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1. INTRODUCTION 

In many situations an experimenter is not only interested in obtaining 

point estimates of an unknown parameter, but also in associating with these 

point estimates a confidence set which guarantees a certain probability of 

covering the true parameter. Although there have been many breakthroughs in 

the theory of point estimation, little research has been aimed at the problem 

of set estimation. This is not because the problem is an unimportant one 

(indeed, many improved point estimators suffer in application from the lack 

of an associated confidence region), but rather because the set estimation 

problem involved great technical difficulty. 

In this paper we take a step in providing an applicable confidence region 

for use with an improved point estimator, the positive-part Stein estimator. 

The region is uniformly smaller than the usual one, and strong evidence is 

presented to support the claim that the region retains a specified confidence 

coefficient. The region is developed as an empirical Bayes solution to a 

decision-theoretic estimation problem. This structure is employed in order 

to obtain a reasonable form for the confidence region. Our ultimate evaluations 

of the performance are in terms of familiar frequentist criteria: volume and 

coverage probability. 

The procedure derived is applicable in many instances where si!I).ultaneous 

statements are desired; estimation of many contrasts in the analysis of variance 

or simultaneous interval estimates for regression coefficients. The applications 

are limited, however, to cases where the variances are known up to a common 

scale factor (i.e., a covariance matrix of the form cr2~, where ~ is known). 

Our techniques, as of yet, do not extend to cases where there are more than 

one totally unknown variance, which is an important case for future study. 
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In both the analysis of variance and linear regression, the estimation 

problem can be reduced to that of estimating the mean vector, e, of a multi-

variate normal distribution. For now, we assume that the covariance matrix 

is in the identity. 

The classic (maximum likelihood) point estimator based on one observa-

tion, x, is x itself, and the classic 1- a confidence set for e is 

= { e : I e - xl s: c} , (1.1) 

where c satisfies P(X2 s: c2 ) =1-a, and 1·1 denotes the Euclidean norm. (The 
p 

quantity 1- a is called the confidence coefficient. A 1- a confidence proce-

dure c satisfies i~f P9 (e € C) = 1- a . ) 

Just as it is possible to improve upon x (in terms of risk) as a point 

estimator of e, it is possible to improve upon C~ as a set estimator of 

9 • We consider a procedure C to be an improvement over C~ if the following 

are satisfied: 

i) 

ii) 

P 9 ( e € c) :.:: P 9 ( e € c~) 

Volume(c) s: Volume(cf) 
X 

for all e 
' (1.2) 

for all x , 

with strict inequality either in i) for some e or in ii) for all x in some 

set with positive Lebesgue measure. (In the tenninolog;y of Joshi (1969), Cis 

strongly preferable to C0 • ) There is a technical caveat, first noticed by Joshi 
X 

(1969), which should be mentioned. Since, by adding point sets to any confidence 

set c, it is possible to increase its coverage probability without increasing its 

volume, (1.2) is defined only up to an equivalence class, where we define two procedures 

· c1 and c2 to be equivalent if their symmetric difference (c1'\c2 ) U (C2\C1 ) 

has Lebesgue measure zero. 

If the dimension of the problem, p, is greater than two, the existence 

of a dominating procedure was established independently by Brown (19116) and 
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Joshi (1967). It was shown that by recentering the usual confidence set at 

a Stein-type estimator (hence keeping the same volume), a uniform improvement 

in coverage probability can be achieved. The arguments used were existential, 

however, and did not lead to a usable improved procedure. The problem of 

exhibiting a confidence set, and proving dominance over C~ is one of enormous 

difficulty. Although progress has been made, this progress is minuscule when 

compared with that in the point estimation problem. 

Significant progress was made by Berger (1980), although uniform dominance 

results (according to 1.2) were not obtained. However, strong evidence (both 

analytic and numerical) was presented which shows that the procedure derived 

is an improvement over rf . A major difficulty with this procedure is in imple­
x 

mentation. Berger's confidence sets are of the form 

c* = [e: [e - 5(x)] '2:-1 (x) [e - 5(x)] s: k2 } 
' 

(1. 3) 

where 5(x) is an admissible, generalized Bayes estimator of e, and l:(x) is its 

posterior covariance matrix. c* is an ellipse, so its interpretation is 

straightforward. *" Although C can yield remarkable improvement both in cover-

age probability and volume, it is fairly difficult to calculate, which limits 

its practical advantage. 

More recently, Morris (1983) has investigated the question of improving 

upon componentwise interval estimates of each e. . Using intervals centered 
J. 

at empirical Bayes estimators, with length determined by the posterior 

variance, Morris has demonstrated that it is possible to achieve substantial 

reduction in length while maintaining a confidence coefficient of approximately 

1- a • (Since the usual one-dimensional confidence interval is admissible 

(joshi, 1969), it is impossible to dominate it uniformly.) 
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A simpler approach was taken by Hwang and Casella (1982). They consid-

ered sets of the form 

, (l.4) 

where 8+ = [l- (a/lxl 2 )]+x, a positive part James-Stein estimator. c; is ob­

tained by recentering CO at 8+(x), hence has the same volume. The first ana-
x 

lytic dominance results were obtained in Hwang and Casella (1982), where it was 

proved that, for a specified range of values of a, P9 (e e C~) > P9 (e E C~) for all 

e, when p :<!': 4 • The improvement in coverage probability is quite good, yielding 

values over 99% for some e and p, when c corresponds to a 900/a confidence coefficient. 

Although sets of the form (l.4) provide unifonn improvement in coverage 

probability, they have the same volume and confidence coefficient as ~ • 

From a practical point of view, it would be more desirable to retain the same 

confidence coefficient as ~' but decrease the volume of the confidence set. 

