
Quarantining Untrusted Entities: Dynamic Sandboxing using LEAP

Manigandan Radhakrishnan
University of Illinois at Chicago

mani@rites.uic.edu

Jon A. Solworth∗

University of Illinois at Chicago
solworth@rites.uic.edu

Abstract

Jails, Sandboxes and other isolation mechanisms limit
the damage from untrusted programs by reducing a pro-
cess’s privileges to the minimum. Sandboxing is designed to
thwart such threats as (1) a program created by an attacker
or (2) an input crafted to exploit a security vulnerability in
a program. Examples of the later include input containing
interpreted code or machine language to be injected via a
buffer overflow.

Traditionally, sandboxes are created by an invoking pro-
cess. This is effective for (1) but only partially so for (2).
For example, when a file is downloaded by a browser or
processed as a mail attachment, the invoking process can
sandbox it. However, sandboxing protections can be cir-
cumvented when the file is copied outside the sandbox. The
problem is that traditional sandboxes do not provide com-
plete mediation.

We introduce dynamic sandboxes, and show how even
when data is saved and/or copied, sandboxing protections
are not lost. In addition, and in contrast to traditional sand-
box implementations, dynamic sandboxes are implemented
using general purpose access controls. Not only does this
provide a more flexible sandbox mechanism, and enable
complete mediation, but these same primitives can be used
to build other (non-sandbox) authorization policies.

1. Introduction
Traditional operating systems have evolved towards

large, flat address spaces and widely accessible resources
because of their convenience and simplicity. Widely used
(discretionary) access controls have similarly been flat—
allowing or denying operations based solely on the user on
whose behalf the process executes. While this removes bar-
riers to implementing applications and provides flexibility,

∗This work was supported in part by the National Science Foundation
under Grants No. 0627586 and 0551660. Any opinions, findings and con-
clusions or recommendations expressed in this paper are those of the author
and do not necessarily reflect the views of the National Science Founda-
tion.

it also increases the danger when, all too often, an applica-
tion is attacked.

Even if applications could be written without security
flaws, this flat access control model is problematic as ap-
plications come from many sources, not all of which can be
trusted. Unfortunately, in this environment the least trusted
programs run with the same permissions as the most trusted;
the most frivolous programs can interfere with the most sen-
sitive applications.

Sandboxes and Jails limit which resources are visible to
a process. Resources which are not visible can neither be
observed nor operated upon, and hence are protected from
the actions of the sandboxed processes. Thus sandboxing
increases both confidentiality and integrity.

One of the purposes of sandboxing is to reduce the privi-
leges provided to an executable, and thus to implement least
privilege. If an executable has security holes, then sandbox-
ing limits the damage resulting from an attack.

But it is not always appropriate to accord a fixed set of
privileges to an executable. One basis for varying the per-
mission is the user who owns the process, which is easily
handled by existing sandbox mechanisms. Another basis
for varying the privileges is the data on which the process
executes. If this data comes from an untrusted source—
such as an email attachment or a web download—it may be
necessary to curtail the processes’ privileges.

Of particular concern are code injection attacks. Con-
sider a data file which is read by an executable. If that data
file contains either

• interpreted code (and the executable contains a suitable
interpreter) or

• a buffer overflow attack (and the executable is suscep-
tible),

then the execution may be completely determine by the
“data” file. As we shall see, sandboxing mechanisms at-
tempt, but do not always succeed, to attenuate privileges in
this case.

Sandboxes are typically entered by a helper application
(such as a PDF viewer), and may be defined solely by
the helper class or by the program (e.g., browser) which



launches the helper. The mechanism for invoking the sand-
box depends on how the executable is launched. By launch-
ing the sandboxed application when invoked form a mail
user agent or browser, unvetted files are caught at the
source.

But the mechanism for invoking traditional sandboxes is
incomplete. Thus there are cases where either the sandbox
is not invoked, or the privileges not appropriately attenu-
ated. The reason for this incompleteness is that sandbox
protections are uni-directional1. That is, while the sand-
boxed process is prevented from seeing outside its sandbox,
processes outside the sandbox can see into the sandbox.
Hence, files stored in the sandbox can be copied outside the
sandbox by an external process and thus escape sandbox
protections. Indeed, it is desirable to do so, as users regu-
larly incorporate outside objects (e.g., papers, news stories,
and other publicly available material) into the things they
create, for example by downloading from the web or saving
an email attachment. Thus sandboxing protections can de-
pend on how the file is accessed rather than whether the file
is accessed. The problem is a lack of complete mediation.

For an application to be suitably sandboxed, the sand-
box should depend on both the executable and the sources
of its data. We have designed and implemented dynamic
sandboxes which quarantine untrusted sources and enable
complete mediation. Dynamic sandboxes

• enable each file to be labeled with its trust (or origin)
and

• ensure that this labeling is maintained through infor-
mation flow rules, and either

– prevent untrusted data from getting near sensitive
executables (those with important privileges) or

– reduce the privilege of an executable when it
reads untrusted data.

Because of the need for complete mediation, we have
constructed dynamic sandboxing on top of a general pur-
pose mandatory access control model called LEAP (Lan-
guage for Expressing Authorization Properties). (Dynamic
sandboxing is often built on special purpose mechanisms,
but these do not ensure the mediation required.) LEAP al-
lows the high level specification of access controls, which
the operating system enforces at runtime. In addition to
complete mediation, this approach enables the LEAP prim-
itives to be used to construct other non-sandbox protections
and also results in highly customizable sandboxes.

