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1 Introduction and main results
We shall study the following quasilinear elliptic equation:

{
–�pu – μ

|u|p–u
|x|p = |u|p∗(s)–

|x|s u + f (x, u), x ∈ � \ {},
u = , x ∈ ∂�,

(.)

where �pu = div(|∇u|p–∇u) denotes the p-Laplacian differential operator, � is an open
bounded domain in R

N (N ≥ ) with smooth boundary ∂� and  ∈ �,  ≤ μ < μ :=
( N–p

p )p,  ≤ s < p,  < p < N , p∗(s) = p(N–s)
N–p is the Hardy-Sobolev critical exponent and p∗ =

p∗() = Np
N–p is the Sobolev critical exponent. The conditions of f will be given later.

On the Sobolev space W ,p
 (�), we set

‖u‖ :=
(∫

�

(
|∇u|p – μ

|u|p
|x|p

)
dx

) 
p

, (.)

which is well defined on W ,p
 (�) by the Hardy inequality []. It is comparable with the

standard Sobolev norm of W ,p
 (�), but it is not a norm since the triangle inequality or

subadditivity may fail, which has been clarified in []. The following minimization problem
will be useful in what follows:

Aμ,s := Aμ,s(�) := inf
u∈W ,p

 (�)\{}

‖u‖p

(
∫
�

|u|p∗(s)

|x|s dx)
p

p∗(s)
, (.)

which is the best Hardy-Sobolev constant.
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For some special f and p = , some authors ([–], s = ) ([, –], s 	= ) have studied
the existence of solutions for (.). If p = , then (.) becomes

{
–�u – μ u

|x| = |u|∗(s)–

|x|s u + f (x, u), x ∈ � \ {},
u = , x ∈ ∂�.

(.)

Ding and Tang [] obtained the existence and multiplicity of solutions for (.) if  ≤ μ <
( N–

 ),  ≤ s <  and f satisfies some suitable conditions. Kang [] considered another
special case of (.) with f (x, u) = λ

|u|q–u
|x|t ; for details, we refer the readers to see Remark ..

Let F(x, u) :=
∫ u

 f (x, s) ds, x ∈ �, u ∈ R. In order to state our results, we make the follow-
ing assumptions:

(A) f ∈ C(� ×R
+,R), limu→+

f (x,u)
up– =  and limu→∞ f (x,u)

up∗– =  uniformly for x ∈ �.
(A) There exists a constant ρ with ρ > p such that

 < ρF(x, u) ≤ f (x, u)u, ∀x ∈ �,∀u ∈R
+ \ {}.

(A) f ∈ C(� ×R,R), limu→
f (x,u)
|u|p– =  and lim|u|→∞ f (x,u)

|u|p∗– =  uniformly for x ∈ �.
(A) There exists a constant ρ with ρ > p such that

 < ρF(x, u) ≤ f (x, u)u, ∀x ∈ �,∀u ∈R \ {}.

Let b(μ) be one of zeroes of the function g(t) = (p – )tp – (N – p)tp– + μ, where t ≥ 
and  ≤ μ < μ. Now, our main results read as follows.

Theorem . Suppose that N ≥ ,  ≤ μ < μ,  ≤ s < p,  < p < N . If (A), (A) and

ρ > max

{
p,

N
b(μ)

,
p[N – p – b(μ)p]

N – p

}
(.)

hold, then problem (.) has at least one positive solution.

Theorem . Suppose that N ≥ ,  ≤ μ < μ,  ≤ s < p,  < p < N . If (A), (A) and (.)
hold, then problem (.) has at least two distinct nontrivial solutions.

Remark . We extend the special case p =  in [] to a more general situation  < p < N .
The author [] obtained one positive solution for a special case of (.) with f (x, u) =
λ

|u|q–u
|x|t , where λ > ,  ≤ t < p, q < q < p∗(t) and

q = max

{
p,

N – t
b(μ)

,
p[N – t – b(μ)p – p]

N – p

}
.

Note that the function f in [] has to be a homogeneous function, but in the present paper
it is not the case. Besides, we also obtain multiple solutions of (.) (see our Theorem .).

