
ACM Reference Format
Goesele, M., Ackermann, J., Fuhrmann, S., Haubold, C., Klowsky, R., Steedly, D., Szeliski, R. 2010.
Ambient Point Clouds for View Interpolation. ACM Trans. Graph. 29, 4, Article 95 (July 2010), 6 pages.
DOI = 10.1145/1778765.1778832 http://doi.acm.org/10.1145/1778765.1778832.

Copyright Notice
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profi t or direct commercial advantage
and that copies show this notice on the fi rst page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any
component of this work in other works requires prior specifi c permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701, fax +1
(212) 869-0481, or permissions@acm.org.
© 2010 ACM 0730-0301/2010/07-ART95 $10.00 DOI 10.1145/1778765.1778832
http://doi.acm.org/10.1145/1778765.1778832

Ambient Point Clouds for View Interpolation

Michael Goesele Jens Ackermann Simon Fuhrmann Carsten Haubold Ronny Klowsky Drew Steedly Richard Szeliski
TU Darmstadt Microsoft

Figure 1: View interpolation with ambient point clouds, representing uncertain geometry, shown at different time steps.

Abstract

View interpolation and image-based rendering algorithms often
produce visual artifacts in regions where the 3D scene geometry
is erroneous, uncertain, or incomplete. We introduce ambient point
clouds constructed from colored pixels with uncertain depth, which
help reduce these artifacts while providing non-photorealistic back-
ground coloring and emphasizing reconstructed 3D geometry. Am-
bient point clouds are created by randomly sampling colored points
along the viewing rays associated with uncertain pixels. Our real-
time rendering system combines these with more traditional rigid
3D point clouds and colored surface meshes obtained using multi-
view stereo. Our resulting system can handle larger-range view
transitions with fewer visible artifacts than previous approaches.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Image-based Rendering

Keywords: ambient point cloud, uncertain geometry

1 Introduction

Although a lot of progress has been made since the introduction of
view interpolation and image-based rendering in the mid-90s [Chen
and Williams 1993; McMillan and Bishop 1995; Levoy and Han-
rahan 1996; Gortler et al. 1996; Buehler et al. 2001], these tech-
niques still often produce objectionable artifacts when applied to
real-world data. For example, errors in reconstructing the true 3D
geometry, due to stereo matching errors or failures of ranging sys-
tems, result in the implausible 3D motion of surfaces, as well as vis-
ible ghosting wherever inconsistent source images are cross-faded
during transitions. Incompleteness in the reconstructed geometry
can also lead to visible cracks and holes during view interpolation.

In this paper, we show how embracing the uncertainty in 3D recon-
structions can help mitigate these visual artifacts. In our system, we
render uncertain regions as translucent three-dimensional segments

along each pixel’s viewing ray. The effect of this rendering is to
dissolve uncertain pixels into streaks aligned with the pixel’s mo-
tion between the source cameras, which then resolve into the true
image as the destination viewpoint is approached. In our current
implementation, these segments and streaks are rendered as a col-
lection of randomly sampled colored points, which we call the am-
bient point cloud. This rendering approach to uncertain geometry
has two benefits. First, ghosting due to wrongly assigned depth val-
ues is reduced, since source and destination pixels map to overlap-
ping streaks during the transition. Second, the ambient point clouds
generated along uncertain rays fill in the visible cracks and holes
in the rendering with a soft non-photorealistic colored wash, which
disguises defects in the geometry while intensifying the perception
of 3D structure and motion.

The ambient point cloud, however, is only meant to mitigate the
artifacts generated by incomplete or inconsistent geometry. In re-
gions where the 3D model is accurately reconstructed, we wish to
retain crisp photorealistic view transitions. To this end, we combine
the ambient point cloud with traditional 3D point clouds as well
as texture-mapped 3D meshes produced by our multi-view stereo
system. To optimize the visual quality of this latter component, we
introduce a number of extensions to the 3D modeling pipeline, in-
cluding the removal of small isolated regions and holes in the re-
construction.

Our paper therefore contains two main contributions:

• the concept of visualizing uncertainty in depth by distributing
unknown geometry along a bounded segment of the viewing ray;

• a real-time rendering system for view interpolation which com-
bines different geometric representations and rendering ap-
proaches.