In order to make such confidence sets easy to implement, they should have a 

simple form such as (1.4). The major goal of this paper is to examine sets 

of the form 

= , (1.5) 

where v( I x/ ) is a nondecreasing function, 0 s: v( I xl ) s: c • Clearly CE, has 

smaller volume than cfx and, if v( I xj ) is a reasonably simple function, CE, 
---- ---- --

would be quite easy to compute. There are many problems in dealing with sets 

of the form (1.5); some mathematical and some statistical. Both problems are 

centered around the function v( I xl) • From a mathematical point of view, there 

are certain minimal requirements on the fUnction v(lxl) that are needed to 

obtain a workable formula for the coverage probability of c5 . From a statis­

tical point of view, we want the fUnction v(jxl) to be meaningful, since it 

will be interpreted somewhat like a standard deviation. 
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In Section 2 we present some preliminaries that are necessary for the com­

plete development of C~ • The preliminaries are aimed more at the mathematical, 

rather than statistical, problem but are of importance when considering the 

associated statistical problem of hypothesis testing. Section 3 contains the 

derivation of the formula for the coverage probability of a class of confidence 

sets which contain C~, along with some other related results. In Section 4 a 

specific for.m of the function v(lxl) is derived through the use of a modified 

empirical Bayes argument. By deriving v( lxl) in this way, we arrive at a 

functional form which has a meaningful statistical interpretation. The proce­

dure is then evaluated using the criteria of volume and coverage probability. 

It is shown that this procedure can achieve significant volume reduction, and 

strong numerical evidence is also presented that shows that this procedure has 

uniformly higher coverage probability than the usual set. The fact that such 

a result is not demonstrated analytically, but numerically, is a limitation 

of our results; however, the formula for the coverage probability of c; (or 

almost any other variable-radius confidence set) is so complicated that analytic 

verification of dominance is enormously difficult. Thus, the coverage proba­

bilities have been evaluated numerically (not simulated) for a wide range of 

leI and p • Section 5 contains some comments and generalizations, including 

a discussion of the component confidence question and the case of unknown vari­

ance, and Section 6 contains remarks about the results presented here and the 

set estimation problem in general. 

2. PRELJNINARIES 

Let x be one observation from a p-variate normal distribution with mean 

8 and covariance matrix I, where x E RP and e E RP • A confidence procedure 

C is defined as a Lebesgue measurable subset of the product space RP X RP, 
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{(x,e): (x,e) €C} (2.1) 

Associated with C are two cross sections obtained by fixing either x or e . 

The x section of' c, which is the confidence set for e, is defined for each x 

as 

{e:(x,e) €C} (2.2) 

The other cross section, the e section, is defined for each e as 

{ x: ( x, e ) € c} (2-3) 

It would seem that, if' the interest is in set estimation of' e, then c9 

can be ignored. This is not quite true, however, for the following two 

reasons. Firstly, evaluation of' the coverage probability of' c usually 
. X 

proceeds by employing the tautology X € Ce :\.f' a;rid only if' 9 € Cx' and 

hence 

(2.4) 

Thus, evaluation of' the coverage probability depends quite strongly on c9 • 

The confidence set c; given in (1. 5), i.e., 

c~ = (e + le - 8 (x) I ~ v( I xl)} 
' 

(2.5) 

is a sphere of' radius v( lxl) • 'lhus, its interpretation as a confidence set 

is quite straightforward. When evaluating its coverage probability, however, 

we work with the e section, which is given by 

(2.6) 

In Ca, 9 is fixed and X is allowed to vary. Since X appears on both sides of' 

the inequality, there is no guarantee that C~ is a sphere (in general it will 

not be). In fact, there is no guarantee that C~ is even a connected set; it 
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may be composed of many disjoint regions. The form of v( !xl) will determine 

the structure of c;, and this is of great importance in deriving the correct 

expression for the coverage probability. In particular, whether or not c9 

is a connected set determines whether the integration must be carried out 

over one or more regions. 

Secondly, for fixed 8 = 80 , the e section of a confidence procedure, 

= [x: (x,80 ) E C} (2.7) 

is the acceptance region for a test of the null hypothesis E6:8 =80 • When 

seen in this setting, there are certain minimal properties which should be 

required of any e section c8 . The only property that we require of c9 

is that it be connected, i.e., between any two points in c9 there ia a 

continuous path in c9 that connects th~m. This is a necessary condition 

for the avoidance of logical contradictions in the hypothesis test; for 

example, if c8 is not connected it could be the case that E6 is accepted 
0 

for some value x, but would have been rejected for a value closer to s0 • 

If the primary goal of the experiment is an hypothesis test rather than 

a confidence set, it should probably be required that Cs is not only con­

nected, but also convex. The results of Birnbaum (1955) show that a convex 

acceptance region is a necessary and sufficient condition for a test to be 

admissible. (More precisely, for testing E6 :S =S 0 vs. H1 :s #e 0 , tests with 

convex acceptance regions form a minimal complete class.) 
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3. COVERAGE PROBABILITIES OF A CLASS OF CONFIDENCE PROCEDURES 

In this section the fonnula for the coverage probability of a general 

class of confidence sets is derived. We also establish sufficient conditions 

that insure that the 9 sections are connected sets. Our primary goal in 

establishing these conditions is to facilitate the evaluation of coverage 

probabilities, but we also consider the associated hypothesis testing prob-

lem. General convexity results for the 9-sections are not obtained; however, 

for an important special case the acceptance regions considered are convex 

(and, hence, the tests are admissible). 