Remark . We prove Theorems . and . by critical point theory. Due to the lack of
compactness of the embeddings in W ,p

 (�) ↪→ Lp∗ (�), W ,p
 (�) ↪→ Lp(�, |x|–p dx) and

W ,p
 (�) ↪→ Lp∗(s)(�, |x|–s dx), we cannot use the standard variational argument directly.
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The corresponding energy functional fails to satisfy the classical Palais-Smale ((PS) for
short) condition in W ,p

 (�). However, a local (PS) condition can be established in a suit-
able range. Then the existence result is obtained via constructing a minimax level within
this range and the mountain pass lemma due to Ambrosetti and Rabinowitz (see also []).

Notations For the functional I : X → R (X is a Banach space), we say that I satisfies the
classical Palais-Smale ((PS) for short) condition if every sequence {un} in X such that I(un)
is bounded in X and I ′(un) →  as n → ∞ contains a convergent subsequence. We say
that I satisfies (PS)c condition (a local Palais-Smale condition) if every sequence {un} such
that I(un) → c and I ′(un) →  as n → ∞ (c ∈R) contains a convergent subsequence.

The rest of this paper is organized as follows. In Section , we establish some preliminary
lemmas, which are useful in the proofs of our main results. In Section , we give detailed
proofs of our main results.

2 Preliminaries
In what follows, we let ‖ · ‖p denote the norm in Lp(�). It is obvious that the values of
f (x, u) for u <  are irrelevant in Theorem ., and we may define

f (x, u) ≡  if u ≤ ,∀x ∈ �.

We shall firstly consider the existence of nontrivial solutions for the following problem:

{
–�pu – μ

|u|p–u
|x|p = (u+)p∗(s)–

|x|s + f (x, u), x ∈ � \ {},
u = , x ∈ ∂�.

(.)

The energy functional corresponding to (.) is given by

I(u) =

p

∫
�

(
|∇u|p – μ

|u|p
|x|p

)
dx –


p∗(s)

∫
�

(u+)p∗(s)

|x|s dx

–
∫

�

F(x, u) dx, u ∈ W ,p
 (�).

By the Hardy and Hardy-Sobolev inequalities (see [, ]) and (A), I ∈ C(W ,p
 (�),R).

Now it is well known that there exists a one-to-one correspondence between the weak
solutions of problem (.) and the critical points of I on W ,p

 (�). More precisely, we say
that u ∈ W ,p

 (�) is a weak solution of problem (.) if for any v ∈ W ,p
 (�), there holds

〈
I ′(u), v

〉
=

∫
�

(
|∇u|p–∇u∇v – μ

|u|p–uv
|x|p

)
dx

–
∫

�

(u+)p∗(s)–

|x|s v dx –
∫

�

f (x, u)v dx = .

Next, we shall give some lemmas which are needed in proving our main results.

Lemma . ([]) If fn → f a.e. in � and ‖fn‖p ≤ C < ∞ for all n and some  < p < ∞, then

lim
n→∞

(‖fn‖p
p – ‖fn – f ‖p

p
)

= ‖f ‖p
p.
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Lemma . ([]) Suppose  < p < N ,  ≤ s < p and  ≤ μ < μ. Then the limiting problem

⎧⎪⎨
⎪⎩

–�pu – μ up–

|x|p = up∗(s)–

|x|s in R
N \ {},

u >  in R
N \ {},

u ∈ D,p(RN )
(.)

has radially symmetric ground states

Ṽε(x) := ε
– N–p

p Ũp,μ

(
x
ε

)
= ε

– N–p
p Ũp,μ

( |x|
ε

)
, ∀ε > ,

and satisfies

∫
RN

(∣∣∇Ṽε(x)
∣∣p – μ

|Ṽε(x)|p
|x|p

)
dx =

∫
RN

|Ṽε(x)|p∗(s)

|x|s dx = A
N–s
p–s
μ,s ,

where Ũp,μ(x) = Ũp,μ(|x|) is the unique radial solution of (.) satisfying

Ũp,μ() =
(

(N – s)(μ – μ)
N – p

) 
p∗(s)–p

.