LEAP was developed as a high level specification of op-
erating system level authorizations. It has the following ad-
vantages:

1It is possible to build bidirectional protections of such a mechanism by
essentially sandboxing everything, but this results in a static partitioning.

1. The operating systems enforcement called KernelSec
domains [34] is automatically generated [23] from the
LEAP specification.

2. It can be automatically analyzed [42, 41].

3. It is succinct and for the most part stateless and hence
is (relatively) easy to read.

4. It supports administrative controls [43].

Properties (1) and (2) distinguish it from RBAC [37], while
Properties (3) and (4) distinguish it from Type Enforcement.

Another issue with traditional sandbox mechanisms, is
that they are not widely used. We therefore have paid par-
ticular attention to the complexity of use, by having the
mechanism adapt to the user (rather than requiring the user
to adapt to the mechanism). Dynamic sandboxes are in-
voked automatically and are transparent to the user. Dy-
namic sandboxes can be configured by the system adminis-
trator (or distribution packager) who can make appropriate
tradeoffs of usability vs. protections.

The contributions of this paper are two-fold: the intro-
duction of a new sandbox mechanism with more complete
mediation and the demonstration of the flexibility of LEAP
specifications.

The remainder of the paper is organized as follows. Sec-
tion 2 describes how to define sandboxes in LEAP and pro-
vides an example of such a sandbox; Section 3 describes
the implementation of dynamic sandboxes at the operating
systems level, including performance. Section 4 describes
related work. Finally, in Section 5 we conclude.

2. Dynamic Sandboxes
In this section, we show how dynamic sandboxes can be

used to quarantine objects of dubious origin. To illustrate
this, we shall describe a mail user agent, like Thunderbird,
in which mail attachments can be viewed using helper appli-
cations. In a full system, our example would be expanded
to include many different helper applications (e.g., image
viewers, postscript interpreters, video players, etc.) as well
as different client applications (e.g., browsers, RSS readers,
etc.).

We describe the quarantine mechanism by providing a
high level specification for a dynamic sandbox. In LEAP,
files are labeled. Downloaded content is therefore differ-
ently labeled, and treated, than other files. The quarantine
mechanism ensures that any process that reads files contain-
ing downloaded content is suitably sandboxed. This content
may then be integrated with the other files under controlled
circumstances, for example by: certifiers (which relabel in-
nocuous content) and scrubbers (which remove dangerous
content). An example of a scrubber is antivirus software.

Unlike traditional sandboxes, dynamic sandboxes ensure
the isolation of tainted information even if the information



has been copied between files or the information is inte-
grated from different sources. This requires that dynamic
sandboxes use information flow to track file sources.

Information flow implies that objects are labeled with
their taintedness, so that the propagation of information can
be tracked. Unfortunately, pure Discretionary Access Con-
trol (DAC) authorization models cannot track such infor-
mation as they allow a user to arbitrarily change a label.
And if a program could arbitrarily change labels, this would
allow—either accidentally or on purpose—the evasion of
sandbox protections. Hence, pure DAC models are insuffi-
cient for dynamic sandboxes.

While tracking information flows is essential, it is im-
portant that sufficient flexibility be maintained to balance
off protections vs. usability.

1. Dynamic sandboxes need to be able to remove the
“taint” of the input before allowing unrestrictive use
of a file’s contents. For example, a file from a trusted
source—even if sent by email—should be able to es-
cape its tainted label and be freely integrated with other
files.

2. Different programs have different susceptibility to at-
tack, and the mechanisms will need to account for that.

Unlike traditional sandboxes, dynamic sandboxes need
to be tightly integrated with the operating system’s autho-
rization model. First, so that the labeling is consistently
maintained inside and outside the sandbox. And second,
to cleanly integrate privilege attenuation when accessing
tainted files.

Although we shall describe one particular, but very use-
ful, sandbox scenario we believe that it is necessary to allow
the system administrator to tradeoff the protections vs. the
usability of the system. This means that the resulting system
needs to be very flexible. (Indeed flexibility appears to be
a major reason why pure DAC systems continue to be used
long after the attack threat has overtaken them.) We pro-
vide the needed flexibility here in a high level authorization
specification language, which we describe next.

2.1. LEAP

LEAP is a language for describing a broad range of
authorizations (it was originally called SPBAC) [42, 43].
LEAP has evolved to now include aspects (§ 2.1.1) and tran-
sitions on using privileges (§ 2.1.3). These LEAP mecha-
nisms are general, in that none of them are used solely to
implement dynamic sandboxes—they all have other uses.
We include a short description of LEAP here for complete-
ness, and then use LEAP to describe how to implement dy-
namic sandboxes.

A LEAP specification consists of (1) users and their sub-
divisions called aspects, (2) groups, (3) labels, and (4) per-

missions. Each object—such as a file—has a single label by
which permissions to that object are determined.

2.1.1 Groups, users, and aspects

Each individual is represented as a user, denoted u. Each
user is further divided into aspects, denoted u0, u1, . . . , un;
the aspects of a user are partially ordered. If an aspect ui ≥
uj then aspect ui has all the privileges that uj has (and will
generally have additional privileges).

Aspects enable

• location to be a factor in determining permissions.
Hence, a person logging in from work may have more
permissions than when logging in from home.

• a user to isolate some of their processes from others.

For each group g, there is a set sg which contains at
most one aspect ui for each user u. We say that uj ∈ g
iff ∃ui∈sguj ≥ ui; that is, uj is a member of g iff some
aspect less than or equal to uj is in sg . Hence, each group
can explicitly contain one ui per u and implicitly contains
all aspects greater than ui. Aspects build upon ideas in
RBAC’96, but allow both location and host to be a factor
in determining the permissions that a user has.

