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Abstract

Background: The value of a continuous character evolving on a phylogenetic tree is commonly modelled as the
location of a particle moving under one-dimensional Brownian motion with constant rate. The Brownian motion
model is best suited to characters evolving under neutral drift or tracking an optimum that drifts neutrally. We present
a generalization of the Brownian motion model which relaxes assumptions of neutrality and gradualism by
considering increments to evolving characters to be drawn from a heavy-tailed stable distribution (of which the
normal distribution is a specialized form).

Results: We describe Markov chain Monte Carlo methods for fitting the model to biological data paying special
attention to ancestral state reconstruction, and study the performance of the model in comparison with a selection of
existing comparative methods, using both simulated data and a database of body mass in 1,679 mammalian species.
We discuss hypothesis testing and model selection. The stable model outperforms Brownian and Ornstein-Uhlenbeck
approaches under simulations in which traits evolve with occasional large “jumps” in their value, but does not perform
markedly worse for traits evolving under a truly Brownian process.

Conclusions: The stable model is well suited to a stochastic process with a volatile rate of change in which biological
characters undergo a mixture of neutral drift and occasional evolutionary events of large magnitude.

Keywords: Comparative methods, Ancestral state reconstruction, Evolutionary models

Background
Statistical methods that take into account the dependen-
cies introduced into comparative data by phylogenetic
relatedness are fundamental to hypothesis testing and
exploration in comparative biology [1,2]. Each compara-
tivemethod implicitly imputes to the evolutionary process
some specific stochastic model [3]. The validity of phy-
logenetic comparative methods depends on the degree
to which historical events can be accommodated by the
underlying stochastic model of trait evolution, and a mis-
match between model and reality can yield erroneous
statistical results, especially in the reconstruction of inac-
curate ancestral character states [4-7]. For this reason
it is important to develop realistic stochastic models of
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character evolution (and to constrain those models using
empirical data where possible).
The Brownian motion model of evolution – in which

the value of a continuous trait evolves by accruing incre-
mental changes drawn from a random distribution with
zero mean and finite constant variance, such that the sum
of many increments is distributed according to a nor-
mal density [1] – was introduced to model changes in
gene frequencies by Cavalli-Sforza and Edwards [8] but
now underlies (directly or indirectly) a range of popular
methods for the analysis of continuous traits distributed
over phylogenetic trees. In the realm of ancestral state
reconstruction the value of a trait evolving across a phy-
logenetic tree can at all times be shown to be proba-
bilistically distributed according to a normal distribution
with variance depending only on tree topology and branch
lengths [9-11], while in the realm of regression analy-
sis the model yields normally distributed residuals and a
covariance matrix depending only on tree topology and
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branch lengths [12], both cases giving rise to simple and
analytically-tractable solutions. The Brownian walk of a
trait value can be regarded as a model of gradualistic
neutral evolution since variation in the trait arises from
a process of random drift over the branches of a phy-
logeny at a constant rate and without directionality. A
further application thus involves identifying significant
departures from the expectation of the Brownian motion
model as a means of detecting adaptive variation in the
tempo and mode of trait evolution [13-15].
We here describe a simple generalization of the Brow-

nian motion model of continuous character evolution
which extends the model to include cases where incre-
ments to an evolving character may arise from a sym-
metric stochastic process but without assuming constant
finite variance. Not only is the Brownian assumption of
constant finite variance, to the best of our knowledge,
unverified in existing biological systems, but its relax-
ation may better suit the domain of application of the
standard Brownianmotionmodel, namely biological char-
acters likely subject to some degree of selection, and in
many cases it may offer a more robust form of statisti-
cal inference with respect to outliers in the data. Broadly
speaking, we conceptualize diversifying selection on con-
tinuous characters as causing an increase and purifying
selection on such characters a decrease in the rate of evo-
lutionary change. The relative frequencies of these forms
of natural selection along with neutral drift are expected
to generate — for sums of evolutionary increments over
long periods of time — limit distributions with heavier
tails than expected under the Brownian motion model.
Just as the limit distribution of sums of variates drawn

from a distribution with constant finite variance is the
normal distribution, so the limit distribution of sums of
variates drawn from a distribution without fixed finite
variance is the stable distribution [16-18], which has the
normal distribution as a special case and which otherwise
is characterized by heavy tails, closure under convolution
and, potentially, by skew [19]. Stochastic processes and
random walks with volatile variance and heavy tails have
previously been modelled robustly using stable distribu-
tions in areas as diverse as the study of fractional diffusion
[20], earthquake forecasting [21], signal processing [22],
animal foraging [23], rainfall modelling [24], commodity
pricing [25], real estate markets [26], foreign exchange
rates [27], financial statistics [28], image processing [29]
and telecommunications management [30]. Landis et al.
[31] recently used a Brownian motion model with Lévy
stable jumps to model jumps in the evolution of contin-
uous traits. According to our view of selection resulting
in the generation of evolutionary rate volatility we limit
our attention in this paper to the symmetric zero-centred
stable distribution parameterized by α, the index of stabil-
ity and c, the scale. We model evolution using the stable

generalization of Brownian motion, the stable random
walk [17]. The stable random walk shares some attrac-
tive properties of Brownian motion, the most important
being closure under convolution, such that the sum of sev-
eral stable distributions is itself a stable distribution with
the same α parameter. This closure under linear trans-
formation contrasts with all other non-stable heavy tailed
distributions, which may yield complex and analytically
intractable mixtures in convolution. Thus, after accumu-
lating increments from a symmetrical zero-centred stable
distribution, the value of an evolving trait is always prob-
abilistically distributed according to a stable distribution
with mean equal to the trait value prior to accumulation
and with scale proportional to the number of increments,
or in phylogenetic parlance the branch length.
Figure 1 illustrates the log probability densities of some

unit-scale zero-centred symmetrical stable distributions
that differ in the value of α, including the special cases of
the normal distribution (α = 2) and the Cauchy distri-
bution (α = 1). Figure 2 illustrates some stable random
walks driven by accumulation of increments from stable
noise with various α values. It is clear from inspection of
these figures that declining α is associated with increas-
ingly heavy tails, translating into increasingly volatile ran-
dom walks which exhibit Brownian-like drift (associated
with increments drawn from the high-probability modal
region of the underlying distribution) interspersed with
occasional rapid jumps in trait value (associated with
increments drawn from the low-probability heavy tails).
As a motivating example of how the accommodation

of evolutionary rate volatility may affect the inference of
evolutionary processes, we present a simple toy model
of continuous character evolution on a phylogenetic tree
with six tips. The values of an evolving character were
simulated under the Brownian motion model and values
at internal nodes were reconstructed based on values at
the tips only, first by fitting a Brownian motion model and