Moreover, Ũp,μ has the following properties:

lim
r→

ra(μ)Ũp,μ(r) = c > , lim
r→+∞ rb(μ)Ũp,μ(r) = c > ,

lim
r→

ra(μ)+Ũ ′
p,μ(r) = ca(μ) ≥ , lim

r→+∞ rb(μ)+Ũ ′
p,μ(r) = cb(μ) > ,

where c and c are positive constants depending on p and N ; a(μ) and b(μ) are zeroes of
the function g(t) = (p – )tp – (N – p)tp– + μ (t ≥ ,  ≤ μ < μ) satisfying  ≤ a(μ) < N–p

p <
b(μ) < N–p

p– .

Lemma . Assume that (A) and (A) hold. If c ∈ (, p–s
p(N–s) A

N–s
p–s
μ,s ), then I satisfies (PS)c

condition.

Proof Suppose that {un} is a (PS)c sequence of I in W ,p
 (�), that is,

I ′(un) → , I(un) → c, n → ∞.

By (A), we have

c +  + o()‖un‖

≥ I(un) –

θ

〈
I ′(un), un

〉

=
(


p

–

θ

)
‖un‖p +

(

θ

–


p∗(s)

)∫
�

(u+
n)p∗(s)

|x|s dx –
∫

�

(
F(x, un) –


θ

f (x, un)un

)
dx

≥
(


p

–

θ

)
‖un‖p,
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where θ = min{ρ, p∗(s)}. Hence we conclude that {un} is a bounded sequence in W ,p
 (�).

So there exists u ∈ W ,p
 (�) such that (going if necessary to a subsequence)

un ⇀ u in W ,p
 (�), un → u in Lγ (�),  < γ < p∗ and

un → u a.e. in � as n → ∞.

By the continuity of embedding, we have ‖un‖p∗
p∗ ≤ C < ∞. Going if necessary to a subse-

quence, from [] one can get that
⎧⎪⎪⎨
⎪⎪⎩

∇un → ∇u a.e. in �,
|un|p–un

|x|p– ⇀
|u|p–u
|x|p– weakly in Lp′ (�), p′ = p

p– ,∫
�

|un|p∗(s)–un
|x|s v dx → ∫

�

|u|p∗(s)–u
|x|s v dx, ∀v ∈ W ,p

 (�)
(.)

as n → ∞. By (A), for any ε > , there exists a(ε) >  such that

∣∣f (x, t)t
∣∣ ≤ a(ε) +


C

ε|t|p∗ for (x, t) ∈ � × (, +∞).

Set δ := ε
a(ε) > . Let E ⊂ � with meas(E) < δ = ε

a(ε) , it follows from the fact ‖un‖p∗
p∗ ≤ C

that ∣∣∣∣
∫

E
f (x, un)un dx

∣∣∣∣ ≤
∫

E
a(ε) dx +

ε

C

∫
E
|un|p∗ < ε →  as meas(E) → .

It follows from the fact that f (x, un)un → f (x, u)u as n → ∞ a.e. in � and Vitali’s theorem
that ∫

�

f (x, un)un dx →
∫

�

f (x, u)u dx as n → ∞.

Similarly, we can also get
∫

�

F(x, un) dx →
∫

�

F(x, u) dx as n → ∞.

Let vn = un – u. By the definition of ‖ · ‖, we get

‖u‖p = ‖∇u‖p
p – μ‖u/x‖p

p, ‖vn‖p = ‖∇un – ∇u‖p
p – μ

∥∥(un – u)/x
∥∥p

p,

it follows from un → u a.e. in �, ∇un → ∇u a.e. in � (see (.)) and Lemma . that

lim
n→∞

(‖un‖p – ‖vn‖p) = ‖u‖p.

It follows from I ′(un) → ,
∫
�

f (x, un)un dx → ∫
�

f (x, u)u dx and the Brezis-Lieb lemma
[] that

 = lim
n→∞

〈
I ′(un), un

〉

= lim
n→∞

(
‖un‖p –

∫
�

(u+
n)p∗(s)

|x|s dx –
∫

�

f (x, un)un dx
)
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= lim
n→∞

[
‖un‖p – ‖vn‖p –

∫
�

(u+
n)p∗(s) – (v+

n)p∗(s)

|x|s dx

–
∫

�

f (x, un)un dx + ‖vn‖p –
∫

�

(v+
n)p∗(s)

|x|s dx
]

= ‖u‖p –
∫

�

(u+)p∗(s)

|x|s dx –
∫

�

f (x, u)u dx + lim
n→∞

[
‖vn‖p –

∫
�

(v+
n)p∗(s)

|x|s dx
]

. (.)