Because these aspects form a partial order, and because,
as we shall see, permissions are based in part on groups and
therefore aspects, this mechanism is ideal for implementing
a sandbox.

2.1.2 Permissions

LEAP permissions are defined on labels. We next describe
the names of unary and binary permissions:

unary permissions Given a label l, the names of the
unary permissions on files are c(l), r(l), w(l), and x(l).
These permissions are needed to perform the operations cre-
ate, read, write, and execute respectively, on objects with
label l.

There is also permissions to connect(l), bind(l), and
accept(l) where l is the label of a network connection.

binary permissions LEAP’s binary permissions are de-
fined over a pair of labels:

relabel(l, l′) The permission to change an object’s label
from l to l′.

mayF low(l, l′) The permission to write (resp. create) l′

after having read l. For each label li that a process
has read before trying to write (resp. create) l′, it must
have the permission mayF low(li, l′). The mayFlow’s
are necessary, but not sufficient; the process also needs
permission w(l′) (resp. c(l′)).

As we shall see, the relabel permission can be used to
change an object’s label from a “tainted” one to an “un-
tainted” one. Because relabel is a permission, it can be used



to control both whether a given label can be changed and if
so under what circumstances. We note that there is no label
creep, because relabeling is an explicit operation.

The mayFlow permissions allow precise specification of
allowed information flows, they differ from lattices in that
they are general enough to specify (1) assured pipelines (2)
downgrades and most essentially (3) the programs which
have the permission (see below).

permission definition A permission is defined by spec-
ifying the holder of that permission. The holder specifies
which processes can use the permission, by specifying a list
of group, executable label pairs. Hence, the user in conjunc-
tion with the program executing determine the permissions
accorded to the process.

Unary permissions are defined at the time the label is cre-
ated while binary permissions are defined after both speci-
fied labels are created. In either case, once defined, the per-
mission definition cannot be changed2. Because of this, we
define permissions as follows for a read (other permissions
are similar):

r(l) = (e0, g0), (e1, g1), . . . , (en, gn) (1)

where ei is a label and gi a group of aspects. The left hand
side is called the permission name while the right hand side
is called the holder of the permission. Consider a process
p which executes on behalf of aspect ua and whose exe-
cutable file has label e. Then p is a holder of the above read
permission if for some 0 ≤ i ≤ n, e = ei and ua ∈ gi.

For example, in the below permission definition, an as-
pect in group anyUser can write object with the label l using
executables labeled lform; but only aspects in group admin
can write it with executables labeled xmlEditor.

w(l) = (lform, anyUser), (xmlEditor, admin)

Information flow requires multiple privileges. For exam-
ple, the permissions

r(l) = (e, anyUser)
w(l′) = (e, anyUser)

mayF low(l, l′) = (e, anyUser)

enable aspects in group anyUser to read l and then write l′.
(If any of the above permission holders were empty, then
information flow form l to l′ could not occur.)

2.1.3 Relinquishing privileges

Finally, we need a mechanism to reduce privileges of a pro-
cess. When entering a sandbox, privileges are reduced so
that the sandboxed processes do not interfere with other

2While the permission definition cannot be changed, the permission
can be changed by either changing which aspects are members of a group
or by relabeling an object.

processes. This relinquishing of privileges occurs on the
exercise of a specified privilege priv by a process whose
executable is labeled e. The following reduces the aspect to
the minimum for a user; there are many such minimum as-
pects allowing multiple sandboxes to exist concurrently per
user.

minAspect(priv, e)

The minAspect ensures that multiple sandboxes of the same
user will be isolated from each other.

2.2. Dynamic Sandbox Specification

In this section we describe dynamic sandboxing for
email attachments. The description uses:

Shell which is the starting point.

Mail User Agent (MUA) such as Outlook or Thunderbird,
which reads mail from a network server and labels as
MAIL (when storing on the disk).

Viewer A PDF viewer. The sandbox allows it to either read
and write ordinary user files, or to read and write MAIL
files only. That is, it prohibits the copying of MAIL
files to ordinary user files.

Copy this is the label for the cp program which creates a
copy of a file.

Scubber such as a virus scanner which renders dangerous
file contents harmless, thus producing ordinary files
from mail files.

Certifier enables files which are created by trusted remote
sources to be treated as if they were locally created, by
changing their label.

The permissions to implement a dynamic sandbox are
given in Figure 1 for the six types of executables above.
Since any aspect can execute these programs, for simplic-
ity we leave off the groups in holders and list just the exe-
cutable labels in the figure.

Figure 2 shows the combinations of allowed read and
writes operations that various executable labels could have
given the LEAP specification. Note that some executable
labels give rise to different combinations of allowed opera-
tions.

2.2.1 The mail user agent

The Mail User Agent (MUA) needs to fetch and send mail
over a network, store the mail locally and run helper appli-
cations on mail attachments.

