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ABSTRACT: 

 

In this study we evaluated various spectral inputs for retrieval of forest chlorophyll content (Cab) and leaf area index (LAI) from 

high spectral and spatial resolution airborne imaging spectroscopy data collected for two forest study sites in the Czech Republic 

(beech forest at Štítná nad Vláří and spruce forest at Bílý Kříž). The retrieval algorithm was based on a machine learning method – 

support vector regression (SVR). Performance of the four spectral inputs used to train SVR was evaluated: a) all available 

hyperspectral bands, b) continuum removal (CR) 645 – 710 nm, c) CR 705 – 780 nm, and d) CR 680 – 800 nm. Spectral inputs and 

corresponding SVR models were first assessed at the level of spectral databases simulated by combined leaf-canopy radiative 

transfer models PROSPECT and DART. At this stage, SVR models using all spectral inputs provided good performance (RMSE for 

Cab < 10 µg cm-2 and for LAI < 1.5), with consistently better performance for beech over spruce site. Since application of trained 

SVRs on airborne hyperspectral images of the spruce site produced unacceptably overestimated values, only the beech site results 

were analysed. The best performance for the Cab estimation was found for CR bands in range of 645 – 710 nm, whereas CR bands in 

range of 680 – 800 nm were the most suitable for LAI retrieval. The CR transformation reduced the across-track bidirectional 

reflectance effect present in airborne images due to large sensor field of view.  
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1. INTRODUCTION 

Leaf chlorophyll content (Cab) and canopy leaf area index 

(LAI) are important plant functional traits that reflect on actual 

ecophyisiological and phenological status of vegetation and can 

be retrieved from remotely sensed reflectance (Darvishzadeh et 

al., 2008; le Maire et al, 2008; Sampson et al., 2003; Verrelst et 

al., 2012). Widely used empirical retrieval methods based on, 

for instance vegetation indices, are unstable when applied to 

another remote sensing (RS) images and/or vegetation types 

other than those originally established for (Colombo et al, 2003; 

Verrelst et al., 2010). Retrieval methods based on radiative 

transfer (RT) modelling (Jacquemoud et al., 2009) offer more 

flexible and universal solutions than empirical methods.  
 

RT models simulate plant-light interactions and provide 

physical links between the simulated canopy reflectance 

(output) and vegetation biochemical and structural 

characteristics such as Cab and LAI (inputs). Various canopy 

RT models has been developed, ranging from simple one 

dimensional turbid medium models simulating spatially 

homogenous vegetation using just few input parameters (e.g. 

SAIL model, Verhoef and Bach, 2007) to three dimensional 

(3D) models suitable for complex structurally heterogeneous 

forest canopies, which require more detailed parameterization 

(e.g. DART model, Gastellu-Etchegorry et al., 2015). Complex, 

3D canopy RT models are particularly useful for specific case 

studies and sensitivity analyses. Simulated spectral databases 

that cover broad range of combinations of the key input 

parameters can help to develop and test new and more robust 

retrieval algorithms or to evaluate confounding effects of forest 

background and architecture on the estimated parameters 

(Malenovský et al., 2013). These retrieval algorithms can be 

based on minimization of a cost function (Rivera et al., 2013) or 

using advanced statistical methods of machine learning 

algorithms. 

 

Use of the modern machine learning methods for retrieval of 

vegetation parameters has recently increased (Schlerf and 

Atzberg, 2006; Verrelst et al., 2012), mainly due to their ability 

to cope with strong nonlinearity and high dimensionality of 

their inputs. Once properly trained, typically with a spectral 

database simulated by a canopy radiative transfer model, they 

are efficient and fast to apply. The artificial neural network 

(ANN) belongs among the most popular learning methods used 

frequently in past for RS retrievals (Malenovský et al., 2013; 

Verger et al., 2008). One can argue that ANNs do not always 

offer the most flexible solution, because their training is time 

consuming and requires significant efforts for choosing the best 

performing network architecture. The training process also 

requires optimization of several functional parameters that may 

greatly influence robustness and accuracy of the final ANN 

model. More advanced machine learning methods, such as 

support vector regressions, promise more flexible performance, 

while maintaining their prediction accuracy (Durbha et al., 

2007; Verrelst et al., 2012). 