Figure 1 Log probability densities of stable distributions with
varying α, including the normal distribution (α = 2) and the
Cauchy distribution (α = 1) as special cases.
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Figure 2 Stable randomwalks with varying α, driven by accumulation of a single sample of 500 increments drawn from a uniform
distribution between zero and one, transformed onto stable distributions using the inversion method [32].

second by fitting a stable model using the method pre-
sented later in this paper. Next, the value of the character
on a single tip was artificially inflated by a factor of ten,
to represent a bout of adaptive evolution (or other event
such as measurement error) on the branch leading to that
tip. Again, values at internal nodes were reconstructed
under both models. Results are illustrated in Figure 3.

Both reconstructionmethods yield similar ancestral states
for the original Brownian motion data, but differ for the
manipulated data. The Brownian motion model exhibits
an “averaging effect” in which the apparently high rate of
evolution resulting from the manipulation is distributed
somewhat evenly over all the branches, causing a large
increase in estimated ancestral states for several internal

Figure 3 Ancestral state reconstruction of data simulated under Brownian motion. Top row: phylogenies exhibiting ancestral state
reconstructions; each tip is labeled with the known character state, while at each internal node, upper values represent the Brownian motion
maximum likelihood reconstruction and lower values represent the reconstruction under the stable Markov chain Monte Carlo model to be
described in this paper (left: original simulated data; right: the character value of a single tip has been multiplied by ten to simulate rapid evolution
(or measurement error) on a single branch). Bottom row: the marginal probability density derived from MCMC for the ancestral state assignment of
the root node using unmodified (left) and modified (right) data; the Brownian motion marginal probability density is grey and the stable margin
probability density is black.
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nodes. The stable model, however, can entertain rare
increments of large magnitude, and so is not strongly
affected by the manipulation; the apparently high rate of
evolution on a single branch can be accommodated as a
rare event in a heavy-tailed stochastic process.
In this paper we describe the stable model and the pro-

cedures used to fit it to empirical data, with an emphasis
on ancestral state reconstruction. We outline strategies
for hypothesis testing and model selection. We apply the
stable model to simulated data in order to estimate error
rates of the model selection procedure, and also use it,
alongside a number of alternative models, in an illustra-
tive case study of ancestral state reconstruction based
on a large dataset of mammalian body masses. Finally
we discuss the relationship between the stable model
of trait evolution and a number of alternative exten-
sions of the Brownian motion model that have been pro-
posed in the literature, and suggest avenues for further
development.

Methods
Model
Consider a rooted phylogenetic tree T which may or
may not contain polytomies. A continuous character X
evolves along the branches of T , taking values b1 and b2
at the beginning and end, respectively, of each branch b.
Under the standard Brownian motion model of evolution,
the continuous character evolves by accumulating ran-
dom independent increments drawn from a probability
distribution with constant mean zero and constant finite
variance σ 2. According to the central limit theorem, the
sum of such increments along a branch b of length tb is
probabilistically distributed according to a normal den-
sity with mean zero and variance tbσ 2, a density which
we denote φ

(
b2 − b1; tbσ 2). Given the independence of

increments, and therefore of branches, the likelihood of
an ancestral state reconstruction of a continuous char-
acter evolving under Brownian motion is given by the
product:

L(X, σ ; T ) =
∏
b

φ
(
b2 − b1; tbσ 2) (1)

If the variance of the increment generating distribu-
tion is not constant and finite (as we suppose to be the
case under departures from neutrality and gradualism)
then according to the generalized central limit theorem
the limit distribution for the sum of random indepen-
dent variates is not normal but falls into the more general
class of stable distributions, parameterized by an index of
stability α and a scale c. The symmetric stable distribu-
tion has probability density denoted S(x;α, c). Following

Matsui and Takemura [33], the unit stable density with
c = 1 may be defined as:

S(x;α, 1) = α

π |α − 1|x
∫ π

2

0
G(κ ;α, x) exp(−G(κ ;α, x))dκ

(2)

where

G(κ ;α, x) =
(x cos κ

sinακ

) α
α−1 cos(α − 1)κ

cos κ
, (3)

and the general symmetrical stable density S(x;α, c) is a
transformation of the unit stable density S

( x
c ;α, 1

)
/c.

One important property of the stable distribution is that
the normal distribution is a special case with α = 2. For
the zero-centred symmetrical cases treated here, we note
that:

φ
(
x; σ 2) = S

(
x; 2,

σ√
2

)
(4)

Furthermore, the sum of t variates drawn from a stable
distribution S(α, c) is distributed as S

(
α, (tcα)

1
α

)
. Thus,

under a stable model of evolution, the likelihood of an
ancestral state reconstruction of X is given by:

L(X,α, c; T ) =
∏
b
S

(
b2 − b1;α, (tbcα)

1
α

)
(5)

which is functionally identical to Eq. 1 when α = 2.
Unfortunately, there is no analytical solution to the sta-

ble probability density function in Eq. 2, so it is necessary
to employ numerical methods [19,33-36] to calculate like-
lihoods of stable models. The model does not lend itself
to direct maximum likelihood estimation of parameters
due to the existence of a highly multi-modal likelihood
surface and because arbitrarily high likelihoods can be
obtained by setting b1 = b2 for any single internal branch
b and having c → 0, a problem exhibited by other statisti-
cal models with non-constant variance [37], and circum-
vented through the placing of an appropriate prior on the
scale parameter that penalizes the approach to zero, and
fitting the model using a Bayesian approach. Since numer-
ical estimation methods are unreliable under extremely
heavy tails (i.e. α < 0.2) [33] we apply flat or triangular
priors to the index of stability on the domain 0.2 < α ≤ 2,
and a loose inverse gamma prior on the scale parameter
which has Pr(c → 0) → 0 (see section on Choice of Priors
below).