To ensure that the mail and its attachments are quaran-
tined, only the MUA can access the networked mail service
(Imap for fetching mail and Smtp for sending mail). The
MUA can write only files with a MAIL label to denote that



connect(IMAP), r(IMAP), w(IMAP) = MUA
connect(SMTP), r(SMTP), w(SMTP) = MUA
mayFlow (IMAP, MAIL), mayFlow (SMTP, MAIL) = MUA
mayFlow (MAIL, IMAP), mayFlow (MAIL, SMTP) = MUA
c(MAIL), w(MAIL) = MUA,COPY
r(MAIL) = VIEWER, SCRUBBER, CERTIFIER, MUA, COPY
x(VIEWER), x(MUA), x(SCRUBBER), x(CERTIFIER) = *
r(USERFILES) = VIEWER, SHELL, COPY
c(USERFILES), w(USERFILES) = VIEWER, SCRUBBER, SHELL, COPY
mayFlow (MAIL, USERFILES) = SCRUBBER
relabel(MAIL, USERFILES) = CERTIFIER
minAspect(r(MAIL), VIEWER)

Figure 1. Sample LEAP specification for dynamic sandbox

MUA

xpdf xpdf

sandboxed
process

ordinary
process

Smtp

Mail UserFile

Scrubber

Certifier

relabel
operation

shell

Imap

Figure 2. Interaction between filesystem objects and domains. Here ovals represent processes and
rectangles represent files or network sockets. The direction of the arrow represents information flow
from or to the process.

their (original) source is unknown. This prevents the read-
ing of mail without the resulting files being marked with the
MAIL label.

To allow the MUA to send and receive mail, it needs
to connect to the IP addresses and port numbers of the
SMTP and IMAP services. Hence, connect privileges are
needed as well as read and write privileges to send and re-
ceive network data. In the network configuration for this ex-
ample (not shown), the correspondence of the labels (SMTP
and IMAP) to the IP address and port are given. (LEAP’s
networking protection associates labels for connect, bind,
and accept system calls. The full mechanism for network-
ing authorization and authentication is described in a paper
under preparation.)

In addition, the MUA may exec helper applications; in
this example there is an unrestricted PDF viewer which be-
comes restricted if it opens the mail.

To provide least privilege, it is desirable to isolate differ-
ent components of the MUA into different processes so that
each component’s privileges are minimized. For example,
address book management can be put in a separate process
which will need to write the address book; the mailer will
then only need to read the address book.

Quarantining foreign objects On execution of a PDF
viewer, the process is not sandboxed. This non-sandboxed
process can read and write USERFILES; if it instead reads a
MAIL file then two things happen:

1. The mayFlow’s prevent MAIL files from being copied
to USERFILES,

2. The minAspects reduces the privilege to interact with
non-sandboxed processes (see Section 2.1.3).

Note that the PDF viewer or the MUA takes no action to
create a sandbox, rather it is the consequence of the above
permissions.

Copy The copy is almost identical to the viewer, the only
difference is that the copy can, in addition, create and write
mail files. However, the copy is not allowed to perform
information flow between different labels (note that it is
not specified for any mayFlow). Hence, having read MAIL
the copy can at most create new MAIL files or having read
USERFILES can at most create new USERFILES.

Scrubbers Not all email attachments need to be perma-
nently untrusted. For example, a scrubber, that creates a



safe version of any MAIL file, may be run to remove dan-
gerous content from a file. Of course, it is not possible to re-
move all dangerous content from all interpreters and hence
an effective scrubber would be with respect to a single (or
perhaps related set) of interpreters. The scrubber domain
can write files with the USERFILES label.

Certifiers Unlike the scrubber, the certifier can be used
when a MAIL file is safe for all uses. It is safe if is created
by a trusted system which certifies that it is safe (for exam-
ple, by providing a digitally signed certificate). The certifier
is only able to change the label and read the file, it does not
have (and does not need) privileges to modify the file being
certified.

2.2.2 Discussion

Two important properties of this mechanism are (1) sand-
boxes are automatically entered without explicit user action
and (2) the taintedness of objects is automatically tracked
using LEAP information flow rules. Thus the burden on
users is reduced while the system is made more secure.

We have shown just one short example of a dynamic
sandbox implemented in LEAP. The LEAP mechanisms are
fairly simple and yet are extremely flexible. It would be
easy to extend this example to many more helper applica-
tions. It is also easy to extend it in other ways such as:

• a sophisticated user might be trusted to determine
when it was safe to relabel—but the authorization sys-
tem could still track which files contained mail, thus
relieving the user of that burden.

• a system might have 3 levels, say COREORGANIZA-
TIONALFILES, USERFILES and MAIL, with the re-
quirement that MAIL could never be integrated into the
COREORGANIZATIONALFILES.

As always, authorization is a balancing act between flexi-
bility and security, and LEAP provides sufficient flexibility
to allow the organization to determine this balance.

3. Implementation
LEAP, as described in the previous section, is used to

configure the authorization system. It has three fundamental
properties which make it attractive for specification: it is
succinct, it is composable, and it is (mostly) stateless3.

In contrast, access matrix level representations do not
have any of these three properties and hence their analysis
requires a simulation of state transitions. Moreover, manual
changes to the access matrix are tedious. But access ma-
trix implementations have proven very efficient. We have
implemented an access matrix based enforcement engine
called KernelSec Domains in the Linux Operating System
using Linux Security Modules [48].

3The permissions themselves are stateless, the only state in the high-
level specification are the group memberships.

KernelSec Domains

factoring

LEAP

Figure 3. Factor-
ing LEAP specifi-
cations into Ker-
nelSec domain

KernelSec domains are
produced automatically
from a LEAP specification
via a algorithm we call
factoring [23]. KernelSec
Domains are designed to
work tightly with LEAP. In
particular, group definition,
labels, users, and aspects
are essentially identical in
KernelSec domains as in
LEAP. An overview of our
system is shown in Figure 3.

3.1. KernelSec issues

Space restrictions preclude a full discussion of the Ker-
nelSec mechanisms. We note here only a few relevant is-
sues.