From (.) and I ′(un) → , we get

 = lim
n→∞

〈
I ′(un), u

〉
= ‖u‖p –

∫
�

(u+)p∗(s)

|x|s dx –
∫

�

f (x, u)u dx. (.)

By I(un) → c,
∫
�

F(x, un) dx → ∫
�

F(x, u) dx, limn→∞(‖un‖p –‖vn‖p) = ‖u‖p and the Brezis-
Lieb lemma, we have

c = lim
n→∞ I(un)

= lim
n→∞

(

p
‖vn‖p +


p
‖u‖p –


p∗(s)

∫
�

(v+
n)p∗(s)

|x|s dx

–


p∗(s)

∫
�

(u+)p∗(s)

|x|s dx –
∫

�

F(x, un) dx
)

= I(u) + lim
n→∞

(

p
‖vn‖p –


p∗(s)

∫
�

(v+
n)p∗(s)

|x|s dx
)

.

That is,

I(u) + lim
n→∞

(

p
‖vn‖p –


p∗(s)

∫
�

(v+
n)p∗(s)

|x|s dx
)

= c. (.)

Obviously, (.) and (.) imply

lim
n→∞

[
‖vn‖p –

∫
�

(v+
n)p∗(s)

|x|s dx
]

= .

We claim that ‖vn‖p →  as n → ∞. Otherwise, there exists a subsequence (still denoted
by vn) such that

lim
n→∞‖vn‖p = k, lim

n→∞

∫
�

(v+
n)p∗(s)

|x|s dx = k, k > . (.)

By the definition of Aμ,s in (.), we have

‖vn‖p ≥ Aμ,s

(∫
�

(v+
n)p∗(s)

|x|s dx
) p

p∗(s)
, ∀n ∈N.

It follows from (.) that k ≥ Aμ,sk
p

p∗(s) , so we have k ≥ A
N–s
p–s
μ,s , which together with (.)

and c < p–s
p(N–s) A

N–s
p–s
μ,s (see the assumption in Lemma .) implies that

I(u) < .
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However, (.) implies that

‖u‖p =
∫

�

(u+)p∗(s)

|x|s dx +
∫

�

f (x, u)u dx,

it follows from the definition of I , (.) and (A) that

I(u) =

p
‖u‖p –


p∗(s)

∫
�

(u+)p∗(s)

|x|s dx –
∫

�

F(x, u) dx

≥ 
p
‖u‖p –


p∗(s)

∫
�

(u+)p∗(s)

|x|s dx –

ρ

∫
�

f (x, u)u dx

=
(


p

–


p∗(s)

)∫
�

(u+)p∗(s)

|x|s dx +
(


p

–

ρ

)∫
�

f (x, u)u dx
(
ρ > p in (A)

)
≥ .

So we get a contradiction. Therefore, we can obtain

‖vn‖p →  as n → ∞.

From the discussion above, I satisfies (PS)c condition. �

In the following, we shall give some estimates for the extremal functions. Define a func-
tion ϕ ∈ C∞

 (�) such that ϕ(x) =  for |x| ≤ R, ϕ(x) =  for |x| ≥ R,  ≤ ϕ(x) ≤ , where
BR() ⊂ �. Set vε(x) = ϕ(x)Ṽε(x), ε > , where Ṽε(x) see the definition in Lemma .. Then
we can get the following results by the method used in []:

‖vε‖p = A
N–s
p–s
μ,s + O

(
εb(μ)p+p–N)

, (.)∫
�

|vε|p∗(s)

|x|s dx = A
N–s
p–s
μ,s + O

(
εb(μ)p∗(s)+s–N)

(.)

and ⎧⎪⎪⎨
⎪⎪⎩

C′εr(b(μ)+– N
p ) ≤ ∫

�
|vε|r dx ≤ Cε

r(b(μ)+– N
p ), r < N

b(μ) ,
C′εN+r(– N

p )| ln ε| ≤ ∫
�

|vε|r dx ≤ Cε
N+r(– N

p )| ln ε|, r = N
b(μ) ,

C′εN+r(– N
p ) ≤ ∫

�
|vε|r dx ≤ Cε

N+r(– N
p ), r > N

b(μ) .