MCMC estimation
Markov chain Monte Carlo (MCMC) methods are
widely used to estimate complex multivariate probability
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densities in numerous biological fields. The goal of such
methods is to generate a sample from a probability dis-
tribution by constructing a Markov chain that has the
desired distribution as its equilibrium density. A common
strategy is to utilize a Metropolis-Hastings sampler [38] in
which the statistical model is initialized with some set of
parameter values θ , a new candidate parameter θ ′ is gener-
ated by a symmetrical proposal distribution, and accepted
as the next step of theMarkov chain with probability equal
to P(θ ′)/P(θ). We found that the Metropolis-Hastings
sampler performed poorly in estimating ancestral states
and parameters of the stable model due to the multi-
modality of the local likelihood surface (Figure 4) and
the non-independence of ancestral state values, which
together generate numerous very small “islands” of high
likelihoodwhich are unlikely to be explored by theMarkov
chain in a reasonable amount of time. This results from
the fact that proposals generated by the Metropolis-
Hastings algorithm are constrained by the proposal distri-
bution to be close in value to the current parameter value.
Modified versions of the procedure, such as Metropolis-
coupled Markov chain Monte Carlo [39] did not yield any
benefit.
We found that implementation of a slice sampler [40]

manifestly improved the mixing of Markov chains. New
proposals under a slice sampler are drawn from the entire
range of possible values of the parameter and are not
restricted by a proposal distribution to be close in value to
the current estimate. Instead of accepting new proposals
according to the likelihood ratio criterion, slice samplers
accept all new proposals but tend to make proposals that
have likelihood similar to the current likelihood of the
chain. This allows large jumps across widely dispersed
peaks in the multi-modal likelihood surface at each step
of the Markov chain, offering an “escape” from local sub-
optimal peaks in the likelihood surface. To be specific,
each step of the chain involves the value of each individual
parameter θi being replaced by a new value θ ′

i drawn

randomly from the conditional probability distribution
P
(
θ ′
i |θj, θk , . . .

)
.

The procedure for generating new proposals under slice
sampling is a three-step process. First, the conditional
proability of the current parameter, given fixed values
for all other parameters in the model, P

(
θi|θj, θk , . . .

)
, is

estimated. This is a numerical value between zero and
one that is proportional to the likelihood of the cur-
rent model. Second, a random number y is drawn from
the uniform distribution between zero and the calculated
conditional probability. Third, we identify the set of all
possible parameter values which would have conditional
probability P

(
θ ′
i |θj, θk , . . .

)
greater than y and accept a new

proposal at random from this set. If y is very close to the
current conditional probability, the set of proposals with
conditional probability greater than y will tend to include
large numbers that fit the data better than the current
model. Selecting a proposal at random from this set would
tend to increase the likelihood of the Markov chain over
time. However, when y is much less than the current con-
ditional probability, the set of proposals with conditional
probability higher than ywill also includemany candidates
with lower likelihood, and selecting a proposal from the
set would permit the chain to decline in likelihood over
time. Neal (2003) has shown that the stationary distribu-
tion of such a Markov chain constitutes a sample from the
complete posterior distribution that we are attempting to
characterize. Critically, for a highly multi-modal posterior
distribution, slice sampling permits large jumps away from
suboptimal likelihood peaks even when the sampled dis-
tribution exhibits widely separated modes. The procedure
is illustrated graphically in Figure 5.

Choice of priors
We specify prior distributions on the stable parameters
α and c, denoted Pr(α) and Pr(c) respectively. We have
found that choice of priors on the index of stability have
little effect on the ancestral state reconstruction, while

Figure 4Multi-modal conditional probability densities on phylogenies. (A) A focal node in a phylogenetic tree has two children with trait
values 2 and 3, and a parent with trait value 0, to which it is connected by branches of unit length. (B) The potentially multi-modal conditional
probability density function describing the probability with which the focal node has some trait value given the values of its children and parent
(several curves differ in terms of the scale parameter of the stable distribution, but have a common α = 1.5).
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Figure 5 Slice sampling. An example of slice sampling updating the value of the focal node from Figure 4(A) from θi to θ ′
i . First, the conditional

probability that the value of the evolving character at the focal node is equal to θi – given the other ancestral states and stable model parameters –
is calculated. A random number y is drawn from the uniform distribution between zero and this conditional probability (marked with a dotted line).
The set of possible values of θ ′

i is estimated by bracketing regions around the modes of the distribution for which the conditional probability is
greater than y (solid lines and shaded region of the distribution). The new value θ ′

i is drawn as a uniform random variable from this set.

the prior on the scale parameter effects the smooth-
ness of the posterior density (Figure 4, right panel). How
should we choose appropriate priors for the Monte Carlo
simulation? We believe that the Brownian motion model
is a useful null model for the evolutionary process. Since
the Brownian motion model is a special case of the stable
model it is conservative to choose priors that maximize
the a priori likelihood of the Brownianmodel fit. Consider
Equations 1 and 5. If we set α = 2 and c = σ/

√
2 then

the stable model will be identical to the inferred Brown-
ian motion model. So, priors with maximum likelihood at
α = 2 and c = σ/

√
2 are conservative with respect to the

null hypothesis.
We use a uniform or triangular distribution between 0.2

and 2 for Pr(α). We do not permit α < 0.2 since numer-
ical estimation methods are unreliable at this extreme of
heavy tails [33]; if a triangular rather than uniform prior is
selected then its maximum is set equal to 2.
We use an inverted gamma distribution for our prior on

c, though of course in principle the stable model accom-
modates any reasonable priors that maintain 0 < α ≤ 2
and c > 0. Our choice of Pr(c) is motivated by the fact that
the inverted gamma distribution has an appropriate shape
for the scale of a stable distribution and, as the conjugate
prior for a normal variance, it is commonly used as the
prior on the unknown variance of a normal distribution
with fixed mean [41]. It is defined as:

g(x; a, b) =
bax−1−a exp

(
− b

x

)
�(a)

(6)

with a > 0 and b > 0. As suggested above, it seems con-
servative to suppose that the rate of evolutionary change
with highest a priori likelihood should be the rate of
change imputed by the neutral Brownian motion recon-
struction, denoted σ in Equation 1. This rate of evolution
is readily calculated from ancestral states generated by a
squared change parsimony ancestral state reconstruction
or other methods; hence, the inverted gamma prior on
the scale of the evolutionary process should have its mode
at σ/sqrt2. The mode of an inverted gamma distribution
is defined as x = b/(a − 1), so the values of the prior
hyperparameters a and b should obey the following con-
straints: a = −1 + b

√
2/σ and b > σ/

√
2. So, the value

of a is entirely determined and the appropriate value of
b is easily obtained by linear search or Newton-Raphson
optimization, maximizing the likelihood of Equation 1.
In this way, our use of the Brownian motion model as a

null hypothesis allows us to choose directly some reason-
able and conservative priors on the more general stable
model, in which the Brownian motion ancestral state
reconstruction has highest prior likelihood. By default, the
software accompanying this paper uses this approach, but
can use custom values of the prior hyperparameters a and
b upon request.