3.1.1 Aspects

KernelSec has implicit permissions based on aspects which
are extensions of POSIX implicit permissions. For exam-
ple, in POSIX, sending a signal from process p1 to p2 re-
quires that both processes have the same UID (or that the
sender is root). In KernelSec, it requires that p1’s aspect is
greater than or equal to p2’s which refines the POSIX rules.
(This rule applies not only to signals, but to all communi-
cation between processes which POSIX requires to be on
behalf of the same user.) Hence a sandboxed process op-
erating at a minimum aspect can only send signals to other
processes that share its sandbox (and hence its aspect).

3.1.2 System calls

Only one KernelSec specific system calls (calls from the
process to the operating system) is need to support the sand-
box semantics. (The remaining semantics are part of the
KernelSec domains.)

A process performs a relabel on an object, by invoking
the syscall:

relabel(objectName obj, label l)

which relabels an object obj to l. For this call to be al-
lowed, assuming that before the call obj’s label is l′, the
domain must have the permission relabel(l′, l).

3.1.3 Domains

In KernelSec, domains specify the privileges currently as-
sociated with a process. In addition, KernelSec domains
can specify actions to occur on the exercise of a permission,
which is used to change privileges when reading a MAIL file
(thus implementing dynamic information flow restrictions)
and to use a minimal aspect when sandboxing a process.



(in clock ticks)
Description Unix KernelSec Overhead
minimum viewer read 7,017 8,040 14.58%
minimum viewer invocation 1,115,830 1,154,400 3.46%
client and minimum viewer invocations 2,272,270 2,345,240 3.21%

Table 1. Elapse times (in clock ticks).

3.2. Performance

In this section we present the performance results of
executing some micro-benchmarks using the domains de-
scribed in the previous section. We have begun porting
X11 applications to KernelSec. So far these include xpdf,
bash (the bourne again shell), and thunderbird. These
constitute substantially all of the functionality for executa-
bles described here. The performance overhead of Ker-
nelSec is negligible for these applications, so we report only
micro-benchmarks (for which performance can be seen).

We measure the performance of very small executables,
a minimum viewer (corresponding to a PDF viewer) and a
client application (corresponding to a MUA). Because the
executables are small, the overheads are noticeable vs. the
insignificant one on the PDF viewer and MUA.

We measured the elapse times for the following opera-
tions:

Jailing minimum viewer on read: This transition hap-
pens on the read operation and involves an aspect re-
duction followed by a domain transition. Since we
only measure the elapse time, and the switch happens
in the kernel as part of the read operation, the time
measured here also includes the time taken to perform
the actual read (of 1K bytes).

minimum viewer invocation: Performs a fork-exec of the
minimum viewer. This requires a domain transition
and various inode permission checks for exec and read-
ing files as well as transiting directories. All the Ker-
nelSec security checks happen on the exec operation,
the fork does not require any permissions.

client application and minimum viewer invocations:
This starts from the shell and does fork-exec of the
client application followed by a fork-exec of the
minimum viewer. This is essentialy twice the work
of the minimum viewer invocation and also, not
surprisingly takes twice the time.

We did not measure the scrubber or certifier overhead, as
these will be essentially the same as the minim viewer invo-
cation. The measurements taken therefore reflect the entire
sandboxing mechanism described in the previous section.

The overhead is fairly modest even in the microbench-
mark, a few percent for the larger operations; even the min-

imum viewer read, which reads 1000 bytes and, in the ker-
nelSec case switches domains is modest at 14.58%. When
compared to executing xpdf on this paper, about .2 seconds
or 400,000,000 ticks, the increased overhead of 40,000 ticks
is insignificant.

4. Related Work
Sandboxing is a form of isolation. The work on isola-

tion can be viewed as taking place in two parts: the iso-
lation of execution environments and the isolation of data
(also called information flow). We also address the use of
dynamic mechanisms in authorization models.

Isolation The isolation of execution environments occurs
through address space separation and restricted interfaces
for interacting with the external world. Virtual Machines
(VMs), such as Xen [14], VMware [46] and UML [13],
provide highly isolated environments in which applications
running on different VMs are (ideally) as well isolated as
if the applications were running on different hardware. For
example, such techniques have been used to create a We-
bOS [12]. Thus attacks on VMed applications are limited
to attacks through the network. But VMs are coarse grained,
and the controlled sharing of resources static [36].

Finer grain techniques can either be implemented en-
tirely inside the kernel or via system call interposition. Sys-
tem call interposition techniques [20, 22, 29, 32, 18] are or-
thogonal to the access control model and have been used
to create sandboxes, perform intrusion detection, prevent
harmful side-effects of untrusted code, or selectively elevate
privileges. Such techniques have also been used to prevent
process-subversion attacks which exploit system vulnera-
bilities [25, 28]. In general, kernel-based mechanism are
more efficient while system call interposition mechanisms
are easier to implement and are more extensible.

Sandboxing provides protection at the process (process
group) granularity. In contrast to VMs, these sandboxes
exist within an operating system, and are designed to re-
strict the address space and interaction of sandboxed ap-
plications (consisting of one or more processes) with the
rest of the system. Sandboxing can (typically) communicate
via networking and, unlike VMs, are asymmetric in that a
sandboxed process has very limited visibility or effect out-
side the sandbox while non-sandboxed processes can access
sandboxed processes (e.g., via signals) and files.



The earliest OS-based sandboxing technique appears to
be TRON [6], which supports both traditional Unix access
controls and TRON capabilities; an operation is allowed
only if the process has both of the corresponding TRON and
Unix permissions. Tron operates by system call wrappers,
which is entered by discretion, and controls file access.