The remainder of the paper is organized as follows: We first give
an overview of previous work (Sect. 2) before introducing ambient
point clouds (Sect. 3). We then describe the reconstruction pipeline
(Sect. 4) and rendering approach (Sect. 5). Finally, we show results
(Sect. 6) and conclude with an outlook on future work (Sect. 7).

2 Previous Work

Image-based rendering systems have their roots in the early work on
view interpolation [Chen and Williams 1993] and plenoptic model-
ing [McMillan and Bishop 1995]. Seitz and Dyer [1996] present
an improved view morphing algorithm that correctly models rigid
camera motion and perspective projection. Their goal, like ours, is
to create compelling transitions between pairs of images.

ACM Transactions on Graphics, Vol. 29, No. 4, Article 95, Publication date: July 2010.

(a) (b) (c)

Figure 2: Epipolar geometry with unknown depths. (a) A point P with consistent depth in both depth maps is projected consistently in
arbitrary views CM. (b) Given an only approximate geometry, the scene point P is in general modeled as distinct points P ′ and P ′′ in the
two input views. The reconstructed point from C1 will always overlap with the projection of the corresponding viewing ray from C2 in any
view CM. For an intermediate camera position CM located on C1C2 the two points P ′ and P ′′ are projected onto two different locations
on the corresponding epipolar line. (c) If P has an unknown depth in both depth maps, the corresponding viewing rays intersect at P . In
general, their projections in an arbitrary view CM̃ will result in two intersecting lines segments. However, if the camera center CM is located
on C1C2, both lines are projected to a single line.

Pulli et al. [1997] introduce view-based rendering, which represents
the scene as textured depth maps acquired using active range scan-
ning. An image from a novel viewpoint is rendered as a weighted
blend of the three closest depth maps. They also introduce a soft
z-buffer, which handles occlusions and blends pixels with similar
z-values. Layered depth images [Shade et al. 1998] extend this idea
by storing multiple depth and color values per pixel to avoid disoc-
clusion artifacts. Zitnick et al. [2004] combine these ideas in their
stereo-based system for video interpolation, which augments depth
maps with a partial second layer near depth discontinuities.

Several other systems that render depth maps created using com-
puter vision techniques have been proposed. Narayanan et al.
[1998] capture images using a camera dome and compute global
and per-view geometry models for rendering. Given a long video
sequence of a scene, Heigl et al. [1999] hierarchically compute a
piece-wise planar scene reconstruction from triples of camera views
and use an image-based approach to render novel views. Due to
the density of input images, they observe only minor ghosting ar-
tifacts. Lhuillier and Quan [2003] first reconstruct per-view depth
maps and introduce a consistent triangulation of depth maps for
pairs of views. Evers-Senne and Koch [2003] reconstruct dense but
incomplete depth maps from a dense set of images captured un-
der controlled conditions. At render time, they project a subset of
these depth maps into the novel view and smoothly interpolate any
remaining holes. Hornung and Kobbelt [2009] improve on this by
using feature-aware particles and performing pixel-accurate color
accumulation in a fully GPU-based pipeline. Of all these systems,
the last two are probably the closest to our proposed approach, but
they still rely on relatively complete geometric representations.

Photo tourism [Snavely et al. 2006] provides an interactive brows-
ing tool for large photo collections. Global scene context is pro-
vided using NPR rendering techniques. Images are projected onto
planes in space, yielding parallax artifacts when the user moves be-
tween views. These artifacts are reduced in Snavely et al. [2008a]
who align the proxy planes to stabilized features in the scene. Re-
cently, Furukawa et al. [2009] and Sinha et al. [2009] create piece-
wise planar proxies for interior and exterior scenes. We improve on
those techniques by introducing a much more detailed geometric
model that does not require planarity. A first step in this direction
has been made by Shahrokni et al. [2008], who triangulate sparse
scene points to create a global scene model. Their system is, how-
ever, only demonstrated on cases with small parallax. In addition,
it cannot handle scene parts outside the convex hull of the sparse
points illustrating the problems posed by complex scenes.