Consider a confidence set of the form 

= [ e: I e - o(x) I ~ v( I xj ) } ' 
(3.1) 

where x is an observation from a p-variate normal distribution with mean e 

and identity covariance matrix, o(x) = y(jxl)x, and y(jxj) and v(jxj) are 

both nonnegative functions. The coverage probability of c; will be eval­

uated using the identity Pe[e E C~] :c:: p [x € c ], where cV is the e 
u e e e 

section of the confidence procedure, 

ce = [X: I e - 5 (X) I ~ v( I X I ) } (3.2) 

If we let t3 be the angle between x and e, 0 ~ t3 ~ TT, then we can write 

= [ x: I xi 2 Y. ( I xl ) - 21 x II e I y ( I xI ) cost3 + I e 12 ~ v2 ( I xI ) } (3.3) 

In the following theorem, we derive necessary and sufficient conditions 

on the functions y( I xl) and v( I xl) which insure that the 9 section C~ is 

connected. 

v 
Theorem 3.1: The set c9 = {x: je - y( 1 xl )xl ~ v( 1 xj )} is connected if and 

only if the set s6 = {t:llel-ty(t)l ~v(t)} is an interval. 
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Proof: Suppose se is the interval [ t:r_( leI) s;ts; r+( leI)} . Note that 

a point ke, where k is a scalar, is in Ce if and only if r_(lej)s; lkej s;r+(lel). 

Thus any two points in C~ tha~ are on the ray throu~ e _ca~ be connected by 

a line in Ce • we will show that for an arbitrary point x E c~, there 

is a path in c; to the ray through e' which implies that there is a path 

v v 
in ce between any two points in the set, hence ce is connected. 

v 
Fix e' and let X € c e • From (3.3) we have that 

(3.4) 

Define the set T == { y: I Yl == I xl 'e 'y ~ e 'x} . From (3. 4) it follows that 

T c C~ • (The set T centains a continuous path from x to a point on 

the ray through e, along the surface of a sphere of radius lxl centered at 0 .) 

In particular, the point y• == ( lxl /19 I )e E T since 

by the Cauchy-Schwartz inequality. Hence C~ is connected. 

To prove that c; is connected only if s9 is an interval, we con­

sider the contrapositive. Let t 1 < t 2< t 3 be such that t 1 , t 3 E s8 but 

t Js * · I "•1 * J. 2 .,_ e . Let 6 == k6 sat~sf'y 8 == t 2 . Then 6 ~ c8 • Moreover, if 

xis any point satisf'ying jxl =t2, then 

lxi 2 'F( lxl)- 2Y( lxl )8 'x + le 12 ~ lxl 2 Y2 ( lxl)- 2y(lx!) Ia llxl + le 12 

== (lx!Y(Ixl) -lel)2 >v2(jxl) , 

Thus, the shell £x: 1 xl == t 2J separates c~ 

into two non-overlapping sets, and C~ cannot be connected._ I I 

we now establish the convexity of C~, and hence the admissibility of 

the associated test, for a particular null hypothesis. 
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Theorem 3.2: For testing Ha :9 = 0 vs. ~ :9-/= o, the acceptance region 

(3-5) . 

is convex if (t:ltY(t)l~ v(t)} is an interva1. 

Proof: The acceptance region is of the fonn [x:y( I xl) I xl ~ v( lxl )} , which 

is equa1 to the set (x:O~ lxl ~B}, for some B>O. This last set is a sphere, 

which is convex. II 

Since the condition of this theorem is a special case of that of Theorem 

3.1, it immediately fo11ows that any set which satisfies Theorem 3.1 a1so 

satisfies Theorem 3.2. More importantly, since y( I xl) will usual.l.y be chosen 

to satisfy 0 s: Y( I xl )~1, the estimator 5(x) = y( I xl )x shrinks x toward zero. 

Such an estimator is really only appropriate when there is some prior belief 

that 9 is near zero. (Although 5(x) is usually chosen to be minimax, and 

hence will uniformly improve on x, the region of significant risk improvement 

is centered around e = 0 • ) If it is thought that 9 is near some va1ue other 

than o, say 90 , a better estimator is 

' 
(3.6) 

which retains the good risk properties of 5(x), but centers the region of 

significant risk improvement around 90 • The following corollary follows 

immediately from Theorem 3. 2: 

Corollary 3.1: If C~ of (3.5) is convex,_ then the set 

£x: leo - 5*(x) 1 ~vc lx- e0 1 )J 

is convex, and hence provides an admissible test of H0 :e = e0 vs. H1 :e -/= e0 

We now turn to the evaluation of the coverage probability of C~ 

= (e: 1e- Y( lxl )xl ~v( lx!)} The representation given in the following 
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theorem can be modified to include procedures with disconnected 9 sections, 

but this seems to have little practical value. 

Theorem 3.4: Let p ~ 2, and c; = (9: Is -Y( I xl )xl s: v( lxl )} , where the func­

tions Y and v satisfy 

i) Y ( t) ;;:: 0 and v( t) ;;:: 0 V t > 0 , 

ii) for fixed lei, the set s9 = (t:lty(t) -lei I s:v(t)} 

is an interval [r_( lei ),r+( leI)] . 

If I e I > 0 then 

r ( je I) 1 p-3 
= k + J :r-P-le -i ( r2+ I e 12) l ( 1 - u2) 2 e r I e I u du ' 

r_(je I) hCr) 

h( ) { r2y2(r)+l6l 2 -v2(r) 1} r = rna~ , -
2rY(r) je I 

= -1 

If jel =0, then P9 [9 EC~] = P[X2 s: r ( 0)] • 
p + 

if rY(r) f 0 

if ry(r) =0 • 

(3. 7) 

Proof: If leI = 0 then P9 [9 E C~] = Pe [x: jy( I xl)xl s: v( I xl)] • Clearly the 

region £1 xl : I xi!YC I xj ) I s: v( I xI )} contains I xj = O, hence r _( 0) = 0 and the 

result follows. 