Hypothesis testing andmodel selection
It is desirable to formulate a statistical model selection
criterion to determine whether the stable model of contin-
uous character evolution (with α < 2) fits the data better
than than the Brownian motion model (with α = 2), as
a means of estimating the best possible ancestral state
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estimates and of testing the hypothesis that a set of char-
acter data at the tips of a phylogeny exhibits patterns con-
sistent with departure of the evolutionary process from
neutrality. For maximum likelihood approaches, Akaike’s
Information Criterion (AIC) [42] is a popular choice.
However, since AIC depends upon maximized likelihood,
while our Markov chain Monte Carlo procedure only
generates a sample from the posterior (conditional) dis-
tribution of stable parameters and ancestral states, it
is difficult to calculate Akaike’s Information Criterion in
this case.
There exist a number of Bayesian generalizations of AIC

which may be calculated from posterior MCMC samples,
most notably the Deviance Information Criterion (DIC)
[43]. Statistical deviance is a quantity that, for our pur-
poses, can be defined as a measure of goodness of fit
that is calculated at each step in the Markov chain, and
is equal to minus twice the log likelihood of the stable
model specified at the focal step of the Markov chain,
i.e., D = −2log L(X,α, c; T ). Hence, a lower deviance
indicates a higher likelihood and better fit to the data.
Akaike’s Information Criterion is equal to the deviance
of the maximum likelihood model, offset by a penalty for
complexity equal to twice the number of parameters in the
model. In the absence of a maximum likelihood estimate
of the deviance, DIC makes use of D̄, the average deviance
across all posterior samples from the Markov chain, as
its primary measure of goodness of fit. It is also possi-
ble to calculate a “base-line” measure of goodness of fit
by calculating, for each parameter, the average value over
all steps in the Markov chain, and then calculating the
deviance of this average model, denoted D̂. If D̄ is much
higher than D̂, the implication is that the model being fit
is highly complex, since parameter estimates during the
chain must be oscillating around values far removed from
their mean across the chain as a whole. The Deviance
Information Criterion encapsulates this notion of com-
plexity in an “effective number of parameters” or pD equal
to D̄ − D̂. So, while AIC is defined as the deviance of
the maximized likelihood plus the number of parameters,
DIC is defined as the average deviance across all poste-
rior samples plus the effective number of parameters, or,
D̄ + pD.
Our simulation studies indicated that in phylogenetic

datasets pD did not increase sufficiently in line with tree
size, resulting in over-fitting of stable models on large
trees. This is likely because tree size is not incorporated
as a component of model complexity in the informa-
tion criterion. A Bayesian Predictive Information Crite-
rion (BPIC) developed by Ando [personal communication
[44]], which amounts to DIC with a increased multiplier
on the pD penalty, resolved this problem of over-fitting
(see Results below). Specifically, we use the criterion
D̄ + 2pD.

Software implementation
Efficient software for fitting the stable model to phyloge-
netic trees and their associated data was written in C++
and is available at http://www.sfu.ca/~micke/stabletraits.
html as source code and also compiled for various oper-
ating systems. The software reports a posterior sample
of ancestral state reconstructions and stable parameter
values in a format compatible with the Tracer software
application [45], along with the proportional scale reduc-
tion factor convergence diagnostic [46] and Bayesian
Predictive Information Criterion for assessment of model
fit [44]. Multiple chains are run on independent threads,
or on independent processors in a cluster computing envi-
ronment (for which a torque job submission script is also
available).

Application to simulated and natural data
In order to assess the improvement (if any) in quality of
ancestral state reconstruction and the ability of statisti-
cal tests to identify biological characters that have evolved
under a stable rather than Brownian stochastic process,
data were simulated under a variety of conditions. Evo-
lutionary increments were generated randomly from a
stable model with unit scale and index of stability rang-
ing from 1.0 to 2.0 in steps of 0.2, on random phylogenetic
trees with 25, 40, 60, 90, 130, 175, 235, 325, 440 and 600
tips generated under the Yule model in Mesquite [47].
This procedure gave rise to 60 experimental conditions,
each consisting of 250 trees and simulated datasets, and
varying in tree size and index of stability of simulated
trait values. Based on data at the tips, ancestral states
were reconstructed using themodal posterior density esti-
mate from MCMC, first with α fixed at 2.0 (representing
a Brownian motion model) and second with a free α

(representing a general symmetric stable model). Ances-
tral states were also estimated using the homogenous
Ornstein-Uhlenbeck model for comparison. Estimates of
Type I and Type II error rates under the BPIC criterion
were made for each tree size/stability condition. Accu-
racy was assessed for Brownian, Stable and OU models
by calculating variance of the inferred ancestral states
from the true simulated states for each simulated dataset
under each condition.We report here themedian variance
ratio of stable/Brownian and stable/Ornstein-Uhlenbeck
reconstructions within each experimental condition.
To provide a demonstration of the model’s application

to real biological datasets, we made use of a supertree of
mammalian species [48] and fitted the stable model of
character evolution to data on the log adult body mass of
1,679 eutherian mammals [combined data from [49,50]].
For purposes of comparison we also estimated ances-
tral states under two homogenous evolutionary models,
the Brownian motion model and the Ornstein-Uhlenbeck
model, the latter estimates obtained by maximum

http://www.sfu.ca/~micke/stabletraits.html
http://www.sfu.ca/~micke/stabletraits.html
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likelihood search from parameter estimates generated by
the SLOUCH package in R [51]. Finally we also inferred
ancestral states using two heterogenous models, the time-
heterogenous Early Burst model [14,52] in which the
rate of a Brownian process increases or decreases expo-
nentially in time, and the clade-heterogenous model of
Eastman et al. [53] in which the rate of a Brownian process
is “inherited” within clades but allowed to occasionally
shift in value on probabilistically selected branches of
a phylogeny. The former ancestral state estimates were
made by maximum likelihood search based on param-
eter estimates and scaled phylogenies derived from the
GEIGER package in R [54] while the latter ancestral state
estimates were made by Brownian motion maximum like-
lihood reconstruction on a tree with branch lengths scaled
by the maximum posterior probability estimates of rates
reported by the Auteur package in R [53]. Connections
between these various models and the stable model are
discussed below.