Finally, there are several lines of work that systematically handle

uncertainty and incompleteness in view-based rendering. Hofsetz
et al. [2004a; 2004b] reconstruct a depth map for each interpo-
lated view using the range-space approach by Ng et al. [2002].
They also estimate the depth uncertainty for each pixel using photo-
consistency and render the resulting model with ellipsoids whose
size is adapted to the depth uncertainty. This approach is mainly
applicable to textureless regions where an exact correspondence
is hard to find but cannot handle the general case of incomplete
data we are addressing. Alternatively, Fitzgibbon et al. [2005] avoid
explicit geometry reconstruction and focus instead on reconstruct-
ing color in the presence of uncertainty using image-based priors.
Xu and Chen [2004] capture 3D point clouds using a laser range
finder, to which they apply various NPR rendering techniques. In
a follow-up paper, Xu et al. [2004] focus on the following proper-
ties of scanned outdoor environment: incompleteness of the scene
model, complexity of the objects, inaccuracy of parts of the scene,
and the large size of the data sets. All of these also apply to our
data sets, although often in a more extreme way (especially regard-
ing incompleteness and inaccuracy). Xu et al. apply traditional NPR
techniques such as rendering varying-sized strokes to visually mark
uncertain areas and mask large holes using sparse rendering styles.
In contrast, we propose a geometrically motivated NPR-like effect
based on epipolar constraints.

3 Ambient Point Clouds

In this section, we introduce the idea of handling uncertain regions
in view-based rendering and propose a point-based representation,
which we call the ambient point cloud. Figure 2 illustrates the gen-
eral idea of our approach for the case of a view transition. If a scene
point P is correctly reconstructed in the depth maps corresponding
to the two views between which we want to render a transition, we
can render P from an arbitrary camera location CM without intro-
ducing any artifacts (see Fig. 2a).

If the scene geometry is only reconstructed approximately, e.g., rep-
resented by some planar proxy, the viewing rays of the two original
cameras C1 and C2 in general intersect the approximate geometry
at two distinct points P ′ and P ′′, more or less far away from P
(Fig. 2b). Naturally, this also holds if the geometry in the two depth
maps is approximated independently but still inconsistently. For an
intermediate camera position CM located on C1C2, the two points
P ′ and P ′′ are projected onto two different locations on the corre-
sponding epipolar line. If the error in the approximate geometry is
small and the camera positions are sufficiently dense, minor ghost-
ing effects will appear, e.g., as observed by Heigl et al. [1999]. If
P is located in a homogeneous region, these artifacts may not be

95:2 • M. Goesele et al.

ACM Transactions on Graphics, Vol. 29, No. 4, Article 95, Publication date: July 2010.

visible at all as shown by Hofsetz et al. [2004a; 2004b]. In gen-
eral, however, the resulting error can be arbitrarily large resulting
in disturbing artifacts during rendering.

Spread out geometry. Let us focus for the moment on one of
the cameras, e.g., C1. The only reliable information we have if we
cannot infer an accurate geometry for a given pixel, is that P was
seen from C1 as the first object along the corresponding viewing
ray. We deal with this problem by not committing to a specific depth
for P in C1. Instead, we distribute the color of P along the viewing
ray, i.e., the direction of uncertainty (Fig. 2c). This corresponds to
rendering the point P in an intermediate frame CM spread out along
its epipolar line.

During a view transition from C1 to C2, P as rendered using the
original view from C1 therefore starts as a single point, which
spreads out as a streak as the transition progresses. Likewise, P
as rendered using the original view from C2 starts as a streak that
gradually collapses to a single point, at the true image of P in C2.
The epipolar geometry guarantees that both projected streaks coin-
cide, i.e., are projected to a single streak, located on the projection
of the corresponding epipolar plane in CM, as long as CM is located
on C1C2. This results in a smooth visual transition.1 Likewise, if
an object is only visible in one of the two views, e.g., because it
is occluded in the other view, it will dissolve into or appear from a
streak during the transition.