 

The main objective of this study is to evaluate performance of 

different spectral inputs entering the support vector regressions 
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(SVR) trained to retrieve Cab and LAI of two contrasting forest 

canopies from airborne hyperspectral images. 

 

 

2. MATERIAL AND METHODS 

2.1 Study sites 

Two stands contrasting in structure and age: a deciduous forest 

dominated by European beech (Fagus sylvatica) and a 

coniferous forest dominated by Norway spruce (Picea abies) 

were chosen as pilot study sites. Both sites are located in the 

Czech Republic and belong to the network of permanent 

ecosystem research stations maintained by the Global Change 

Research Institute (Academy of Sciences of the Czech 

Republic). Basic site and forest stand characteristics are 

summarized in Table 1.  

 

 

Site and forest 

characteristics 

Beech site 

Štítná nad Vláří 

Spruce site 

Bílý Kříž 

Latitude, longitude 
49°2’14”N, 

17°58’5”E 

49°30'9"N,  

18°32'18"E; 

Altitude (m a.s.l.) 520-620 850-980 

Mean slope (°) 10 12.5 

Slope orientation W S 

Stand age (years) 110 35 

Stand density (trees/ha) 280 1500 

Mean tree height (m) 33 15 

Mean DBH (cm) 36 17 

Mean LAI (-) 6 10 

Canopy cover (%) 90 – 95  85 – 90  

Table 1. Basic research site and forest stand characteristics. 

Stand parameters describe the forest status in the vegetation 

season of 2012. Abbreviations: DBH – diameter at the breast 

height, LAI – leaf area index. 

 

 

2.2 Airborne imaging spectroscopy data and field data 

Airborne imaging spectroscopy (known also as hyperspectral) 

data were acquired during the growing season peak of 2006 for 

the spruce site and of 2013 for the beech site. High spectral and 

spatial resolution images of both sites were acquired in the 

spectral range between 400 and 1000 nm using the AISA Eagle 

imaging spectroradiometer (Specim, Ltd., Finland), with spatial 

resolution of 2 m for the beech and 0.4 m for the spruce site. 

Images of the beech site contained 130 bands with the spectral 

sampling of about 4 nm and of the spruce site 65 bands with the 

spectral sampling of approximately 9 nm.  

 

Airborne hyperspectral images were corrected for radiometric, 

geometric and atmospheric confounding effects. Radiometric 

corrections were performed using the factory calibration 

coefficients in the CaliGeo software (developed by Specim 

Inc.), running in the ENVI/IDL programming environment. 

Geometric corrections were performed using the Parge software 

(Schläpfer and Richter 2002). The achieved positional accuracy 

was evaluated using a set of ground control points. It was found 

to be about 2-3 pixels in case of the spruce site, and one pixel in 

case of the beech site. Finally, atmospheric corrections were 

performed in the ATCOR-4 software (Richter and Schläpfer 

2002). 

Complementary field data describing the forest biochemistry 

and structure were acquired simultaneously with the airborne 

data acquisitions. Leaf Cab and basic tree parameters, such as 

tree height, diameter at the breast height, crown dimensions and 

LAI, were measured at each site.  

 

Leaf samples for destructive Cab determination were collected 

from sunlit and shaded branches. 17 trees distributed within 

four subplots according to the local stand conditions were 

sampled at the beech site. At the spruce site, we sampled nine 

trees distributed along an East-West oriented transect. Leaf Cab 

was extracted in laboratory according to standard procedures of 

Porra et al. (1989) and Wellburn (1994). For each sample tree 

we computed an average crown Cab from sunlit and shaded leaf 

samples. This crown representing Cab values were used in 

validation of Cab retrievals from AISA images. Crown Cab at 

the beech site varied between 25.6 and 40.6 µg cm-2 and at the 

spruce site between 34.1 and 45.7 µg cm-2. 