Another early sandboxing technique is Janus [20]. Janus
seeks to contain helper applications to browser and mail
user agents using a mailcap file to initiate these helper ap-
plications. Janus uses system call interposition, is explic-
itly invoked from user space, and enables modules to define
file, network, and interprocess communication. MAPbox
[1], built on top of Janus, adds more classes of confinement
mechanisms, essentially replacing Janus’s programmable
module framework with a fixed set of modules. Peterson et
al. [31] has a hybrid sandboxing mechanism using kernel-
level enforcement while relying on the parent process to
confine the child.

WindowBox [3] creates permanent sandboxes which
were associated with workspaces. Each workspace could
have a different set of privileges, and one workspace could
operate on all the others (the one-way property). Window-
Box attenuates privileges by access tokens (containing cre-
dentials) and access control lists; it has been implemented
in the Windows OS kernel.

AppArmor [11] is a sandboxing technique designed to
better protect servers. It implements a notion of sub-process
protections, based on reducing the privileges during execu-
tion of certain code of the process. EVM/SLIM provide file
integrity mechanisms and are integrated on top of a TPM
mechanism [35]. AppArmor, EVM/SLIM, and KernelSec
domains are all implemented on top of LSM.

Ostia is a system call interposition delegation-based
sandbox in which the most sensitive system calls, rather
than being performed by the application, are delegated to
a user space process [19].

Recursive sandboxes provides privilege attenuation in
the child processes based on calls that the parent makes
[27], thus enabling a process to voluntarily give up privi-
leges.

BSD jails [24] are a sandboxing technique which is clos-
est to VMs. The BSD jails are each allocated their own IP
number, and the visibility from the jail to the outside world
is severely restricted. BSD jails are explicitly invoked from
user space, and provide very little visibility outside the jail.

Many of the sandboxing techniques include resource
limits; these are used to prevent denial of service attacks.
While these are not currently included in LEAP, it would be
trivial to add them.

Another OS-based isolation mechanism is Type Enforce-
ment (TE) [8, 39, 47, 2], based on the access matrix, in
which the privileges are based on the domain of the process.

To support least privilege, it is necessary that monolithic

applications either be broken up into separate processes for
privilege separation to enable the OS to control accesses
[33] (e.g., qmail4, PrivTrans [9], Data Sandboxing [26] or
OKWS [15]) or retrofitted with checks into the application
as performed by Ganapathy, Jaeger, and Jha for the X-server
[17].

Information flow The isolation of data implemented by
our dynamic sandboxing is based on information flow tech-
niques. Information flow foundations were established by
Bell-LaPadula [4] and later by Biba [7]. Asbestos [15]
provides a DAC-based mechanism for information flow
based on the decentralized label model [30]. Other models
which can support information flow include RBAC [37] and
EROS’s extended capability model [38]. The above tech-
niques do not change process level labeling, which seems
necessary to implement dynamic sandboxing.

In subOS [21] objects whose content is from remote
sources are tagged with an immutable sub-user ID denot-
ing the source of the object. When an object with remote
content is read, permission is reduced by any permissions
the sub-user doesn’t have.

Dynamic mechanisms The high level specification of dy-
namic sandboxes have explicit dynamic mechanisms to re-
duce privileges on use of permissions and implicit mecha-
nisms based on past reads. We note that these mechanisms
take place in the authorization system, not in the user pro-
gram, and hence cannot be bypassed. TE domain transi-
tions, in contrast, occur only on exec and hence are not dy-
namic. We have described elsewhere how KernelSec can be
used to implement groups, information flow, Chinese Wall
[34] and dynamic separation of duty [40].

Many special purpose mechanisms have been used for
dynamic authorization, but they are each (and collectively)
far less general than KernelSec’s dynamic mechanisms. In
POSIX systems, the setuid-bit on files changes the process’
privileges on an exec [10]. In TE, domains change on
exec, although SELinux also allows domain changes to be
explicitly requested5. Compartmented Mode Workstations
(CMW) allows labels to “float up” to higher levels rather
than deny access [5] and limits the amount they can float up
by specifying the maximum level. LOMAC prevents core
filesystem components from being “infected” by untrusted
sources [16] by reducing a process’ permissions after read-
ing an untrusted source.

A project with similar goals to KernelSec was DTAC
which added constraints to the system to provide a more
dynamic TE [45, 44]. DTAC was the first OS-based autho-
rization model which could represent dynamic separation of
duty.

4http://cr.yp.to/qmail
5http://www.nsa.gov/selinux/list-archive/0411/9712.cfm



5. Conclusion
Sandboxes have traditionally been used to attenuate the

privileges of executables and thereby implement least priv-
ileges, thus reducing the dangers posed by applications.
Sandboxes provide a one-way protection mechanism. Pro-
cesses inside a sandbox have very limited visibility outside
of the sandbox but the sandbox and its contents are visible
to processes external to it. Hence, a process outside a tra-
ditional sandbox could copy a file which was downloaded
from an untrusted source, after which the sandbox protec-
tions would be lost. This is desirable to allow a user to
incorporate these outside entities into her activities.

These files pose a danger to applications which later
read them. On the other hand, data produced internally
by trusted mechanisms should be given greater permissions
than those which originate from untrusted sources. Yet tra-
ditional sandboxes are oblivious to this distinction.

We introduce dynamic sandboxes, give a sample specifi-
cation in LEAP, and describe their implementation in Ker-
nelSec, a kernel-level authorization model implemented in
the Linux Kernel. Using KernelSec we track (via labels)
those files which come from untrusted sources and using
the dynamic domain transitions of KernelSec, automatically
enter a dynamic sandbox when an interpreter reads an un-
trusted entity.

The mechanisms used in KernelSec to implement dy-
namic sandboxes are general purpose and policy neutral;
these mechanisms have uses other than for constructing
sandboxes. This generality is important in finding a com-
pact set of building blocks with which to protect systems.