Spreading range and density. One question remains: How far
and with which density should P be spread out along a viewing ray?
To avoid the possibility of ghosting, the spreading range should en-
compass all potentially visible scene content. This ensures that the
two projected line segments are identical during the middle part of
the transition. If a suitable probability distribution is available (e.g.,
derived from a photo-consistency volume created during scene re-
construction), the density could be adapted to this distribution. Oth-
erwise, it could be modeled as homogeneous density.

Ambient point clouds. We implement the idea of spreading out
geometry by creating a point cloud for each depth map. For each
viewing ray corresponding to a non-reconstructed pixel, we create
a number of points along that ray inside a range derived from the
bounding box of the scene (see Section 4 for details). We found
that a pointillist rendering nicely conveys uncertainty and comple-
ments the global point cloud, which provides overall context. Dur-
ing rendering, a point dissolves into a streak that spreads out in the
direction along which the true scene point P moves.

4 Data Reconstruction

For data reconstruction, we use the following pipeline: The input
images are first registered using a robust structure from motion al-
gorithm [Snavely et al. 2008b]. We then compute depth maps for
all successfully registered images using a multi-view stereo (MVS)
system. Since we wish to apply our technique to a wide variety of
scenes, we use the MVS technique of Goesele et al. [2007] (with
20 neighbors per image), which has been shown to perform well on
a wide variety of input images. For each pixel in an image, MVS
either returns a depth and confidence value or marks it as unrecon-
structed. Because of its conservative settings, it also mostly avoids
reconstructing incorrect geometry. Note that in principle, we could
use any MVS technique, as long as it can separate certain from
uncertain geometry. This could even be achieved by computing a
confidence measure in a separate step.

1Note that the projected streaks will cross for other camera locations
CM̃ yielding potentially disturbing artifacts (see Fig. 2c). In practice how-
ever, we observed that a moderate deviation from the ideal camera position
results in renderings with negligible artifacts.

Figure 3: One of the input images in the town square data set and
the corresponding raw (middle) and final depth map including the
background plane (right).

Given this data, we create three representations for rendering:
cleaned and filled per-view depth maps representing the certain ge-
ometry visible in each view; per-view ambient point clouds repre-
senting the areas with unknown depth distributed into the volume;
and a global point cloud providing some overall scene context sim-
ilar to Snavely et al. [2006].

Per-view depth map. While we could in principle use the raw
reconstructed per-view depth maps, we achieve better visual re-
sults by removing outliers, i.e., small and isolated clusters of recon-
structed pixels as well as moderately-sized holes. We therefore ap-
ply the following post-processing pipeline to each depth map. First,
we remove small connected components of reconstructed pixels (up
to 64 pixels) surrounded by unreconstructed pixels or pixels recon-
structed at strongly different depth. Next, we create a smoothly in-
terpolated version of each depth map using the 2D interpolation ap-
proach of Szeliski [2006], which places depth discontinuities across
intensity edges detected using a Canny edge detector. We then use
a graph cut based approach [Hammer et al. 1984] to select which
parts of the filled depth map to transfer to the final depth map. Re-
garding each pixel as a node and establishing horizontal and vertical
edges between neighboring pixels, we define costs for labeling each
pixel with 0 (uncertain) or 1 (interpolated). The cost to label an un-
reconstructed pixel with 1 is 1 except for border pixels where we
set the cost to 106 to avoid filling towards the image border. In gen-
eral the penalty of having neighboring pixels with different labels
is very high, i.e., 106. We define two exceptions: If one of the two
pixels was originally reconstructed and the other was not, we relax
the penalty to 100. If an intensity edge lies between the neighboring
pixels the penalty is zero. This configuration encourages geometry
boundaries to coincide with intensity edges (preferably) or multi-
view stereo reconstruction boundaries. Finally, we again remove
small isolated clusters of reconstructed pixels (up to 256 pixels) as
explained above. All of the remaining pixels with label 1 are treated
as known geometry.

The depth of all non-reconstructed pixels is set to an impostor plane
orthogonal to the viewing direction at a distance corresponding to
the 95th percentile of the reconstructed and interpolated geometry.
All pixels with a depth value beyond that plane are clamped to the
plane. The impostor plane provides a consistent planar proxy ge-
ometry, which is only displayed at the very beginning and end of
transitions. An example input image from the Town Square data set
and the final depth map used for rendering can be seen in Fig. 3.