Results
Our analysis of simulated evolution on random phyloge-
netic trees indicates that biological traits derived from a
Brownian process can be statistically distinguished from
those derived from a non-Brownian symmetrical stable
process on the basis of the Bayesian Posterior Information
Criterion (Table 1). This model selection criterion was
found to be highly conservative, with a low rate of false
rejection of the null hypothesis for trees of all sizes, but
with the expected low power to detect small departures
from the neutral Brownian model on small trees.
In ancestral state reconstruction of traits simulated

under Brownian motion the stable model performed
as well as the Brownian model (Table 2), with median
squared error ratio ranging from 1.02 to 1.00, and bet-
ter than the Ornstein-Uhlenbeck model, with median
squared error ratio ranging from 0.36 on the smallest
tree to 0.86 on the largest (Table 3). For trees simulated
under the stable process with α < 2, the stable model

yielded more accurate ancestral state estimates, increas-
ingly so for large trees and large deviations from Brownian
motion. For themost extreme index of stability considered
here (α = 1.0) the mean squared error under Brownian
motion reconstruction was from 4.8 to 100 times higher,
and under Ornstein-Uhlenbeck reconstruction from 5.9
to 100 times higher, than the mean squared error under
stable reconstruction.
Results of our analysis of a dataset of mammalian body

masses are presented in Table 4. The maximum posterior
probability estimate of the index of stability α was 1.55
and the Brownian motion model was soundly rejected in
favour of the stable model under the BPICmodel selection
criterion (	BPIC = 465). The Ornstein-Uhlenbeck also
fit significantly better than the Brownian motion model
(	AICc = 24) as did the multi-rate model of Eastman
et al. [53] (posterior probability of no rate changes= 0). In
order to provide the entries in Table 4 for Early Burst we
inferred maximum likelihood ancestral states under the
global parameter estimate reported by Cooper and Purvis
[55] in their broader study of mammalian body mass evo-
lution: the Early Burst model did not differ significantly
from the Brownian motion model on this dataset.

Discussion
Reconstructing a historical narrative of trait evolution
over time is central to both the formulation and testing
of hypotheses in evolutionary biology [66-68]. Compara-
tive phylogenetic methods do so in a formal framework
using stochastic models of the evolutionary process that
implicitly or explicitly assume some probabilistic distribu-
tion of ancestral states over internal nodes of a phylogeny
[1-3,47,69]. Brownian motion is a fundamental stochas-
tic model of evolution which assumes that biological traits
evolve by accruing incremental changes drawn from a
random distribution with zero mean and finite constant
variance. However, most evolutionary hypotheses of inter-
est involve traits thought to be subject to selection leading
to directional tendencies, relatively rapid grade shifts and

Table 1 Type I and Type II error rates resulting from stable versus Brownianmodel selection using the BPICmodel
selection criterion, with data simulated on trees of various sizes under stable processes with varying indices of stability

Tree size (tips)

Error α 25 40 60 90 130 175 235 325 440 600

Type I 2.0 0.11 0.08 0.04 0.01 0.01 0.00 0.00 0.00 0.00 0.00

Type II

1.8 0.66 0.45 0.47 0.51 0.24 0.24 0.20 0.10 0.07 0.04

1.6 0.39 0.20 0.08 0.21 0.04 0.01 0.00 0.00 0.00 0.00

1.4 0.16 0.04 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00

1.2 0.09 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00

1.0 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Table 2 Sum of squared errors in ancestral state reconstruction, median ratio of stable/Brownian reconstruction error,
with data simulated on trees of various sizes under stable processes with varying indices of stability

Tree size (tips)

α 25 40 60 90 130 175 235 325 440 600

2.0 1.00 1.02 1.01 1.00 1.01 1.00 1.00 1.00 1.00 1.00

1.8 0.97 0.96 0.94 0.92 0.84 0.82 0.81 0.77 0.76 0.73

1.6 0.85 0.79 0.70 0.64 0.61 0.56 0.47 0.47 0.42 0.37

1.4 0.66 0.50 0.49 0.35 0.28 0.29 0.20 0.24 0.16 0.16

1.2 0.48 0.36 0.26 0.15 0.14 0.12 0.11 0.09 0.08 0.07

1.0 0.21 0.16 0.08 0.07 0.06 0.04 0.03 0.02 0.02 0.01

convergent evolution. The resulting patterns may be at
odds with the neutral drift modelled by Brownian motion
[4]. Indeed, studies of the performance of ancestral state
reconstruction using known ancestral states derived from
fossil estimates [6,7,70,71] or from taxa evolving suffi-
ciently rapidly to be observed in real time [5] indicate that
a mismatch between the stochastic model and historical
reality can result in incorrect estimates [but see also [72]].
In this paper we have described a stochastic model of

continuous character evolution based on a generalization
of the Brownian model of evolution that does not assume
that the rate of evolutionary change is constant and finite.
Under these relaxed assumptions, the sum of increments
accruing to an evolving character along each branch of a
phylogeny is known to tend toward a stable limit distri-
bution, which is identical to a normal distribution in the
special case of Brownian motion but otherwise has heav-
ier tails (Figure 1). These heavy tails allow rare evolution-
ary increments of large magnitude to occur, resulting in a
volatile evolutionary process characterized by occasional
“adaptive” evolutionary shifts interspersed with neutral-
like patterns of variation (Figure 2). Stable parameters and
ancestral states can be fit to biological data distributed
over a phylogenetic tree using Markov chain Monte Carlo
methods. We have implemented software that makes use
of a slice sampler [40] to sample the posterior proba-
bility distribution of ancestral state assignments at each
node and the values of stable parameters (the index of