If 1e I> o, the coverage probability of &0(9) is 

= ( ) -p/2 J ~lx-912 2TT e dx. (3.8) 
[ x: Ia ( x)-e I ~v( I xI ) } 

Transform to the spherical coordinates r = I xl, cost3 = x'S /I xll 9 I • In terms 

of these variables, the region of integration becomes 
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[ (r, 13) :z.2y2(r) - 2rle IY(r)cosj3 + Ia 12 ~ v2(r)} 

= [(r,l3):1el 2 ~v2(r),ry(r) =0} 

U ((r,j3):[rY(r) -lei ]2 ~v2(r),rY(r) ~O,cosj3~h(r)} 

= ((r,j3):r clel)~r~r clel),cosj3~h(r)} - + 

Direct substitution yields 

(3.9) 

r crel) cos-1 [h(r)] 
= k + r I rP-lsinp-2j3e ~cz.2-2rlalcosj3+1al2)dj3dr 

· r_(l a I) o 

r+(lel) 1 £:1. . 
= k J J ;rP-l(l-u2) 2 e-f(z.2-2rlelu+le12)dudr ' 

r_( 1e I) h(r) 

where the last equality follows from the substitution u = cosj3 II 

If p is odd, the inner integral can be evaluated using the binomial 

formula. If we first apply the transformation s = rl 9 I (1- u), and then use 

·the binomial expansion, we obtain our computational formula 

Pe [a € Cf) = kJ + ( __;:_ )n+l e -(r-je 1)2 /2 Li 2 . -1 i n+J.). 1- I e -rl a 11.\C~I e.l '?nH-J dr ' r n ~[(n) n-i( )i( . '][ n+i . ·]~' 
r I e I i=O (r le I) j=O (n+J.-J). 

(3.10) 
where n = (p- 3)/2 and 1::. =min(l- h(r),2) • 

One difficulty, which causes major problems when dealing with ( 3. 7) 

analytically, is that, in general, there is no explicit solution for r_(jel) 

and r+( I e I), which are the roots of the equation II e I - tY(t) I -v(t) = 0 • If 

v(t) is constant (as in Hwang and Casella, 1982), then the roots can be ex-

plici tly detennined; however, such confidence sets do not yield a volume 

reduction. 

For reasonable choices of y and v, such as those considered in the next 
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section, very good bounds can be obtained, and r_(lel) and r+(lel) can be cal­

culated quite rapidly. This makes the numerical evaluation of' (3.7) a rela-

tively simple task. 

4. AN EMPIRICAL BAYES CONFIDENCE SET 

In this section we consider specific choices of' the functions Y and v 

which lead to improved confidence sets for e . For the function y, we con­

sider Y( I xj) = [1- (a/l xl 2 ) ]+, Where a is a constant, which leads us to 

centering the confidence set at the positive-part James-Stein estimator. 

This choice is based an both theoretical and practical considerations. From 

a theoretical point of' view, it is known that it is difficult to improve upon 

the positive-part James-Stein estimator as a point estimator, and, moreover, 

it has been shown (Hwang and Casella, 1982), that the set 

has, for a range of' values of' a, higher coverage probability than the set 

[ e: I e - xl s; c) for all e • From a practical point of' view, this estimator is 

much easier to calculate than its admissible counterparts, and hence is more 

likely to be used. 

Our main concern here, however, is with confidence sets of variable 

radii, which leads us to consider specific choices of' the function v( l,xl ), 

a more clif'f'icult task. The major goal is to dominate the confidence set 

= [e:le-xjs:c} 
' 

in both volume and coverage probability, with the set 

= 

Thus, we immediately require that v( I xI ) s; c for all I xI • Indeed, for large 
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jxl we must have v(lxl)~c, so it is the growth rate of v(jxj) which becomes 

important. We also keep in mind the condition from Section 3 to insure that 

C~ is connected. With this restriction on v(lxl), we can derive a very 

simple condition which is necessary and sufficient for C~ to dominate C~ 

in coverage probability at e = 0 (and hence is necessary for overall dominance). 

Theorem 4.1: If the set [t:t-a/ts:v(t),t2 ~a} is an interval, say [a,t0 ], then 

a necessary and sufficient condition for C~ to dominate C~ in coverage 

probability at 6=0 is v(c)~c-a/c. 

Proof: At e = O, 

= P6 (jxl 2 < a) +P6 [/xl- (a/lxl) s:v(jxl ), lxl 2 >a] 

= P e ( I x 12 s: t;) 

Since P6 [e e C~] = P6 (jxj 2 s: c2 ), and c e [0, t 0 ] if and only if v(c) ~ c- (a/c), 

the result follows. II 

The theorem also gives a lower bound on the improvement in volume when 

I xj = c • If, in fact, v( c) = c - a/c, then the ratio of the radius of C v 
0 

to co at e = 0 is 1- a/c2 • 
X 

Unfortunately, choices of v(jxl) which attain this lower bound were 

found (numerically) to fail to dominate in coverage probability. One natural 

choice that was tried was 

v2(1xj) = c2 [ 1 - (a/ c2 ) ] if lxl s:c 

c2 [ 1 - (a/ I x 12 ) ] jxj > c 
(4.1) 

= if 
' 

but this v( I xI) does not lead to a dominating procedure. It is interesting 

to note that, of the procedures which failed to dominate in coverage proba­

bility, including (4.1), the region of failure was for lej values near c • 
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Instead of searching for a suitable v(lxl) in a haphazard fashion, a 

more structured approach, an empirical Bayes approach, was attempted. If we 

measure the loss of a confidence set C by 

L(e,c) = kVolume(c) -Ic(e) , (4.2) 

where IC(e) = 1 if e € C and 0 otherwise, then the Bayes rules against L(e, c) 

are of the form (Joshi, 1969) 

c~ = ( e : TT ( e 1 x) > k} 

where TT(ejx) is the posterior distribution of 9 given X. Moreover, if 

c2 /2 p/2 
k=k0 =e- /(2fT) , then the usual confidence set C~ = [e:le -xl ~c} 

is minimax against L(e,c) • 

The Bayes rule against L(e, C), assuming that e is multivariate normal with 

mean 0 and covariance matrix 'T2 I, is given by 

' 

where 58 (x) = [ -r2 /( 'T2 + 1) ]x . If we set k = k0, this set can be written 

cBx = {e :le- 58 (x)l 2 ~~ [c2 -plog(~):l} . (4.4) 
-r2+1 -r2+1 ~ 

The marginal distribution of xis multivariate normal with mean 0 and covari-

ance matrix ( 'T2 + l)I • Thus, marginally, 

and the empirical Bayes approach suggests replacing -r2 /(-r:2 +1) in (4.4) by its 

unbiased estimate. This would lead to an unreasonable procedure, however, 
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since the quantity (1 _p-,g'\ can become negative, and its logarithm would not 
lx1:-W 

be defined. We therefore consider a modification of the empirical Bayes esti-

mater given.by 

CE 
5 = [e: le-~/(x)l s: vE ( lxl)} ' 