 

LAI at the beech site was measured by the Plant Canopy 

Analyzer LAI-2200 (Li-Cor Biosciences, Inc., Lincoln, 

Nebraska, USA) in two 60 m long transects. Measurements 

were taken every 5 m, but grouped and processed for distance of 

each 20 m (FV2200 v2.1.1 software provided by Li-Cor). 

Resulting values represented so-called plant area index (PAI or 

effective LAI), which were corrected for the effect of woody 

elements (Weiss et al, 2004). Final LAI was calculated as LAI = 

PAI – WAI, where WAI = 1.4 is the woody area index 

experimentally measured during the leaf-off condition 

(unpublished data). The in-situ beech LAI data resulted in six 

validation points with LAI varying between 4.9 and 6.2. 

 

LAI at the spruce site was measured and processed similarly as 

at the beech site. LAI was measured using an older version of 

Plant Canopy Analyzer LAI-2000 in a regular grid of 6 x 6 

points spaced by 10 m and processed in the C2000 software 

(predecessor of FV2200). In case of coniferous canopies, 

measured PAI had to be corrected for the effect of needle 

clumping at the shoot level and for the effect of woody elements 

(for more details see Homolová et al., 2007). The in-situ spruce 

LAI measurements produced nine validation points with LAI 

varying between 6.8 and 8.5. 

 

2.3 DART radiative transfer modelling 

Spectral databases of top-of-canopy bidirectional reflectance 

factor were simulated using the canopy 3D radiative transfer 

model DART v.5.5.1 (Gastellu-Etchegorry et al., 2015) coupled 

with the leaf radiative transfer model PROSPECT v.4 for the 

beech site (Feret et al, 2008) and v.3.01S, adjusted for Norway 

spruce needles (Malenovský et al., 2006). 

 

The basic tree alometric parameters, such as tree height, trunk 

and crown dimensions, 3D foliage and branch architecture, as 

well as leaf biochemical and leaf structural properties, which 

were used to build forest mock-ups (Figure 1), were derived 

from available field measurements characterising the two study 

sites. The required DART input parameters are summarized in 

Table 2. The DART simulated spectral database contains 

61 700 beech canopy simulations and 115 200 spruce 

simulations.  

 

The spectral databases were simulated with the spectral 

resolution of 1 nm and for further analysis resampled to the 

same spectral resolution of the AISA spectral bands using the 

Gaussian convolution.  
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Parameters Beech site Spruce site 

PROSPECT   

 Cab (µg cm-2) 10 – 63, unif. distr. 10 – 100, unif.distr. 

  Cm (g cm-2) 0.005 – 0.02 0.01 – 0.1  

  Cw (g cm-2) 0.001 – 0.18  0.0015 – 0.042 

  N (-) 1 – 2  1.5 – 2.7 

DART  model   

  Scene dims. (m) 10x10 - 14x13  10 x 10 

  Voxel dims. (m) 1.0 x 1.0 x 1.5 0.5 x 0.5 x 0.25 

  Topography cat.  Flat, N-, E- and S-

slopes of 10° 

Flat, N-, E- and S-

slopes of 15° 

  Canopy cov. (%) 50 – 95, step 15 50 – 95, step 15 

  LAI (-) 3 – 10, step 1 3 – 10, step 1 

  Number of trees 3 – 4 depends on CC 12 – 36 depends on 

CC 

  Tree height (m) 34.0 ± 2.0 8.0 ± 3.2 

  LAD Spherical Spherical 

  Background  

  opt. prop. 

Site-specific mix of 

soil and leaf litter 

Site specific mix of 

soil and needle litter 

  Sun zenith, 

  azimuth (°) 

47.2, 110.0 46.2, 177.0 

Table 2. Basic input parameters for the PROSPECT and DART 

models used to simulate beech and spruce spectral databases. 
 

