero
values, the block-RIP is satisfied with δ1|D ≈ 0. However,
the RIP analysis shows that the measurement matrix of
the NYFR satisfies 2-RIP of the maximal, which corre-
sponds to at most two non-zero elements.
And, increasing the number of non-zero values to the

block 2-sparse, we should calculate the block-coherence
parameter μB, and starting with the property of the
matrix M. From the RIP analysis of the NYFR, we have

M c; r½ � ¼ T c−1ð Þ r−1ð Þ ð36Þ
where c, r = 1, 2,⋯ K; c ≠ r. We know that the matrix
T(c − 1)(r − 1) is a Toeplitz matrix from the equation (7).
And because the Toeplitz matrix satisfies the RIP as the
reference [14], there is λ1=2max TH

c−1ð Þ r−1ð ÞT c−1ð Þ r−1ð Þ
	 


∈ 0; 1½ � .
Then, we have dμB ∈ [0, 1] and δ2|D ≈ 1 which is satisfied
by the lower bound of the block-RIP. Consequently, we
can use the block CS algorithms to specify the input
uniquely when the block sparse is no more than two, es-
pecially for the broadband signal receiving.

4 Simulation results and discussions
In this section, we will verify the correctness of the RIP
and block-RIP theoretical findings of the NYFR through
the simulation examples. And, we will discuss about the
sparse/block-sparse signal reconstruction under the ana-
lysis of the RIP and block-RIP. The simulation settings
are specified in the Table 1 below.

4.1 Scenario I: the simulation analysis verified the RIP and
block-RIP theoretical findings of the NYFR
We use sinusoid phase modulation here and have M =
200, N =M ⋅ K = 800. Figure 2 shows the elemental
maps of the Gram matrix ΦH

I ΦI of the measurement
matrix of the NYFR. It indicates that the main diagonal
elements are one, and the amplitudes of the non-

Table 1 The simulation settings table of the NYFR

Average sampling frequency fs 1 GHz

Sinusoid modulation frequency fθ 1 MHz

The total number of Nyquist zones K 4

The frequency of ADC fad 2 GHz

Simulation duration tao 0.1 μs

Fig. 2 The elemental maps of the Gram matrix ΦH
I ΦI

Jiang et al. EURASIP Journal on Advances in Signal Processing  (2016) 2016:92 Page 6 of 9



diagonal elements are limited in [0,1]. So, the measure-
ment matrix of the NYFR did not satisfy 3-RIP or more.
On the other hand, the majority of the non-zero am-

plitudes of the non-diagonal elements are located at the
diagonal elements by the M = 200 intervals, except the
main diagonal elements. Therefore, we will discuss the
block-RIP of the special block case, which is partitioned
into blocks with the unit of Nyquist zone.
As Fig. 3a shows, the elements of the sub-coherence υ

are essentially zero, which means that there is the effect-
ive block CS algorithm to specify any the input of block
1-sparse uniquely. And, Fig. 3b is the elemental map of
the Gram matrix TH

c−1ð Þ r−1ð ÞT c−1ð Þ r−1ð Þ , and it shows that

the main diagonal elements of each blocks are one and
the amplitudes of the non-diagonal elements are essen-
tially zero. That verifies dμB ∈ [0, 1] and δ2|D ≈ 1 which is
satisfied by the lower bound of the block-RIP.

4.2 Scenario II: the sparse/block-sparse signal
reconstruction under the RIP and block-RIP analysis
Figure 4 is the relationship between reconstruction
probability and sparsity of the RIP. To save the com-
puter time and storage in the simulation, the sparsity
sets to 1–8. And, the simulation duration is 1, 3, and
5 ns, that corresponds to N = 8, 24, 40. The reconstruc-
tion probability is calculated using 100 Monte Carlo tri-
als for each duration value. And, we can see that the
reconstruction probability is 100 % when the sparsity is
1 or 2, regardless of the points’ value. That is, the RIC is
an absolute value, and the block-RIC is the same. The
lower bound of the RIP/block-RIP is identified only by
the architecture of the system and will not change with
the parameters of the system. In other words, this also
verifies that the RIP/block-RIP is a sufficient but not ne-
cessary condition. So, we cannot use the RIP/block-RIP
to design the suitable observation matrix or receiver.

However, the reconstruction probability increases with
the sampling points increase in RIP-less.
As we know, block-RIP is the RIP, when the block size

and interval are one. And, we can get the same conclu-
sion that the reconstruction probability is 100 % when
the sparsity is 1 or 2 as shown in the first row of the
Table 2. For another, it is difficult to calculate the block-
RIP in different blocks, because there is too many parti-
tion blocks. So, the adaptive recognition algorithm of
the partition blocks based on the CS is worth studying.
Figure 5 is the broadband signal reconstruction by

using the BOMP algorithm based on the block-RIP ana-
lysis by comparing with the OMP reconstruction. Mean-
while, recovering of the spectrally sparse signals with
single-frequency by using the OMP algorithm is applied,
as shown in [1], and not to be repeated again here. The
simulation settings are the same in Table 1, except the
average sampling frequency is changed into 0.5 GHz to
save the simulation time. The initial frequency of the
broadband LFM signal shown in Fig. 5a is 1 GHz, the

Fig. 3 The elemental maps of the sub-coherence υ and the block-coherence μB
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Fig. 4 The relationship between reconstruction probability and
sparsity of the RIP
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amplitude is 1, the phase is 0, and the bandwidth is
0.5 GHz with the pulse width of 0.1 μs. Then, the signal
is 1-block sparse of size 100 and can be recovered suc-
cessfully. This example illustrates that the measurement
matrix of the NYFR satisfies 1-block-RIP.
Figure 5b shows the broadband signal reconstruction

with the bandwidth of 1 GHz, which covered two
Nyquist zones under 50 % cover rate of the receiver
bandwidth. As we can see, the block CS analysis is more
suitable for the NYFR, especially for the broadband sig-
nal receiving. It is implied that the modulated sampling
schemes, as the architecture of the NYFR, may have ad-
vantages for data compression and transmission, which
lies at the middle of the uniform and random sampling.

5 Conclusions
This paper discusses the RIP and block-RIP analysis of
the NYFR for recovering signals. The contribution of

Fig. 5 The broadband signal reconstruction by the CS algorithm

Table 2 The relationship between the parameters of the
block-RIP

Block size Block interval Sub-coherence Block-coherence δ2|D
1 1 0 0.9855 0.9855

2 1 0.0853 0.5318 >1

2 2 0 0.4994 0.4994

5 5 0 0.2 1

10 10 0 0.1 1

20 20 0 0.05 1

40 40 0 0.025 1

50 50 0 0.02 1

100 100 0 0.01 1

200 200 0 0.005 1
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this work is to analyze the RIP of the NYFR as a phase-
modulated sampling scheme based on the CS model.
And, we get the conclusion that the NYFR suffers a poor
RIP for the broadband signal, because the broadband
signal does not satisfy the sparse condition, which will
lead the conventional CS algorithms to be invalid. By de-
riving the Fourier spectrum of the broadband signal,
which covered multiple Nyquist zones and received by
the NYFR, the broadband signal can be regarded as the
block-sparse signal. Then, the block CS algorithms can
be applied for recovering the signal, and the block-RIP
of the NYFR is demonstrated deterministically to show
the reconstruction probability. Simulation verifies the
correctness of the RIP and block-RIP theoretical findings
of the NYFR. And, there is the broadband signal recon-
struction by comparing the method of OMP and BOMP.
Future research will aim to investigate the adaptive
recognition algorithm of the partition blocks, including
extending the signal to other sparse domain.
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