(4.5) 

where, here, 

5+(x) = (1- [(p- 2)/jxj 2 ]}+x 
' 

(4.6) 

and 

~( lxl) = (1-~) [c2 -plog(l-~)J if jxj ~ c 

(4.7) 

= (1-~) [ c2 -plog(l-LS)J if lxl > c 
lx12 lxl2 

It is straightforward to verify that ~( lxl) is ·nondecreasing in I xj if 

c2 > p, and lim ~( 1 xl) = c2 • Hence c~ :provides uni~~rm volume improvement 
lxl-

over c~ . 

The restriction that c2 > p is really quite minor. The confidence set 

c~ = [e:le -xj 2 s:p} 

has a confidence coefficient of, roughly, 55i, and hence is of little practical 

value. AJ.so, as will be seen in the folloWing theorem, ;the condition that 

c2 > p is sufficient to guarantee the connectedness of C~ • 

Theorem 4.2: If c2 >p, then for all leI, the set 

2 + 
{t: It( 1 - ~) - I e II s v E ( t)} 

is an interval, and hence C~ is connected. 

Proof: Given in the appendix. 
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C~ also satisfies Corollary 3.1, so the acceptance region 

' 
where o and v are given in (4.6) and (4.7), provides an admissible test of 

~ : e = e 0 vs • H1 : e f= e 0 • 

The fUnction vE(jxj) also satisfies the conditions of Theorem 4.1, so we 

know that c; dominates ~ at e = 0 • Dominance in coverage probability 

for other values of e could not be proved analytically, however, but the for-

mula of Theorem 3.4 allows exact computation of these probabilities. 

The calculation of P9 [e E C~] involves first finding the roots r _ (I e I) 
and r+(jel) of the equation 

and then performing the numerical integration. Although there is no explicit 

solution for r_(jaj) and r+(jej), the following expressions yield very tight 

bounds. Fix Ia I, and define, for u> 0, 

then 

i ) If I a I ~ v E ( 0), r _ ( I e I ) = 0 and b + ( o) ~ r + ( I e I ) ~ b + ( c) . 

~ 

ii) If vE(O)< lei ~vE(=)=c, then (p-2)2 ~r_<laj)~b_[ vE(o)] 

b [ vE(O) ]~r (lel)~b (c). + + + 

iii) If lel>vE(m), then b_(c)~r_(jej)~b_[ vE(O)] and b+[ vE(O)] 

~ r+(lel)~b+(c). 

The coverage probabilities of C~, for selected odd values of p, are 

shown in Figures 1 and 2. The probabilities were computed using formula 

(3.10). The numerical evidence is quite strong; with the exception of the 
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cases p = 3, o: = .1, and p s: 5, o: = .05, c~ dominates c; in coverage prob­

ability. C~ provides a substantial gain in coverage probability for I e I 

near zero, with the gain decreasing as lei increases (since cE is converg-
8 

ing to c~ as lei increases). 

E . 
Although c8 performs well for all values of p considered, it is not 

a 1- o: confidence set for p = 3, o: = .1 or p s: 5, o: = .05 • The failure of C~ 

is so slight in these cases, however, that for all practical purposes it can 

be ignored. The problem is that, for these cases, vE(Ixl) is too small. 

Th,is problem can be overcome by modif'ying vE ( lxl) • One modification that 

works is to replace (p- 2) by (p- 2)/2 in (4. 7). The resulting procedure is 

now a 1- o: confidence procedure fo:r:- these cases, at the expense of increased 

volume (but still smaller vdJ.ume than C0 ) • 
X 

The way in which C~ fails in the cases cited is also of great inter-

est. For these cases, the coverage probability is not a decreasing function 

of I e I, as it is in the case of constant volume, and P9 (e e C~) falls below 

the nominal value for middl.e values of I e I (approximately I e I = p), where it 

seems to have a global minimum. This observation adds to the already diffi-

cult task of showing dominance analytically; the minimum must be identified 

and the procedure must be shown to dominate at this value. (This phenomenon 

is not unique to vE(Ixl) • Most of the other radius functions examined 

exhibited similar behavior.) For larger values of p, this behavior persists, 

as can be seen in Figares 1 and 2. Thus, it appears that variable radius confidence 

sets do not, in general, have decreasing coverage probabilities, which only 

adds to the difficulty of any analytic argument. 

As can be seen from Figures 1 and 2, the coverage probability of C~ is 

not a continuous function of I e I • The one discontinuity occurs at the point 



-19-

leI =vE(O). The discontinuity is partially due to the use of 6+(x) as the 

center of the set, but also to the fact that vE(Ixj) is constant for 

Os: lxl s: c. (The sets of Hwang and Casella (1982) exhibit a similar discon­

tinuity at the point I e I = c. ) If v E ( I xI ) were replaced by a monotone increas-

ing function, the coverage probability would become continuous. However, we 

do not view the discontinuity as creating any practical problem, and prefer 

to work with these simple sets. 

The practical gain in using a procedure such as C~, however, comes in 

the volume reduction achieved. An experimenter, whether using C~ or C~ 

will report the same confidence coefficient, but use of C~ allows a smaller 

radius for the same confidence coefficient. Two measures of volume reduction 

are considered. The first is merely the ratio of the volume of C~ to ~. 