 

 
Figure 1. Simplified visualization of the DART scenes for the 

beech (a) and spruce (b) forest stands. Green represents voxels 

with foliage only, whereas brown colour indicates voxels with 

mixed foliage and woody components. 

 

 

2.4 Support vector regression 

Retrievals of both forest parameters of interest (Cab and LAI) 

were carried out using the epsilon-SVR learning machine with 

the nonlinear Gaussian radial basis function (RBF) kernel, 

obtained as the C++ Library of Support Vector Machines 

(LIBSVM, Chang and Lin, 2011) and compiled under Matlab 

2013b. The input spectral database was divided into training 

and testing subsets that contained both the inputs (spectral or 

continuum removed reflectance bands) and desired outputs 

(Cab and LAI).  The training dataset was used to define 

decision rules allowing prediction of output vegetation 

parameters from known spectral inputs, whereas the testing set 

was presented to the trained SVR model to check its efficiency 

and accuracy. To find the optimal regression model and avoid 

the model overfitting, we applied a dual optimisation grid-

search combined with a 5-fold cross-validation identifying the 

best values for the cost parameter C and the width parameter γ 

of the RBF kernel. The final SVR models were then re-trained 

with the most optimal C and γ parameters.  

 

2.5 Continuum removal and set-up of retrieval scenarios 

We considered two types of spectral inputs for the SVR-based 

retrievals of Cab and LAI: all available hyperspectral bands and 

continuum-removed bands. The reflectance continuum removal 

(CR) was tested for three spectral ranges including the red-edge 

and near infra-red (NIR) regions. The evaluated spectral inputs 

were: 

   a) all hyperspectral bands between 400 and 1000 nm, 

   b) CR reflectance of 645 – 710 nm, 

   c) CR reflectance of 705 – 780 nm, and 

   d) CR reflectance of 680 – 800 nm. 

 

Continuum removal transformation has been previously applied 

to enhance and to normalize specific absorption features of the 

vegetation foliar biochemical components (Kokaly and Clark, 

1999), including chlorophyll and xanthophyll pigments 

(Malenovský et al., 2013; Kováč et al., 2013). The CR spectral 

intervals in our study were selected to capture either changes in 

the shape of the reflectance signature caused by varying red 

light absorption of chlorophylls or to capture systematic 

reflectance changes caused by differences in near infrared 

photon scattering and absorbance due to varying canopy 

structure, particularly LAI. The CR transformation was 

computed as: 

 

CRj∈[λ1,λ2] = |(ρj/ρji) – 1|                                                         (1) 

 

where ρj is the measured reflectance of a band j, 

ρji is the reflectance of the same band linearly 

interpolated within the pre-defined interval between 

the λ1 and λ2 wavelengths.  

 

 

3. RESULTS AND DISCUSSION 

3.1 SVR training and testing using simulated spectral 

databases 

Performance of SVR and the impact of different SVR spectral 

inputs on retrievals of forest canopy Cab and LAI were first 

assessed using the testing parts of DART simulated spectral 

databases. Results for the four retrieval scenarios (a, b, c and d) 

were evaluated with statistic indicators, i.e. by computing root 

mean square error (RMSE) and coefficient of determination of a 

linear regression established between observed and predicted 

values. The results show (Table 3) the highest achieved retrieval 

accuracy for the scenario testing all available hyperspectral 

bands (a). Although CR transformations (b-d) also provided 

overall acceptable estimates, the results indicate that their 

retrieval accuracy depends on the position of defined CR 

spectral range. As one could expect, CR regions expanding into 

the red wavelengths (i.e. CR 645-710 and 680-780), where 

chlorophyll a and b molecules absorb most of the incident light, 

are more relevant for Cab retrieval than CR 705-800. Contrary, 

CR ranges expanding into the near infrared wavelengths around 

800 nm proved to be more important for LAI retrievals.  