stability α, which is equal to 2 under Brownian motion,
and scale c). The slice sampler is able to take advantage
of our knowledge of the approximate location of modal
regions to move across a multi-modal likelihood surface
without becoming trapped in locally but not globally opti-
mal regions (Figure 5). An additional benefit of the slice
sampler is its adaptive step size, requiring no tuning of
proposal distributions, which makes practical application
of the method straightforward. Our analysis of simu-
lated data indicates that the Bayesian Predictive Informa-
tion Criterion (BPIC) provides a conservative test of the
hypothesis of departures from neutrality (i.e., the exis-
tence of heavy tails) in an evolutionary process (Table 1),
and that the stable model estimates ancestral states with
reduced error in comparison with the Brownian motion
model, when traits evolve by accumulating increments
from a probability distribution without constant finite
variance (Table 2).
We found the stable model to fit the eutherian body-size

data significantly better than the Brownian motion model
(Table 4), suggesting the existence of departures from
neutrality. Under the stable model, the ancestral euthe-
rian is relatively small; in line with fossil evidence (also
presented in Table 4), low body mass persists through
early diversification of the Superorders Afrotheria, Euar-
chontoglires and Laurasiathera and the origin of various
orders of small size such as Primates, Rodentia, Lagomor-
pha, Scandentia, Afrosoricida and Macroscelidea; large

Table 3 Sum of squared errors in ancestral state reconstruction, median ratio of stable/Ornstein-Uhlenbeck
reconstruction error, with data simulated on trees of various sizes under stable processes with varying indices of stability

Tree size (tips)

α 25 40 60 90 130 175 235 325 440 600

2.0 0.36 0.35 0.35 0.33 0.43 0.52 0.54 0.71 0.75 0.83

1.8 0.34 0.33 0.36 0.36 0.38 0.44 0.50 0.48 0.56 0.47

1.6 0.31 0.28 0.29 0.31 0.31 0.46 0.27 0.24 0.27 0.24

1.4 0.28 0.24 0.25 0.18 0.16 0.17 0.13 0.14 0.11 0.11

1.2 0.23 0.17 0.16 0.11 0.09 0.08 0.07 0.06 0.06 0.04

1.0 0.17 0.11 0.08 0.06 0.04 0.03 0.03 0.02 0.02 0.01



Elliot and Mooers BMC Evolutionary Biology 2014, 14:226 Page 10 of 15
http://www.biomedcentral.com/1471-2148/14/226

Table 4 Ancestral state reconstruction of adult female bodymass (kg) based on a dataset of 1,679 eutherianmammal
species means, under BrownianMotion (BM; maximum likelihood), Ornstein-Uhlenbeck (OU; maximum likelihood), Early
Burst (EB; maximum likelihood), Eastman et al’s (2011) heterogenousmulti-rate (maximum posterior probability) and
stable (maximum posterior probability) models

Clade Reconstructed body mass (kg) Fossil estimates (kg)

BM OU EB Eastman Stable

0.015-0.017 (Juramaia)
Eutheria 1.24 1.23 1.14 0.97 0.33 0.02-0.025 (Eomaia)

Shrew-sized (Prokennalestes)

Euarchontoglires 0.72 0.43 0.73 0.60 0.34
0.0003 (Tribosphenomys)

Rodentia 0.37 0.26 0.39 0.34 0.24
0.0014 (Microparamys)

Lagomorpha 0.53 0.36 0.56 0.50 0.37 0.1-0.2 (Lagomorpha indet.)

Primates 0.76 0.49 0.77 0.64 0.45 0.1 (Purgatorius)

Scandentia 0.25 0.15 0.27 0.25 0.25

Laurasiatheria 1.13 0.61 1.10 0.60 0.25

2.2-3.9 (Diacodexeidae)

Cetartiodactyla 23.6 80.29 17.60 18.34 79.22 2.6-3.9 (Homacodontidae)

6.6-9.6 (Laredochoerus)
158.2 (Hyrachyus)

Perissodactyla 86.5 152.51 57.17 72.75 273.76
740.1 (Amynodon)
0.15-10 (Viveravidae)

Carnivora 6.34 8.77 5.45 5.23 15.20
1-10 (Miacidae)

Pholidota 4.61 5.54 4.48 4.47 4.28

Chiroptera 0.08 0.12 0.09 0.02 0.02 0.012-0.015 (Icaronycteris)

Eulipotyphla 0.58 0.41 0.62 0.36 0.22 0.011 (Paranyctoides)

Xenarthra 3.04 3.13 2.60 2.8 2.15

Pilosa 4.17 3.94 3.87 2.80 4.49

Cingulata 3.30 3.36 3.12 3.23 2.40

Afrotheria 1.73 8.95 1.50 1.51 0.36

Afrosoricida 0.72 0.17 0.77 0.65 0.15

Macroscelidea 0.30 0.44 0.34 0.65 0.17

Hyracoidea 3.40 9.14 3.38 3.38 3.56 > 4 (Heterohyrax)

Proboscidea 1,478.15 949.76 1039.24 1,460.62 2,928.50 > 2, 000 (Palaeomastodon)

Sirenia 90.33 204.84 53.41 87.24 341.12 488.1 (Halitherium)

Reconstructed values are provided for the most recent common ancestors of extant taxa in the specified clades. The right column details a selection of oldest fossil
taxa within each clade for which body mass estimates are available [data from [56-65]].

reductions in body size are rare, occuring in Chiroptera,
while large increases in body size occur with the origin of
several modernOrders of relatively large species including
the ungulates (Perissodactyla + Artiodactyla), Carnivora,
Cetartiodactyla, Proboscidea and Sirenia. The Brownian
motion model differs in several respects. First the Brow-
nian motion reconstruction of the ancestral eutherian’s
body mass is an order of magnitude greater than the sta-
ble reconstruction; the Brownian motion reconstruction
thus posits significant reductions of body size prior to the
evolution of orders of small body size including Rodentia,