The construction of effective mechanisms to provide the
authorization needed so that programs execute with least
permissions is not difficult. But providing such mecha-
nisms with sufficiently low complexity that they are used,
and used correctly, is indeed challenging. We believe that
dynamic protections which adapt to the actions of the users
and suitable high-level specifications are keys for dramat-
ically reducing the complexity of using these protections,
and thus can usher in a new generation of authorization
models which strongly protects the system and its users.

Acknowledgements
Xpdf, thunderbird, and bash were ported by Saurabh

Abichandani and Shuxia Feng. We would like to thank
Saurabh Abichandani, Shuxia Feng, Jorge Hernandez-
Herrero for their helpful comments. We would also like
to thank the anonymous reviewers for their feedback.

References
[1] A. Acharya and M. Raje. MAPbox: Using parameterized

behavior classes to confine untrusted applications. In Pro-
ceedings of the 9th USENIX Security Symposium, Denver,
Colorado, Aug. 2000. USENIX.

[2] L. Badger, D. F. Sterne, D. L. Sherman, K. M. Walker, and
S. A. Haghihat. Practical domain and type enforcement for
UNIX. In Proc. IEEE Symp. Security and Privacy, pages
66–77, Oakland, CA, 1995.

[3] D. Balfanz and D. R. Simon. WindowBox: A simple secu-
rity model for the connected desktop. In Proceedings of the
4th USENIX Windows Systems Symposium (WSS-00), pages
37–48, Berkeley, CA, Aug. 3–4 2000. The USENIX Asso-
ciation.

[4] D. E. Bell and L. J. LaPadula. Secure computer systems:
Mathematical foundations and model. Technical Report
M74-244, Mitre Corporation, Bedford MA, 1973.

[5] J. L. Berger, J. Picciotto, J. P. L. Woodward, and P. T.
Cummings. Compartmented mode workstation: Prototype
highlights. IEEE Transactions on Software Engineering,
16(6):608–618, 1990. Special Section on Security and Pri-
vacy.

[6] A. Berman, V. Bourassa, and E. Selberg. TRON: Process-
specific file protection for the UNIX operating system. In
Proceedings of the USENIX 1995 Technical Conference,
pages 165–175, New Orleans, LA, USA, Jan. 16–20 1995.

[7] K. Biba. Integrity considerations for secure computer sys-
tems. Technical Report TR-3153, MITRE Corp, Bedford,
MA, 1977.

[8] W. E. Boebert and R. Kain. A practical alternative to hierar-
chical integrity policies. In 8th National Computer Security
Conference, pages 18–27, 1985.

[9] D. Brumley and D. X. Song. Privtrans: Automatically parti-
tioning programs for privilege separation. In USENIX Secu-
rity Symposium, pages 57–72, 2004.

[10] H. Chen, D. Wagner, and D. Dean. Setuid demystified. In
Proc. of the USENIX Security Symposium. USENIX, 2002.

[11] C. Cowan, S. Beattie, G. Kroah-Hartman, C. Pu, P. Wagle,
and V. Gligor. Subdomain: Parsimonious security server. In
14th Systems Administration Conference (LISA 2000), pages
355–367, New Orleans, LA, 2000.

[12] R. S. Cox, S. D. Gribble, H. M. Levy, and J. G. Hansen.
A safety-oriented platform for web applications. In IEEE
Symposium on Security and Privacy, pages 350–364. IEEE
Computer Society, 2006.

[13] J. Dike. User-mode Linux. In USENIX, editor, Proceed-
ings of the 5th Annual Linux Showcase and Conference.
USENIX, Nov.5–10 2001.

[14] B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, I. Pratt,
A. Warfield, P. Barham, and R. Neugebauer. Xen and the art
of virtualization. In In Proceedings of the ACM Symposium
on Operating Systems Principles, October 2003., 2003.

[15] P. Efstathopoulos, M. Krohn, S. VanDeBogart, C. Frey,
D. Ziegler, E. Kohler, D. Mazières, F. Kaashoek, and
R. Morris. Labels and event processes in the asbestos oper-
ating system. SIGOPS Oper. Syst. Rev., 39(5):17–30, 2005.

[16] T. Fraser. LOMAC–low water-mark mandatory access con-
trol for Linux. In Proc. of the USENIX Security Symposium,
Washington D.C., 1999.

[17] V. Ganapathy, T. Jaeger, and S. Jha. Retrofitting legacy
code for authorization policy enforcement. Technical Report
1544, University of Wisconsin–Madison, Computer Science
Department, nov 2005. Decscribes semi-automatic tech-
niques for retrofitting an X-server with a mechanism which
can.



[18] T. Garfinkel. Traps and pitfalls: Practical problems in in
system call interposition based security tools. In Proc. Net-
work and Distributed Systems Security Symposium, Febru-
ary 2003.

[19] T. Garfinkel, B. Pfaff, and M. Rosenblum. Ostia: A dele-
gating architecture for secure system call interposition. In
Proc. Network and Distributed Systems Security Sympo-
sium, February 2004.

[20] I. Goldberg, D. Wagner, R. Thomas, and E. A. Brewer. A
secure environment for untrusted helper applications (con-
fining the wily hacker). In Proc. of the USENIX Security
Symposium, San Jose, Ca., 1996.

[21] S. Ioannidis, S. M. Bellovin, and J. Smith. Sub-
operating systems: A new approach to application se-
curity. http://www.research.att.com/ smb/papers/subos.ps,
Nov. 2001. draft, sandbox.