Ambient point cloud. For each pixel in the depth map that has
not been reconstructed or interpolated, we create a set of N points
along its viewing ray. To ensure interactive rendering, we typically
set N = 5. The union of these points forms the ambient point
cloud. Lacking exact information about the scene and the depth dis-
tribution of the visible geometry, we use the reconstructed points as
lower bound for the extent of the scene. We therefore select depth
values d within the interval [dnear = 0.8 · Dmin, dfar = 1.5 · Dmax]
where Dmin and Dmax are the minimum and maximum of all depth
values in the depth map, respectively. In order to account for the
effect that points close to the original camera positions will display
larger parallax than points in the distance when projected into CM,
we randomly choose depth values such that d−1 is uniformly dis-

Ambient Point Clouds for View Interpolation • 95:3

ACM Transactions on Graphics, Vol. 29, No. 4, Article 95, Publication date: July 2010.

(b)2

(e)

(d)2

(d)1

(a) (c)

(b)1

Framebuffer: GP in camera view Framebuffer with GP and APs

GPC
Global view

Ambient point cloud (AP2)

Triangulated depth map (DM1)

Triangulated depth map (DM2)

Mesh in camera view,

discontinuities removed

Global point cloud (GP) Ambient point cloud (AP1)

Final framebuffer: GP, APs and DMs

AP1 in camera view

AP2 in camera view Mesh in camera view,

discontinuities removed

Figure 4: The rendering pipeline. Input data are marked with beige borders, and intermediate renderings in separate render targets with
gray borders. The blue arrows show the content of the framebuffer during various rendering stages. See Sect. 5 for detailed explanations.

tributed between d−1
far and d−1

near . Rendering points strictly on their
viewing rays creates aliasing artifacts if CM is very close to C1 or
C2. We avoid this by randomly jittering the direction of the viewing
ray for each sample by up to half a pixel in each dimension of the
depth map and place the point at distance d along this jittered ray.

Global point cloud. The union of all reconstructed 3D points
in all depth maps forms a point-based global model. To create a
moderate-sized global point cloud for efficient rendering, we ran-
domly select a subset of these points (typically about two million
points) and store their positions and color values as a global point
cloud. This rigid point cloud is used during rendering to hint at ge-
ometry that lies outside the viewing frusta of the two source images.

5 Rendering

For rendering, we convert each depth map into a textured triangle
mesh using naı̈ve triangulation in image space. During a transition,
the position, orientation (expressed as a quaternion), and field-of-
view of the current camera CM are interpolated linearly. To produce
a fluid movement of CM, we use a smoothly varying progress pa-
rameter p(t) instead of linear time t as the interpolation parameter.
p(t) ∈ [0, 1] is calculated using univariate, one-dimensional Bézier
curves of low degree. Novel views are rendered using the following
pipeline (see Fig. 4):

Global point cloud. We first render the global point cloud di-
rectly into the framebuffer with depth comparison enabled (Fig. 4a).
This yields a global background model and provides context during
larger transitions.

Ambient point clouds. We turn off depth comparison and set
the blend functions such that color values (including alpha, which
is 1 for all points in the ambient point clouds) of all fragments at
a location are summed up. We then render each of the two ambi-
ent point clouds into separate floating point precision render targets
(Fig. 4b). After this, we render a screen-sized quad into the frame-
buffer (Fig. 4c). In the fragment shader we compute the normalized
color of each ambient pixel by dividing its color value by its alpha
channel. Pixels without contribution by the ambient point cloud re-
ceive a color and alpha value of 0. We blend the colors using the
linear transition time t as weight and combine this with the frame-
buffer using alpha blending.

Per-view depth maps. We clear the depth buffer and re-enable
the depth test and standard blending. We then render each of the
depth maps into their own render target containing color and depth
(Fig. 4d). We use the alpha channel to classify pixels as either be-
longing to the reconstructed geometry or to the impostor plane.