Since C~ is a sphere of radius vE(Ixj), the ratio of the volumes is given 

by 

Vol[C~] 

Vol[<f] 
X 

= (4.8) 

The second measure, known as the ratio of the effective radii, is given by 

the pth root of (4. 8). Since C~ is a sphere, this is merely the ratio of 

the radii. 

By construction, vE (I xj) s: c, so c~ has uniformly smaller volume than 

C0 • For small values of jxl, this reduction can be quite significant. 
X 

From (3.6), if j x/ s: c, then 

radius of C~ 

radius of C0 

X 

= 

which can result in a substantial improvement, especially for larger values 
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of p. Moreover, from Theorem 4.1, it follows that the greatest improvement 

attainable, while still maintaining dominance in coverage probability, is 

(1- [(p-2)/c2 ]}i at jxj ::c. Again C~ provides improvement that is close 

to optimal for large values of p. Figures 3 and 4 show the ratio of the 

radius of C~ to that of C~. C~ also compares favorably to the more compli­

cated procedure of Berger (198o). Table 1 gives some comparisons with this 

procedure. It can be seen that Berger's procedure has smaller volume for lxl 

near zero, but is similar to C~ in volume for moderate and large I xl • 

As mentioned before, if a prior guess, other than 0, is known, C~ 

should be modified to be centered at this prior guess. If the prior guess 

is 90 , then the preferred confidence set is 

' 
where x* = x-90 and o(x*) = 90 +(1-[(p-2)/lx*l 2 ]}x*. This procedure 

centers the region of greatest improvement around 90 • 

5. CCMMENTS AND GENERALIZATIONS 

It is, no doubt, possible to improve upon C~ in the sense of (1.2); 

however, at this point we view this as an extremely difficult task. The 

choice of both the point estimator, o(x), and the radius function, v(/xl), 

is mostly based on intuition. Indeed, aside from the few, relatively minor, 

restrictions on v( I xl) derived here, very little is known about the forms of 

v(]xj) which would lead to reasonable confidence sets. One obvious way to 

proceed, which would be sanewhat analogous to the development for the case 

of point estimation, is through a Bayesian argument. By this we mean finding 

a prior g(e) (possibly variations of those considered in Berger, 198o) 

which yields a posterior distribution TT(e I x) such that the set (e :1l(e I x) :<!: k} 

is an admissible, minimax confidence set. 
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The empirical Bayes derivation used in Section 4 is somewhat nonstandard 

in that it employs a loss function. For those Who are uncomfortable with a 

loss function approach to set estim~ti9n, we remark that our use of a loss 

f'unction is a means to an end; the ulttmate evaluations of C~ are done for 

volume and coverage probability separately and are independent of the choice 

of loss function. An alternate derivation, without the use of a loss func-

tion, might be based on the Bayes Highest Posterior Density (HPD) region 

which, in the notation of Section 4, is given by 

(5.1) 

An empirical Bayes version of this region is given by 

' 
(5.2) 

where o+(x) is the positive part James-Stein estimator, and 

if lxl ~c 

(5.3) 

if lxl > c 

However, as mentioned in Section 4, numerical evidence has shown that C~H fails 

to dominate C~ in coverage probability for a range of middle values of lei. 
Hence, C~H is not a (frequentist) l-ex confidence set. 

This also points out the necessity of the logarithm term in vE(lxl). 

Without it, the radius is too small to guarantee dominance in coverage proba­

bility. Thus, although our evaluations of the set C~ are independent of the 

choice of loss function, our interpretation of the procedure is somewhat de-

pendent on it: we are using an empirical Bayes rule based on a decision-
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theoretic Bayes set. Whether or not the inclusion of the logarithm term hinders 

the statistical interpretation is an individual choice. We are comfortable with 

it, but others may not be. However, the implications are clear in that some 

extra term (over that in vEH(Ixl)) must be present in order to achieve domi-

nance in coverage probability. 

Perhaps one of the most important practical uses of a procedure such as 

C~ is in the construction of simultaneous confidence intervals for the individ­

ual components of e (or linear combinations of the components). If we are 

interested in the estimation of linear combinations b '9, where b is any p X 1 

vector, we can construct simultaneous intervals for this linear combinations 

using C~. In fact, if C~ is a 1-a confidence set, then with probability 1-a, 

(5.4) 

for all p X 1 vectors b • The intervals in ( 5. 4) provide a uniform improvement 

over the usual (Scheffe-type) simultaneous intervals, and are usefUl, for exam-

ple, in post-ANOVA data analysis. (The fact that (5.4) provides a set of simul­

taneous 1-a intervals follows directly from the fact that max((b'[e- o+(x)])2 /b'b} 
b 

= je- 5+(x)j 2 .) One can similarly construct simultaneous intervals on the 

individual components of e, and assert with probability 1-a, 

o:(x)- VE ( lxl) s; 9. s; o:(x) +VE (x), 
~ ~ ~ 

i = 1, ... ' p • (5.5) 

, 
Although the intervals in (5.4) and (5.5) are smaller than the usual Scheffe 

intervals, they are wider than the usual one-dimensional 1- a intervals. 

(Of course, componentwise 1-a intervals will not yield a set of simultaneous 

1- a intervals.) Morris (1983) treats the problem of one-dimensional interval 

estimation, and obtains empirical Bayes intervals which can yield substantial 

length reductions over the usual intervals. His ultimate probability evaluations, 
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however, are different fran those used here. Morris calculates coverage prob-

abilities by integrating over the joint distribution of x and e, and requires 

this probability to exceed 1 -a for a class of prior distributions on e • How-

ever, his treatment of the problem and the one given here are ultimately not 

comparable. Whether an experimenter is interested in individual confidence 

statement or simultaneous confidence statements (as given in (5.4)) defines 

two distinct statistical problems. 