Scandentia, Chiroptera, Eulipotyphla and Macroscelidea.
As expected, the Brownian motion model exhibits an
“averaging effect” more generally, in which transforma-
tions in body mass are distributed somewhat evenly over
the phylogeny, while the stable model permits large trans-
formations in body mass to occur on a smaller subset
of branches. For this reason, the ancestral state recon-
struction of taxa ancestral to typically large species (i.e.,
Cetartiodactyla, Perissodactyla, Proboscidea) are smaller
under the Brownian motion model, and the ancestral
state reconstruction of taxa ancestral to typically small
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species (i.e., Rodentia, Lagomorpha, Chiroptera, Eulipo-
typhla, Afrosoricida, and Macroscelidea) are larger under
the Brownian motion model. The tendency for ancestral
state reconstructions to be weighted toward intermediate
values is stronger under the Brownian motion model than
under the stable model since the former model vitiates
against the inference of directional tendency.
A desire to model the adaptive evolution of continu-

ous traits has given rise to a number of approaches that
refine or extend the Brownian model. We categorize these
as homogenous approaches, in which the stochastic pro-
cess underlying the generation of evolutionary increments
to an evolving character does not vary across branches
of a phylogenetic tree, versus heterogenous processes,
in which the stochastic process varies across branches.
One popular homogenous model is the global Ornstein-
Uhlenbeck model of trait evolution [73], in which the
direction and rate of evolution at any time depends upon
a selection coefficient and the degree of deviation of the
trait’s current value from some global optimum or “phy-
logenetic mean” . This so-called “mean-reverting” process
has been used as a model of stabilizing selection since
deviation away from the phylogenetic mean is penalized
under maximum likelihood reconstruction. Our simu-
lation studies indicate that the stable model estimates
ancestral states with reduced error in comparison to
the homogenous Ornstein-Uhlenbeck model, when traits
evolve by accumulating increments from a probability dis-
tribution without fixed variance (Table 3). The homoge-
nous Ornstein-Uhlenbeck reconstruction of mammalian
body mass (Table 4) is in some respects intermediate
between the Brownian motion and stable reconstructions,
with relatively small ancestors of Orders with small body
size and relatively large ancestors of Orders with large
body size. This can be interpreted in terms of the stabi-
lizing selection model with an intermediate phylogenetic
mean: the proposal of a small ancestral rodent (for exam-
ple) permits a tendency to evolve back toward the mean
within the rodent clade, while the proposal of a large
ancestral carnivore (for example) permits the same ten-
dency in the opposite direction within the carnivore clade.
This pattern is most striking in the ancestral state inferred
for Afrotheria (8.95 kg versus 1.73 kg under Brownian
motion and 0.36 kg under the stable model), where a large
ancestor reduces the rate of evolution on branches leading
ultimately to the large elephants and manatees while per-
mitting many high-likelihood reductions of size toward
the phylogenetic mean in small taxa such as Afrosoricida
and Macroscelidea. This reconstruction for Afrotheria
seems unlikely and may lead us to suppose that a single
phylogenetic mean for the entire Eutheria does not form a
realistic model of stabilizing selection.
Cooper and Purvis [55] report success in fitting

more complex heterogenous models to a larger set of

mammalian body mass data. The Ornstein-Uhlenbeck
model is easily extended to the heterogenous case by per-
mitting more than one clade-specific phylogenetic means
[51,73-75], the number and phylogenetic position of such
means being specified a priori or estimated from the data.
Various transformations of the phylogeny, such as rais-
ing all branch lengths to a constant power in order to
approximate speciational change [67] or somewhat ad hoc
transformation of branch lengths to maximize the like-
lihood of a Brownian model [12,76,77] have also been
used to generate implicitly heterogenous models. The
Early Burst model [14,52], also applied by Cooper and
Purvis [55], is interesting in generating rate heterogene-
ity by allowing the rate of a Brownian motion process
to vary over time, rather than across branches or clades.
The rate of evolution is taken to be an exponentially
increasing or decreasing function of node height, allow-
ing a greater proportion of evolutionary change to occur
early in the phylogeny or late in the phylogeny depend-
ing on the choice of an exponential scaling factor r. We
applied the Early Burst model to our mammalian body
mass dataset but did not identify a significant deviation
from r = 0; ancestral state estimates in Table 4 are derived
from a reconstruction based on r = −0.009 estimated
by Cooper and Purvis [55]. The concentration of more
evolutionary change in basal branches of the phylogeny
appears to allow rapid early deviation from the phylo-
genetic mean value, with the majority of ancestral taxa
exhibiting marginally smaller body sizes, often more con-
sistent with the fossil evidence, than under the Brownian
motion reconstruction, yet surprisingly with considerably
less ordinal-level diversification than imputed by the sta-
ble model which does not build early diversification in to
the stochastic process itself.
Homogenous approaches offer a number of advantages

over heterogenous approaches in that the latter category
must not only infer the parameters of the stochastic pro-
cess but also must infer the structure of rate heterogeneity
over the phylogeny. Especially when heterogeneity is asso-
ciated with clades, over-fitting heterogenous models by
positing too many rate shifts or clade-specific evolution-
ary regimes may become a danger. Eastman et al. [53]
have proposed a heterogenous model of trait evolution
that explicitly avoids over-fitting by sampling over model
parameter values and the number of model parameters
simultaneously. The model is an extension of the standard
Brownian motion model in which the rate of evolution is
“inherited” over time but may undergo occasional shifts
in value. Each shift introduces a new parameter that is
penalized in a reversible jumpMarkov chain Monte Carlo
algorithm. We found that the complexity of the reversible
jump algorithm considerably increases the computational
burden of fitting the model: for the body mass data con-
sidered here, the stable slice sampler accomplished around
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70,000 steps per minute on a modest dual-core home lap-
top, versus around 2,500 per minute for the multi-rate
model, without the need for a lengthy calibration of pro-
posal densities beforehand. Ancestral states reconstructed
under the Eastman model (Table 4) were in broad agree-
ment with other non-Brownian methods presented here
in imputing smaller early mammals, and were in close
agreement with results of the Early Burst analysis.
In general, the stable model suggests a greater degree of

ordinal-level diversification of mammalian body masses,
and appears to accommodate a more volatile evolutionary
process, than any of the other models considered here. For
13 of the 22 nodes listed in Table 4 the stable model recon-
structs the smallest body masses of any model, and for 4
nodes it reconstructs the largest body mass of any model,
making the stable reconstruction consistent with the
hypothesis of small earlymammals and occasionalmarked
ordinal-level enlargement. The ability of the stable model
to accommodate striking variation in evolutionary rate,
even more so than approaches such as that of Eastman
et al. [53] explicitly designed to model such variation,
is most apparent in the highly diverse and species-poor
Afrotheria, where the stable reconstruction involves the
largest ancestral elephants and manatees yet the smallest
Afroinsectivores of any of the methods considered here.
While the heterogenousOrnstein-Uhlenbeckmodel binds
rate volatility to the structure of the phylogeny through
the assumption of clade-specific phylogenetic means, and
the Eastman et al. RJ-MCMCmodel binds rate volatility to
the structure of the phylogeny through the “inheritance”
of rate shifts from ancestral to descendant branches, the
stable model through its homogenously heavy tails pro-
vides unstructured volatility that is able to concentrate the
production of evolutionary variation onto relatively few
branches scattered across the phylogeny.
The stable model is the simplest non-Brownian model