If a depth map is rendered from a novel viewpoint, elongated tri-
angles spanning depth discontinuities create visible artifacts. We
therefore use a custom geometry shader to compute the projected
edge length of each triangle on the screen. Fragments belonging
to triangles whose longest projected edge exceeds 3 pixels are dis-
carded. This procedure corresponds roughly to the depth disconti-
nuity detection in [Zitnick et al. 2004]. The two main differences
are first that we detect depth discontinuities on the fly during ren-
dering, while Zitnick et al. [2004] detect them in a preprocessing
phase. Second, we do not create a separate boundary layer to cover
the depth discontinuities, but use the ambient point clouds to fill in
the resulting gaps, which can span an arbitrarily large area.

Finally, we render another screen-sized quad into the framebuffer
to combine the two render targets from the previous step with each
other and with the rendered point clouds (Fig. 4e). For each pixel,
each of the two render targets used for depth map rendering con-
tains either a fragment with finite depth representing real geometry,
or the impostor plane, or nothing at all. During transition, we weight
the contribution of both render targets with the progress parameter
p(t). We display the impostor plane during the first and last 5%
of the transition. Geometry is combined using a soft z compare to
compensate for noise in the geometry and lighting changes. If the
geometry is only visible in one view, we display it with full alpha
in order to fill holes caused by occluders, missing reconstruction,
or out–of–view areas. In the case of strong lighting changes, holes
may get filled with geometry with a different appearance, which can
lead to some artifacts. Note that these artifacts can be avoided us-
ing appearance stabilization as described in Snavely et al. [2008a].
The blending result of the two render targets is combined with the
current framebuffer content using alpha blending. This allows the
ambient or global point cloud to appear inside gaps and holes in the
rendered surface geometry.

6 Results

In the following, we present the results of our approach on the Pisa
data set (1103 images), Town Square data set (289 images), and the

95:4 • M. Goesele et al.

ACM Transactions on Graphics, Vol. 29, No. 4, Article 95, Publication date: July 2010.

Figure 5: Snapshot at 50% of the transition shown in Fig. 1. Left:
Fitting a RANSAC plane to the known geometry in each depth map.
Middle: Rendering the two depth maps together with the global
point cloud. Right: Adding the ambient point cloud.

Figure 6: Town Square data set using just certain geometry (top-
left), geometry with global point cloud (top-right), geometry with
ambient point cloud (bottom-left), and all combined (bottom-right).

Church data set (100 images downloaded from Flickr). All data sets
were reconstructed fully automatically without user intervention.
For more results and animated transitions, please see the accom-
panying video. Fig. 1 shows an interpolation between two images
of the Duomo in Pisa. Note how unreconstructed geometry (e.g.,
parts of the vegetation and the sky) dissolve into the ambient point
cloud, whereas reconstructed geometry such as the tower is always
rendered crisply. Fig. 5 shows a snapshot in the middle of this tran-
sition. On the left, we blend between two per-view planar impos-
tors created by fitting a plane to the reconstructed geometry using
RANSAC. Ghosting artifacts are clearly visible. When rendering
just reconstructed geometry and the global point cloud (middle),
these artifacts are replaced by holes. On the right, our proposed ren-
dering algorithm is shown. The ambient point cloud fills these holes
with a soft non-photorealistic colored wash while retaining a crisp
rendering of the reliable geometry. In Fig. 9, we show an extreme
view transition, which breaks the limits of traditional view-based
rendering.

In Fig. 6, we demonstrate the interplay between the ambient and
global point clouds. The figure shows a transition at 30% with dif-
ferent configurations. One can clearly see how the sharp global
point cloud complements the streaks in the ambient point cloud.

The ambient point cloud combined with alpha normalization han-
dles occlusions and foreground clutter. Fig. 7 shows the beginning
of a transition in the Church data set consisting of images down-
loaded from Flickr. Note how the tourists disappear and the ge-
ometry from the other depth map is shown with full alpha. Fig.
8 shows a transition between two photographs with very different
lighting conditions. The soft z-buffer blends smoothly between the

Figure 7: Beginning of a transition in the Church data set. The
figure shows the original starting image (left) and renderings at
30% and 50% of the transition. Note how the occluding persons
dissolve in the ambient point cloud. Holes in the church façade are
filled using alpha normalization.