For the case x-N(e, cr2I), cr2 unknown, very little is known about the be-

havior of confidence sets other than the usual one. Some simulations were 

done by Berger (198o) which suggest that his procedure will retain good per-

formance, in terms of volume and coverage probability, if cr2 is replaced by an 

independent estimate. For the set c; considered here, a natural modification 

is 

where s2 - ( a-2/v )X2 independent of x, v 

+ 8 (x, s) ( as2 )+ 
= 1- lxl2 x, 

and 

a = .....Y._(p- 2) 
\/+2 ' 

= (1- as2) [PFa - plog(l- as2 )~l if I xl2 > pF 
lxl2 ,p,v lxl2 ~ s2 a,p,v ' 

( 5.6) 

(5. 7) 

(5.8) 

where Fa is the upper a-level cutoff point from an F distribution with ,p,v 

P and \/ degrees of freedom. (Recall that the usual 1 -a confidence set for 

e is C0 
x,s 
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It is easy to check that vf(lxl/s):s;;pF for all lxl/s, so CE pro-. a,p,v x,s 

vides a uniform volume reduction over C0 • The reduction in volume is minor x,s 

for small values of v( v = 2, 5) but becomes more substantial for moderate values 

( v = 10,20) . Also, using the results of Section 3, the exact formula for the 

coverage probability of CE can be derived. (The formula is similar to that 
x,s 

given in (3.7), except there is now an integral over s2 .) These probabilities 

were calculated for selected values of p and v, and the results are presented 

in Table 2. With a few minor exceptions (at p=3), CE is a 1-a confidence x,s 

set fore, with coverage probabilities increasing as v increases. We also 

note that, unlike the case of known variance, the coverage probability of CE 
x, s 

is a continuous functionJ the integration over s2 smooths things out. 

If x-N(e,a2I:), where a2 is unknown and I: is a known positive definite 

matrix, the use of the transformation y =I: -ix reduces the . covariance matrix to 

cr2 I, showing that our results apply to this more general case. For example, 

in the usual one-way analysis of variance, x =vector of cell means, 

( -1 -1 -1) I:= diag n1 , n2 , · • ·, np , where ni =number of observations in cell i, and the 

sets and intervals given here apply. The case of estimating the coefficients 

in a linear regression can be handled in a similar manner. 

6. BEMABKS 

Only recently has significant progress been made in the problem of improv-

ing upon the usual confidence regions for a multi variate nonnal mean. The prob-

lem is one of great statistical importance, for the lack of such regions has 

made it impossible to provide tests and interval estimates associated with 

improved point estimators, and has limited the applicability of these estimators. 

Part of the reason why there has been recent progress is due to the increased 

role of the computer: many results in this area have yet to be established 
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analytically, and claims must be supported with extensive numerical evidence. 

Another reason for the recent progress is perhaps our improved understanding 

of phenomena like the Stein effect. We have observed a synthesis of the 

approach of the Bayesian and the frequentist, perhaps culminating in an 

approach like that of an empirical Bayesian. Through this synthesis a better 

understanding of Stein-type and other related procedures is gained, and new 

methods are found for constructing estimators. This is important, for it is 

not enough to exhibit a better procedure, there must be a reasonably sound 

statistical justification for it: we do not want to merely take advantage of 

mathematical anomalies. 

While we believe that the results presented here represent a step for-

ward in the confidence set problem, there are many limitations to our results. 

The most obvious one is that analytical dominance results were not obtained 

E for C0 • Although analytic dominance results have been obtained for fixed-

radius confidence sets, progress has been slower on the statistically more 

important variable radius sets. The solution to this problem will not only 

serve to make the theory more complete, but may also point out new and better 

radius functions, perhaps even different shape for the confidence sets them-

selves. 

The basic question of the proper shape of a confidence set is one that 

bas still not been settled. For the equal variance case all the sets presented 

here are spheres. There are arguments (given in Berger, 1980, and originating 

with Stein, 1962) that show that a sphere may not be the optimal shape for 

these sets. The statistical interpretation of these non-spherical sets is 

difficult, and, at this time, might be difficult for practitioners to accept. 

But such sets should not be dismissed, and with better understanding (perhaps 

through empirical Bayes considerations) these sets could become meaningful 

alternatives. 
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In terms of practical applications, the results presented here extend to 

cases where the variances are known up to a scale factor (the common assumptions 

in ANOVA and regression), but fail to extend to the case of unequal, unknown 

variance. This is, again, not due to the lack of importance of the problem, 

but rather to its enormous difficulty. It is safe to say that, until recently, 

it was not even known how to properly construct improved point estimators in 

this case. The work of Morris (1983) is a major step forward in this problem, 

providing applicable point and interval estimators for the unequal variance 

case. But more work is needed, particularly in the case of set estimation, 

on this important practical problem. 
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APPENDIX: PROOF OF TEIEOREM 4. 2 

Theorem AJ.: Let e be a confidence set defined by 

ex = {e:le -Y(Ixl)xl s:v(lxl) , 

where Y(jxl) = [1- (a/lxl 2 )]+. Let -r(t,jej) = [jej-tY(t)]2 , and let 

t*( leI) be the positive root of -r(t, leI) = 0 • If leI = O, define t*(le I) 
=a. SUppose v2(1xl) is a nondecreasing function of the form: 

v2(1xl) = v2(b) for lxl S:b 

= concave function for I xI > b , 

for some constant b;;;: 0 • Then ex is connected if either 

or 

ii) b;;;:t*Ciej) arid [bY(b)]2 s:v2(b) • 

Proof: Define, for each lei, 

= (t:-r(t,lel)s:v2(t) and ts:t*(lel)} 

s2 = ( t: -r ( t, I e I ) s: v2 ( t) and t ;;;: t * ( lei )} 

Note that t*(lel) e s1 n s2, so if both s1 and s2 are connected, 

it follows that S = s1 U s2 is connected and, Theorem Al then follows 

from Theorem 3.1. 