(.)

Lemma . Suppose that  ≤ s < p and  ≤ μ < μ. If (A), (A) and (.) hold, then there
exists u ∈ W ,p

 (�) with u 	≡  such that

sup
t≥

I(tu) <
p – s

p(N – s)
A

N–s
p–s
μ,s .

Proof We consider the functions

g(t) = I(tvε) =
tp

p
‖vε‖p –

tp∗(s)

p∗(s)

∫
�

|vε|p∗(s)

|x|s dx –
∫

�

F(x, tvε) dx,

g(t) =
tp

p
‖vε‖p –

tp∗(s)

p∗(s)

∫
�

|vε|p∗(s)

|x|s dx.
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Since limt→∞ g(t) = –∞, g() =  and g(t) >  for t small enough, supt≥ g(t) is attained for
some tε > . Therefore, we have

 = g ′(tε) = tp–
ε

(
‖vε‖p – tp∗(s)–p

ε

∫
�

|vε|p∗(s)

|x|s dx –


tp–
ε

∫
�

f (x, tεvε)vε dx
)

,

hence

‖vε‖p = tp∗(s)–p
ε

∫
�

|vε|p∗(s)

|x|s dx +


tp–
ε

∫
�

f (x, tεvε)vε dx ≥ tp∗(s)–p
ε

∫
�

|vε|p∗(s)

|x|s dx.

It follows from (.) and (.) that tε ≤ C for ε small enough. From the above inequality,
we obtain

tε ≤
(

‖vε‖p/∫
�

|vε|p∗(s)

|x|s dx
) 

p∗(s)–p
:= t

ε .

By (A), we can easily get

∣∣f (x, t)
∣∣ ≤ εtp∗– + d(ε)tp– for some d(ε) > .

Hence, together with tε ≤ C, we can get

‖vε‖p ≤ tp∗(s)–p
ε

∫
�

|vε|p∗(s)

|x|s dx + εC
∫

�

|vε|p∗
dx + d(ε)

∫
�

|vε|p dx.

By (.)-(.), when ε is small enough, we conclude that

tp∗(s)–p
ε ≥ 


. (.)

On the other hand, the function g(t) attains its maximum at t
ε and is increasing in the

interval [, t
ε ], together with (.), (.) and (.) and F(x, t) ≥ C|t|ρ which is directly

got from (A), we deduce

g(tε) ≤ g
(
t
ε

)
–

∫
�

F(x, tεvε) dx

=
p – s

p(N – s)
‖vε‖

p(N–s)
p–s

(∫
�

|vε|p∗(s)

|x|s dx
)– N–p

p–s
–

∫
�

F(x, tεvε) dx

=
p – s

p(N – s)
[
A

N–s
p–s
μ,s + O

(
εb(μ)p+p–N)] N–s

p–s
[
A

N–s
p–s
μ,s + O

(
εb(μ)p∗(s)+s–N)]– N–p

p–s

–
∫

�

F(x, tεvε) dx

=
p – s

p(N – s)
A

N–s
p–s
μ,s + O

(
εb(μ)p+p–N)

+ O
(
εb(μ)p∗(s)+s–N)

–
∫

�

F(x, tεvε) dx

≤ p – s
p(N – s)

A
N–s
p–s
μ,s + O

(
εb(μ)p+p–N)

+ O
(
εb(μ)p∗(s)+s–N)

– C

∫
�

|vε|ρ dx.
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Furthermore, from (.) and (.), we get

∫
�

|vε|ρ dx ≥ Cε
N+ρ(– N

p ).

Note that b(μ) > N–p
p implies

p[N – p – b(μ)p]
N – p

>
p[N – s – p∗(s)b(μ)]

N – p
.

By (.), we have ρ > p[N–p–b(μ)p]
N–p , which implies

b(μ)p + p – N > N + ρ

(
 –

N
p

)

and

b(μ)p∗(s) + s – N > N + ρ

(
 –

N
p

)
.