Figure 8: Lighting changes in the Church data set. Top row: tran-
sition at 0%, 50%, and 100% transition time. Bottom row: close-up
at 50% with soft z-buffer and alpha normalization (left), without
soft z-buffer (middle), and without alpha normalization (right).

views except for areas where geometry is only available in one of
the depth maps. The close-up (bottom left) demonstrates the advan-
tage of the soft z-buffer. Note however, that incomplete geometry
in the second view yields visual artifacts. The remaining images in
the bottom row demonstrate the result of turning either of the two
effects off.

7 Conclusion

In this paper, we have developed a new image-based view interpola-
tion algorithm, which uses ambient point clouds to represent uncer-
tain portions of the scene. We render these clouds as point-sampled
segments along uncertain viewing rays, distributed throughout the
expected bounding volume of the scene. As a result, errors or omis-
sions in the reconstruction are masked, as they appear to dissolve
into and resolve from elongated streaks. When combined with more
traditional rendering primitives such as sparse colored 3D point
clouds and texture-mapped surface mesh geometry, these render-
ings produce three-dimensional transitions masking the visual ar-
tifacts such as ghosting and holes associated with previous image-
based rendering methods.

As mentioned earlier in the paper, if the virtual camera center does
not lie on the line between the original two camera centers, i.e., if
we allow for more general camera motion, the streaks from the two
cameras may intersect at visible angles, diluting the illusion of co-
herent 3D motion. One way to mitigate this would be to render the
scene using a cross-slit camera [Zomet et al. 2003]. In future work,
we would also like to investigate additional volumetric rendering
primitives to represent visual uncertainty and ambient point clouds.

Acknowledgements This work was supported in part by the
DFG Emmy Noether fellowship GO 1752/3-1 and Microsoft. We

Ambient Point Clouds for View Interpolation • 95:5

ACM Transactions on Graphics, Vol. 29, No. 4, Article 95, Publication date: July 2010.

Figure 9: An extreme view transition breaking the limits of traditional view-based rendering. The global and ambient point clouds fill
unknown regions providing a good 3D impression. Foreground occluders dissolve smoothly during the transition.

thank Michael Cohen for discussions, Sebastian Koch for his help
with an earlier version of this work, and the Flickr users Michael
Henze and Markus Ellerbrock for the images in Fig. 7 and 8. We
also thank SBAAAS (Superintendency for Cultural Heritage, Pisa,
Italy) and the Visual Computing Group at CNR-ISTI, Pisa, for their
support in acquiring the Duomo data set and Rolf Kruse and Cor-
nelius Weidner for the Town Square data set.

References

BUEHLER, C., BOSSE, M., MCMILLAN, L., GORTLER, S. J.,
AND COHEN, M. F. 2001. Unstructured lumigraph rendering.
Proc. SIGGRAPH, 425–432.

CHEN, S. E., AND WILLIAMS, L. 1993. View interpolation for
image synthesis. In Proc. SIGGRAPH, 279–288.

EVERS-SENNE, J.-F., AND KOCH, R. 2003. Image based inter-
active rendering with view dependent geometry. In Proc. EG,
573–582.

FITZGIBBON, A. W., WEXLER, Y., AND ZISSERMAN, A. 2005.
Image-based rendering using image-based priors. IJCV 63, 2,
141–151.

FURUKAWA, Y., CURLESS, B., SEITZ, S. M., AND SZELISKI, R.
2009. Reconstructing building interiors from images. In Proc.
ICCV.

GOESELE, M., SNAVELY, N., CURLESS, B., HOPPE, H., AND
SEITZ, S. M. 2007. Multi-view stereo for community photo
collections. In Proc. ICCV.

GORTLER, S. J., GRZESZCZUK, R., SZELISKI, R., AND COHEN,
M. F. 1996. The lumigraph. In Proc. SIGGRAPH, 43–54.

HAMMER, P. L., HANSEN, P., AND SIMEONE, B. 1984. Roof
duality, complementation and persistency in quadratic 0-1 opti-
mization. Mathematical Programming 28, 121–155.