 

For all tested scenarios we consistently observed higher 

retrieval accuracy for the deciduous beech forest site than for 

the coniferous spruce forest. This consistency might suggest 

(b) (a) 

3
5

 m
 

1
1

 m
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some systematic inadequacy of the current spruce forest 

representation in the DART model, most likely related to 

multiple scattering within and among the spruce needle shoots, 

resulting in inaccurate simulation of the canopy reflectance. 

Another explanation of better SVR estimates in case of the 

beech study site is the dynamic range (total variability) of 

estimated traits. The chlorophyll content interval of beech 

crowns was much narrower (10 – 60 µg cm-2) than in case of 

spruces (10 – 100 µg cm-2), which could positively affect the 

training and the overall SVR performance, because high Cab 

values are inducing smaller reflectance changes compared to 

lower Cab contents, while increasing significantly degrees of 

freedom of the SVR training rules.   

 

SVR spectral inputs Cab (µg cm-2) LAI (m2 m-2) 

 RMSE r2 RMSE r2 

a) Hyperspectral bands     

    Beech 1.03 0.99 0.39 0.97 

    Spruce 3.62 0.98 0.74 0.90 

b) CR 645 – 710 nm     

    Beech 1.46 0.99 1.00 0.81 

    Spruce 4.94 0.96 1.16 0.51 

c) CR 705 – 780 nm     

    Beech 4.86 0.88 0.61 0.97 

    Spruce 9.43 0.87 1.23 0.72 

d) CR 680 – 800 nm     

    Beech 2.13 0.98 0.41 0.97 

     Spruce 7.38 0.92 0.79 0.88 

Table 3. Performance of SVR machines for retrievals of 

chlorophyll content (Cab) and leaf area index (LAI) using 

different spectral inputs (scenarios a-d) obtained from the 

DART-simulated reflectance look-up tables. 

 

3.2 SVR application on airborne hyperspectral images 

SVR models trained on the DART simulated spectral databases 

of different spectral inputs were applied on the subsets of AISA 

hyperspectral images. The accuracy of estimated Cab and LAI 

maps was assessed through comparison with in-situ measured 

tree crown Cab and LAI plots. The results for the beech site are 

summarized in Table 4 and the maps of estimated Cab and LAI 

are shown in Figure 2. The results from the spruce site showed 

unreasonable values for both traits, most likely due to an 

incompatibility between the airborne image spatial resolution 

(reflectance of pixels with size of 0.4 m) and the DART 

simulated spectral database (reflectance of the entire simulated 

canopy). Therefore, the results obtained from airborne 

hyperspectral images at the spruce forest site were not analysed 

and only the results for the beech site are further discussed.  

 

The best SVR model for Cab estimation, i.e. model with the 

lowest RMSE computed between estimated and in-situ 

measured values, was found to be the one using CR bands in the 

range between 645 and 710 nm (scenario b, Figure 2a), whereas 

the best LAI estimating SVR model was found to be based on 

CR bands between 680 and 800 nm (scenario d, Figure 2b).  

 

Additionally, we observed that the CR transformation helped to 

reduce the across-track bidirectional reflectance (BRDF) effects 

present in the AISA image mosaic between the adjacent flight 

lines due to large sensor field of view. Although BRDF 

influence is still visible throughout the estimated LAI map 

(Figure 2b) ,it is not as strong as observed in the map produced 

with all available hyperspectral bands (scenario a, cf. Figure 2b 

and c), and even less detectable in the estimated Cab map 

(Figure 2a).  

 

Application of SVRs on the real hyperspectral data showed, in 

general, worse performance than when applied on DART 

simulated spectral databases (cf. Tables 3 and 4). This could be 

explained by the fact that the SVR models were established on 

noise-free spectral databases and they could not cope so well 

with the real hyperspectral data that inherently contain various 

types of noise. Therefore, it is advisable to train the SVR 

machines on spectral databases containing artificially added 

noise (e.g. spectroradiometer noise and/or residual noise of the 

image atmospheric corrections). 

 

Regardless the spectral input scenario, all results exhibited low 

coefficients of determination (r2) computed for linear regression 

between the estimated and in-situ measured vegetation traits. 