Therefore, by choosing ε small enough, we have

sup
t≥

I(tvε) = g(tε) <
p – s

p(N – s)
A

N–s
p–s
μ,s .

Hence the proof of this lemma is then completed by taking u = vε . �

3 Proofs of our main results
Proof of Theorem . From the Sobolev and Hardy-Sobolev inequalities, we can easily get

‖u‖p
p ≤ C‖u‖p,

∫
�

|u|p∗(s)

|x|s dx ≤ C‖u‖p∗(s),

‖u‖p∗
p∗ ≤ C‖u‖p∗

, ∀u ∈ W ,p
 (�).

(.)

The condition (A) implies that for any ε >  there exist δ > δ >  such that

∣∣f (x, u)
∣∣ < εup–, ∀u ∈ (, δ)

and

∣∣f (x, u)
∣∣ < up∗–, ∀u > δ.

Therefore, there exists a constant Cε >  such that

∣∣f (x, u)
∣∣ ≤ εup– + Cεup∗–, ∀u ∈ R

+,∀x ∈ �.

Then one gets

∣∣F(x, u)
∣∣ ≤ 

p
ε|u|p + C|u|p∗

, ∀u ∈R
+,∀x ∈ �. (.)
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By (.) and (.), we have

I(u) =

p
‖u‖p –


p∗(s)

∫
�

(u+)p∗(s)

|x|s dx –
∫

�

F(x, u) dx

≥ 
p
‖u‖p –

C
p∗(s)

‖u+‖p∗(s) –
C
p

ε‖u‖p – CC‖u‖p∗

for ε >  small enough. So there exists β >  such that

I(u) ≥ β for all u ∈ ∂Br =
{

u ∈ W ,p
 (�),‖u‖ = r

}
, r >  small enough.

By Lemma ., there exists u ∈ W ,p
 (�) with u 	≡  such that

sup
t≥

I(tu) <
p – s

p(N – s)
A

N–s
p–s
μ,s .

It follows from the nonnegativity of F(x, t) that

I(tu) =

p

tp‖u‖p –


p∗(s)
tp∗(s)

∫
�

(u+
)p∗(s)

|x|s dx –
∫

�

F(x, tu) dx

≤ 
p

tp‖u‖p –


p∗(s)
tp∗(s)

∫
�

(u+
)p∗(s)

|x|s dx,

therefore, limt→+∞ I(tu) → –∞. Hence, we can choose t >  such that

‖tu‖ > r and I(tu) ≤ .

By virtue of the mountain pass lemma in [], there is a sequence {un} ⊂ W ,p
 (�) satisfying

I(un) → c ≥ β and I ′(un) → ,

where

c = inf
h∈�

max
t∈[,]

I
(
h(t)

)

and

� =
{

h ∈ C
(
[, ], W ,p

 (�)
) | h() = , h() = tu

}
.

Note that

 < β ≤ c = inf
h∈�

max
t∈[,]

I
(
h(t)

) ≤ max
t∈[,]

I(ttu) ≤ sup
t≥

I(tu) <
p – s

p(N – s)
A

N–s
p–s
μ,s .

By Lemma ., we can assume that un → u in W ,p
 (�). From the continuity of I ′, we know

that u is a weak solution of problem (.). Then 〈I ′(u), u–〉 = , where u– = min{u, }. Thus
u ≥ . Therefore u is a nonnegative solution of (.). By the strong maximum principle, u
is a positive solution of problem (.), so Theorem . holds. �
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Proof of Theorem . By Theorem ., problem (.) has a positive solution u. Set g(x, t) =
–f (x, –t) for t ∈R. It follows from Theorem . that the equation

–�pu – μ
|u|p–u

|x|p =
|u+|p∗(s)–

|x|s u + g(x, u)

has at least one positive solution v. Let u = –v, then u is a solution of

–�pu – μ
|u|p–u

|x|p =
|u+|p∗(s)–

|x|s u + f (x, u).

It is obvious that u 	= , u 	=  and u 	= u. So problem (.) has at least two nontrivial
solutions. Therefore, Theorem . holds. �
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