It is straightforward to verify that -r( t, lei ) is convex for t;;;: a, and, for 

t;;::: a, t * (leI) is the unique root of -r(t, lei)= 0 • Therefore, for t s; t*( I e I), 
the function -r c t, I e I ) - v2 < t) is nonincreasing, so s1 is an interval <and 

hence is connected). 

To see that s2 · is also an interval, consider first the case b s; t*( leI) . 

If this is so, then 't"(t,jel) -v2(t) is convex for t;;;:t*(lej) and the theorem 
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follows. If b 2: t*( leI), then let tl:::;; t2 be any two points in 82 • we 

now show that the interval [t1 , t 2 ] is in 82 • If b i [t1, t 2 ] then either 

b< t 1 or b> t 2 • If b< t 1 , then -r(t, leI) -v2(t) is convex for t 2: t 1, and 

hence [t1, t 2 ] c 82 • If b> t 2, then for any t 1 ~atisfying t 1 s: t 1 s: t 2 we 

have 

-r(t 1 , lei) -v2(t 1 ) s: -r(b, lei) -v2(b) 

s: [bY(b)]2 -v2(b)s:o , 

since bY(b) 2: leI . Hence [t1 , t 2 ] c 82 • 

Finally, if bE [t1,t2], write 

An argument similar to those above shows that each of these intervals is in 

82 and hence [t1, t 2 ] c 82 . Thus 82 is connected and the theorem 

is proved. II 

Corollary Al: If c2 > p, then for p 2: 3 the confidence set C~ defined by 

(4.5), (4.6), and(4.7) has, for all e, a connected e section. 

Proof: The corollary follows immediately from Theorem Al if we verify that 

[cY(c)]2 s:~(c) and the concavity of ~(t) fort> c . The inequality is 

straightforward to verify, and the concavity follows from noting that, for 

t> c, 

which is negative if c2 > p • II 
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Table 1. Comparison of the Volume of the Empirical Bayes Confidence Set C~ 

with those of c* (Berger's Procedure) 

Ratio of the effective radii of c~ to c 
lxl 0 1 2 4 6 8 10 20 50 

p 

6 l.08o 1.0'72 1.049 1.039 1.019 1.011 1.007 1.001 1.001 

12 1.0'75 1.0'72 l.o63 1.019 1.0'75 1.043 1.027 l.oo6 1.001 
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Table 2. Coverage Probabilities for the Set CE with Squared Radius x, s 
-vFCixl/s)spF 1 ,whereF 1 SatisfiesP(F sF 1 )=.9 • ,p,v • ,p,v p,v • ,p,v 

p=3 p=5 
v v 

leI 2 5 10 20 30 2 5 10 20 30 

0 -902 .912 .924 -933 -937 .903 -922 .944 .961 -967 
1 -902 -911 -923 -932 -936 .903 -920 -941 -958 ·964 
2 -901 .9o6 -914 .921 -926 -902 -915 -932 .948 -955 
4 .900 .899 .898 .897 .896 -901 -903 .905 .905 -905 
6 ·900 .899 .899 .899 .898 .9QO .901 .9Q1 .902 -902 
8 .9QO .900 .899 .899 .899 ·900 .900 -901 .901 -901 

10 .900 .900 -900 ·900 .900 -900 ·900 -901 -901 .901 
15 -900 ·900 -900 .900 -900 -900 -900 -900 -900 -900 
20 -900 .900 -900 -900 .9QO -900 .900 -900 -900 -900 

p=7 p=9 
v v 

leI 2 5 10 20 30 2 5 10 20 30 

0 .9Q4 .927 -953 -973 ·979 .9Q4 -930 -959 ·979 .986 
1 -903 .925 -950 .gro .m ·903 .928 -956 -977 -984 
2 -902 .920 .942 .962 .970 -902 -923 -948 -970 .978 
4 -901 -908 -916 .920 -920 -901 -911 -925 ·935 ·938 
6 .9QO .903 .9o6 -908 -908 -901 .905 -911 -915 -916 
8 -900 .902 -904 -905 -9o6 .900 -903 -907 -910 -911 

10 .9QO -901 -902 -904 .904 .900 .902 .9Q4 -907 -908 
15 ·900 -900 -901 -902 -902 ·900 .9Q1 -902 -903 .9o4 
20 -900 ·900 .901 .9Q1 -901 .900 ·900 -901 -902 .902 
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Figure 1. Coverage probabilities ~or the set C~ with radius vE(Ixl) 

:s; c, where c satis~ies P(X2 :s; c2 ) = .9 . The circles mark the jump dis-
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Figure 2. Coverage probabilities for the set C~ with radius vE(Ixl) 

s: c, where c satisfies P(X2 s: c2 ) = • 95. The circles mark the jump dis-
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Captions of Tables and Figures: 

Tables: 

1. Comparison of the Volume of the Empirical Bayes Confidence Set C~ with 

those of c* (Berger's Procedure) 

2. Coverage Probabilities for the Set CE with squared radius vf(lxl/s) x,s 

s pF l ·, where F l satisfies P(F :S: F l ) = .9 
• 'p, \1 • 'p, \1 p, \1 • 'p, \1 

Figures: 

1. Coverage probabilities for the set C~ with radius vE(Ixl)sc, Where c 

satisfies P(X2 s c2 ) = .9. The circles mark the jump discontinuities, 
p 

which occur at the points where leI = vE (0) • 

2. Coverage probabilities for the set C~ with radius vE(Ixl )sc, Where c 

satisfies P(x2 s c2 ) = .95. The circles mark the jump discontinuities, 
p 

3. 

4. 

which occur at the points where I e I = vE ( 0) • 

Ratio of the radii vE ( lxl )/c, Where c satisfies P(x2 s c2 ) = ·.9. 
p 

Ratio of the radii vE (lxj )/c, where c satisfies P(X2 s c2 ) = .95. 
p 
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