This was caused by too low variability in measured ground truth 

values resulting in all validation points to be clumped together 

around a common similar value (Figure 3). The measured mean 

Cab value at the beech site was around 30 µg cm-2 with rather 

small variability (standard deviation std. = 4 µg cm-2) and the 

mean LAI value was equal to 5.5 ± 0.4 m2 m-2 (std.) For future 

assessments of the remote sensing-based retrieval methods 

would be necessary to expand the validation datasets towards 

broader ranges such a way that all possible values of 

investigated traits are covered. A potential solution is to test the 

retrieval methods at several study areas that differ in site 

conditions or on multiple acquisitions of a single site collected 

in a course of entire vegetation season, when Cab and LAI 

evolve with progressing phenological phases of vegetation.  

 

 

SVR input settings Cab (µg cm-2) LAI (m2 m-2) 

 RMSE r2 RMSE r2 

a) Hyperspectral bands 17.8 0.07 1.4 0.33 

b) CR 645–710 nm 10.9 0.2 6.0 0.1 

c) CR 705–780 nm 16.4 0.12 3.1 0.19 

d) CR 680–800 nm 19.3 0.02 1.4 0.47 

Table 4. Performance of SVR machines for retrievals of 

chlorophyll content (Cab) and leaf area index (LAI) of the 

beech forest site from airborne hyperspectral images (AISA). 

 

 

4. CONCLUSIONS 

In this study we tested the machine learning approaches, namely 

support vector regressions, for the quantitative estimation of 

forest biochemical (chlorophyll content) and structural (leaf 

area index) properties using various spectral inputs derived 

from hyperspectral data of two contrasting forest stands: 

broadleaf, European beech and coniferous, Norway spruce 

forest. We applied and evaluated four different spectral inputs; 

full hyperspectral set-up (all available spectral bands)  
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Figure 2. Estimated maps of leaf chlorophyll content using the continuum removal between 645 and 710 nm (a), leaf area index 

using the continuum removal between 680 and 800 nm (b), and leaf area index using all hyperspectral bands (c) as spectral inputs 

into the support vector regression estimating algorithm. 

 

 

 
Figure 3. Comparison of estimated chlorophyll content (Cab) 

and leaf area index (LAI) with the ground measurements 

collected at the beech research site. The best SVR model for 

Cab estimation was based on CR 645-710 nm (RMSE = 10.9 µg 

cm-2) and for LAI estimation on CR 680-800 nm (RMSE = 1.4). 

The results complement the maps in Figure 2ab. 

 

and three spectral band subsets standardized using the 

continuum removal transformation. The assessment of the four 

spectral inputs at the level of spectral data simulated with 

combined PROSPECT and DART radiative transfer modelling 

showed good and promising performance. In general, SVRs 

trained with the full set of simulated hyperspectral bands 

produced the most accurate results, but similar accuracies were 

obtained also for CR reflectance between 645 and 710 nm (Cab 

estimation), and for CR reflectance between 680 and 800 nm 

(LAI estimation). 

 

Application of the SVR models on airborne hyperspectral 

images and consequent validation against the field 

measurements produced less accurate results. The results at the 

beech forest site provided meaningful patterns, values of both 

parameters were within the expected range, with the best 

accuracies for Cab estimates around 10 µg cm-2 and for LAI 

estimates around 1.4. Results for the spruce site showed 

unreasonable predictions for both tested parameters and were, 

therefore, excluded from further assessment. 

 

SVR training and application was found to be fast and robust 

when compared to our previous experience with other machine 

learning method, specifically ANN (Malenovský et al., 2013). 

Retrievals based on continuum removal gained similar or even 

better accuracy than retrievals based on all available 

hyperspectral information content. Especially interesting and 

useful feature of the reflectance CR transformation is it ability 

to reduce the negative across-track BRDF artefacts present due 

to the specific illumination geometry and a wide sensor field of 

view in images of airborne flight lines.  
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