[22] K. Jain and R. Sekar. User-level infrastructure for system
call interposition: A platform for intrusion detection and
confinement. In NDSS, 2000.

[23] K. Kahley, M. Radhakrishnan, and J. A. Solworth. Factoring
high level information flow specifications into low level ac-
cess controls. In IEEE Workshop of Information Assurance,
Apr. 2006.

[24] P.-H. Kamp and R. N. M. Watson. Jails: Confining the om-
nipotent root. In SANE 2000. NLUUG, 2000.

[25] G. S. Kc and A. D. Keromytis. e-nexsh: Achieving an
effectively non-executable stack and heap via system-call
policing. In ACSAC ’05: Proceedings of the 21st Annual
Computer Security Applications Conference, pages 286–
302, Washington, DC, USA, 2005. IEEE Computer Society.

[26] T. Khatiwala, R. Swaminathan, and V. N. Venkatakrish-
nan. Data sandboxing: A technique for enforcing confiden-
tiality policies. In ACSAC ’06: Proceedings of the 22nd
Annual Computer Security Applications Conference, pages
223–234, Washington, DC, USA, 2006. IEEE Computer So-
ciety.

[27] A. Kurchuk and A. D. Keromytis. Recursive sandboxes: Ex-
tending systrace to empower applications. In SEC, pages
473–488, 2004.

[28] W. Li, L. chung Lam, and T. cker Chiueh. How to automat-
ically and accurately sandbox microsoft iis. In ACSAC ’06:
Proceedings of the 22nd Annual Computer Security Appli-
cations Conference, pages 213–222, Washington, DC, USA,
2006. IEEE Computer Society.

[29] Z. Liang, V. N. Venkatakrishnan, and R. Sekar. Isolated
program execution: An application transparent approach for
executing untrusted programs. In ACSAC, pages 182–191,
2003.

[30] A. C. Myers and B. Liskov. Protecting privacy using the de-
centralized label model. Software Engineering and Method-
ology, 9(4):410–442, 2000.

[31] D. S. Peterson, M. Bishop, and R. Pandey. A flexible
containment mechanism for executing untrusted code. In
USENIX, editor, Proc. of the USENIX Security Symposium,
pages 207–225, Berkeley, CA, USA, 2002. USENIX.

[32] N. Provos. Improving host security with system call poli-
cies. In Proceedings of the 12th USENIX Security Sympo-
sium, pages 257–272. USENIX, Aug. 2003.

[33] N. Provos, M. Friedl, and P. Honeyman. Preventing privi-
lege escalation. In Proceedings of the 12th USENIX Security
Symposium, pages 231–242. USENIX, Aug. 2003.

[34] M. Radhakrishnan and J. A. Solworth. Application secu-
rity support in the operating system kernel. In ACM Sym-
posium on InformAtion, Computer and Communications Se-
curity (AsiaCCS’06), pages 201–211, Taipei, Taiwan, Mar.
2006.

[35] D. Safford, M. Zohar, and R. Sailer. EVM, SLIM, IMA.
http://lwn.net/Articles/160126/, nov 2005.

[36] R. Sailer, T. Jaeger, E. Valdez, R. Cáceres, R. Perez,
S. Berger, J. L. Griffin, and L. van Doorn. Building a MAC-
based security architecture for the Xen open-source hyper-
visor. In ACSAC, pages 276–285. IEEE Computer Society,
2005.

[37] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.
Youman. Role-based access control models. IEEE Com-
puter, 29(2):38–47, 1996.

[38] J. S. Shapiro and S. Weber. Verifying the EROS confine-
ment mechanism. In Proc. IEEE Symp. Security and Pri-
vacy, pages 166–176, 2000.

[39] S. Smalley, C. Vance, and W. Salamon. Implementing
SELinux as a Linux security module. Report #01-043, NAI
Labs, Dec. 2001. Revised April 2002.

[40] J. A. Solworth. Approvability. In ACM Symposium on In-
formAtion, Computer and Communications Security (Asi-
aCCS’06), pages 231–242, Taipei, Taiwan, Mar. 2006.

[41] J. A. Solworth and R. H. Sloan. Decidable administrative
controls based on security properties, 2004. Available at
http://www.rites.uic.edu/ solworth/kernelSec.html.

[42] J. A. Solworth and R. H. Sloan. A layered design of discre-
tionary access controls with decidable properties. In Proc.
IEEE Symp. Security and Privacy, pages 56–67, 2004.

[43] J. A. Solworth and R. H. Sloan. Security property-based
administrative controls. In Proc. European Symp. Research
in Computer Security (ESORICS), volume 3139 of Lecture
Notes in Computer Science, pages 244–259. Springer, 2004.

[44] J. Tidswell and T. Jaeger. An access control model for sim-
plifying constraint expression. In Proc. ACM Conference on
Computer and Communications Security (CCS), pages 154–
163, 2000.

[45] J. F. Tidswell and T. Jaeger. Integrated constraints and in-
heritance in DTAC. In Proc. of the ACM Workshop on Role-
Based Access Controls (RBAC), pages 93–102, 2000.

[46] C. Waldspurger. Memory resource management in VMware
ESX server. In Fifth Symposium on Operating Systems De-
sign and Implementation, Dec. 2002.

[47] R. Watson. TrustedBSD: Adding trusted operating system
features to FreeBSD. In USENIX Technical Conference,
Boston, MA, 2001.

[48] C. Wright, C. Cowan, S. Smalley, J. Morris, and G. Kroah-
Hartman. Linux Security Modules: General security support
for the Linux Kernel. In Proc. of the USENIX Security Sym-
posium, San Francisco, Ca., 2002.