HEIGL, B., KOCH, R., POLLEFEYS, M., DENZLER, J., AND
VAN GOOL, L. J. 1999. Plenoptic modeling and rendering from
image sequences taken by hand-held camera. In Proc. DAGM,
94–101.

HOFSETZ, C., NG, K., CHEN, G., MCGUINNESS, P., MAX, N.,
AND LIU, Y. 2004. Image-based rendering of range data with
estimated depth uncertainty. CG&A 24, 4, 34–41.

HOFSETZ, C., CHEN, G., MAX, N., NG, K. C., LIU, Y., HONG,
L., AND MCGUINNESS, P. 2004. Light-field rendering using
colored point clouds—a dual-space approach. Presence: Teleop-
erators & Virtual Environments 13, 6, 726–741.

HORNUNG, A., AND KOBBELT, L. 2009. Interactive pixel-
accurate free viewpoint rendering from images with silhouette
aware sampling. Computer Graphics Forum 28, 8, 2090–2103.

LEVOY, M., AND HANRAHAN, P. 1996. Light field rendering. In
Proc. SIGGRAPH, 31–42.

LHUILLIER, M., AND QUAN, L. 2003. Image-based rendering by
joint view triangulation. TCSVT 13, 11, 1051–1063.

MCMILLAN, L., AND BISHOP, G. 1995. Plenoptic modeling: an
image-based rendering system. In Proc. SIGGRAPH, 39–46.

NARAYANAN, P., RANDER, P., AND KANADE, T. 1998. Con-
structing virtual worlds using dense stereo. In Proc. ICCV, 3–10.

NG, K. C., TRIVEDI, M. M., AND ISHIGURO, H. 2002. Gener-
alized multiple baseline stereo and direct virtual view synthesis
using range-space search, match, and render. IJCV 47, 1-3, 131–
147.

PULLI, K., COHEN, M., DUCHAMP, T., HOPPE, H., SHAPIRO,
L., AND STUETZLE, W. 1997. View-based rendering: Visual-
izing real objects from scanned range and color data. In Proc.
EGWR, 23–34.

SEITZ, S. M., AND DYER, C. R. 1996. View morphing. In Proc.
SIGGRAPH, 21–30.

SHADE, J., GORTLER, S., HE, L.-W., AND SZELISKI, R. 1998.
Layered depth images. In Proc. SIGGRAPH, 231–242.

SHAHROKNI, A., MEI, C., TORR, P. H. S., AND REID, I. D.
2008. From visual query to visual portrayal. In Proc. BMVC.

SINHA, S. N., STEEDLY, D., AND SZELISKI, R. 2009. Piecewise
planar stereo for image-based rendering. In Proc. ICCV.

SNAVELY, N., SEITZ, S. M., AND SZELISKI, R. 2006. Photo
tourism: Exploring photo collections in 3D. ACM TOG 25, 3,
835–846.

SNAVELY, N., GARG, R., SEITZ, S. M., AND SZELISKI, R. 2008.
Finding paths through the world’s photos. ACM TOG 27, 3, 11–
21.

SNAVELY, N., SEITZ, S. M., AND SZELISKI, R. 2008. Skeletal
graphs for efficient structure from motion. In Proc. CVPR.

SZELISKI, R. 2006. Locally adapted hierarchical basis precondi-
tioning. ACM TOG 25, 3, 1135–1143.

XU, H., AND CHEN, B. 2004. Stylized rendering of 3D scanned
real world environments. In Proc. NPAR, 25–34.

XU, H., GOSSETT, N., AND CHEN, B. 2004. Pointworks: Abstrac-
tion and rendering of sparsely scanned outdoor environments. In
Proc. EGSR, 45–52.

ZITNICK, C. L., KANG, S. B., UYTTENDAELE, M., WINDER, S.,
AND SZELISKI, R. 2004. High-quality video view interpolation
using a layered representation. ACM TOG 23, 3, 600–608.

ZOMET, A., FELDMAN, D., PELEG, S., AND WEINSHALL, D.
2003. Mosaicing new views: The crossed-slits projection.
TPAMI, 741–754.

95:6 • M. Goesele et al.

ACM Transactions on Graphics, Vol. 29, No. 4, Article 95, Publication date: July 2010.