considered here, requiring only a single parameter in addi-
tion to the standard Brownian motion model. The relative
efficiency of the estimation procedure used to fit the sta-
ble model may make it attractive for analysis of very
large trees or large sets of trees derived from Bayesian
phylogenetics. Furthermore, deviation from the Brown-
ian model according to the BPIC criterion may be used
to provide independent statistical support for the adop-
tion of one of the more complex heterogenous models
currently available. Rates imputed by the stable model
may guide appropriate selection of branches for inde-
pendent rates in such cases. In the mammal body mass
data examined here, for example, the frequency distribu-
tion of standardized trait changes along branches of the
phylogeny (reported by the accompanying software) indi-
cates accelerated evolution at the origin of a number of
clades including Hyomys (white-eared giant rats), Tragul-
idae (mouse deer), Manidae (pangolins), Megachiroptera

(megabats), Megadermatidae (false vampire bats), Solen-
odontidae (solenodons), Orycteropodidae (aardvark) and
Hyracoidea (hyraxes), suggesting that these clades may
merit their own phylogenetic mean values under a het-
erogenous Ornstein-Uhlenbeck approach. In order to
determine whether such a model is useful in any par-
ticular case it is necessary, as with any stochastic model
of evolution, to rigorously constrain the model empiri-
cally, and while the results presented here are primarily
illustrative and to provide comparison across uncon-
strained models, we note that the low ancestral state
inferences for extinct taxa at the root of Rodentia, Lago-
morpha, Primates, Chiroptera and Lipotyphla, and the
high ancestral state inferences for taxa at the root of
Sirenia and Elephantidae, appear broadly in line with
fossil evidence.
While our homogenous approach may be associated

with some advantages with respect to efficiency, simplic-
ity and unstructured volatility, the heterogenous models
such as Early Burst have the benefit of imposing an explicit
evolutionary narrative on the process of trait diversifi-
cation which may be useful for exploring and testing
general hypotheses about historical processes [14]. Het-
erogenous models typically involve the elaboration of a
simple Gaussian kernel to accommodate phylogeny- or
time-structured variation in the evolutionary process. We
suggest that in future work heterogenous stable mod-
els analogous to those considered above may be readily
generated by directly replacing the Gaussian kernel with
the more general stable kernel, at the expense of a sin-
gle parameter. Stable Ornstein-Uhlenbeck processes, for
example, are already well-characterized [17]. The stable
model we introduce to phylogenetic evolutionary biology
here may find other uses, for example in assigning substi-
tution rates to edges on phylogenetic trees under relaxed
clock models [78]. One primary obstacle to the replace-
ment of Gaussian kernels by stable kernels in models of
continuous character evolution is that stable distributions
have undefined variance [17]. Methods making direct use
of variance are typically used to detect correlated evo-
lution between multiple continuous characters evolving
on the same phylogenetic tree [2]. Independent contrasts
[79] for example, generates standardized data points for
each univariate character by scaling the increments accru-
ing along paired branches of a phylogeny by the square
root of the sum of branch lengths, which is propor-
tional to the expected standard deviation of a Brownian
process. Methods of phylogenetic regression [12,80,81]
extend least squares methods to multivariate phylogenetic
data by incorporating branch length and topological infor-
mation into the model’s covariance matrix. The fact that
stable variance is undefined means that there is no stable
equivalent to standard deviation or the covariance matrix.
We note that regression and correlation models based
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on stochastic processes driven by non-Gaussian stable
perturbations have been implemented successfully in
non-phylogenetic fields [i.e., [82-84]]. These approaches
raise the prospect that likelihood-based analysis of heavy
tailed multivariate distributions may offer useful insights
into future studies of correlated evolution of multiple
continuous characters in evolutionary biology, since cor-
related evolution is precisely the kind of problem domain
in which the putative Brownian assumptions of neutrality
and gradualism are likely to be invalid.

Conclusions
Stochastic process models of evolution regard an evolv-
ing trait as accumulating, over time, random increments
drawn from some underlying probability distribution. We
have described a generalization of the Brownian motion
model in which the increment-generating function is a
stable distribution characterized by heavy tails, which
accommodates both the neutral drift associated with
Brownian motion but also occasional burst of rapid evolu-
tionary change. Simulation and empirical studies indicate
that stable models can successfully be fit to biological
data, and Bayesian model selection criteria can be used
to assess goodness of fit in comparison with the Brow-
nian motion model, which is a special case of the more
general symmetrical stable distribution. The model pre-
sented in this paper is a homogenous model in which a
single stochastic process, common to all branches of a
phylogeny, gives rise to increments to evolving continuous
traits. The approachmay be contrasted with heterogenous
models in which different evolutionary regimes are bound
to different subtrees of a phylogeny, or arise stochastically
across the branches of a phylogeny. While homogenous
models offer simplicity and computational convenience,
it is currently unclear whether such models – and even
more highly parameterized heterogenous models of trait
evolution – are capable of capturing adequately the rich-
ness and complexity of evolutionary processes in nature.
We have made an empirical attempt to corroborate results
from the stable model on the basis of published fossil data
on extinct mammalian bodymasses. The various homoge-
nous and heterogenous models are consistent in some
respects but also exhibit marked differences in recon-
structed ancestral states. A major line of future research
should be to expand the availability of fossil and other
historical data that would facilitate the empirical mea-
surement of the distribution of evolutionary changes over
time for known traits and phylogenetic trees. In general,
we believe it is likely to be the case that models of con-
tinuous trait evolution should be tailored specifically for
the empirical question at hand. The present research sug-
gests that models of evolution incorporating heavy tails
and volatile stochastic processes may be a useful addition
to the toolset of biologists interested in traits exhibiting

heterogenous patterns of diversification driven by adap-
tive evolution.
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