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Introduction and preliminaries
Let (X,d) be a complete metric space and T be a selfmap of X. Then T is called a contrac-
tion if there exists r ∈ [, ) such that

d(Tx,Ty) ≤ rd(x, y)

for all x, y ∈ X.
The following famous theorem is referred to as the Banach contraction principle.

Theorem  (Banach []) Let (X,d) be a complete metric space, and let T be a contraction
on X. Then T has a unique fixed point.

This theorem is a very forceful and simple, and it has become a classical tool in nonlinear
analysis. It has many generalizations, see [–].
In , Suzuki [] introduced a new type of mapping and presented a generalization

of the Banach contraction principle in which the completeness can also be characterized
by the existence of a fixed point of these mappings.

Theorem [] Let (X,d) be a completemetric space, and let T be amapping on X.Define
a nonincreasing function θ from [, ) onto (/, ] by

θ (r) =

⎧⎪⎨
⎪⎩
 if  ≤ r ≤ (

√
 – )/,

( – r)/r if (
√
 – )/≤ r ≤ /

√
,

/( + r) if /
√
≤ r < .

()

Assume that there exists r ∈ [, ) such that θ (r)d(x,Tx) ≤ d(x, y) implies d(Tx,Ty) ≤
rd(x, y) for all x, y ∈ X. Then there exists a unique fixed point z of T .Moreover, limn Tnx = z
for all x ∈ X.

©2013 Popescu; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-
tion License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/207518687?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.fixedpointtheoryandapplications.com/content/2013/1/319
mailto:ovidiu.popescu@unitbv.ro
http://creativecommons.org/licenses/by/2.0


Popescu Fixed Point Theory and Applications 2013, 2013:319 Page 2 of 11
http://www.fixedpointtheoryandapplications.com/content/2013/1/319

Its further outcomes by Altun and Erduran [], Karapinar [, ], Kikkawa and Suzuki
[, ],Moţ and Petruşel [], Dhompongsa andYingtaweesittikul [], Popescu [, ],
Singh and Mishra [–] are important contributions to metric fixed point theory.
Popescu [] introduced a new type of contractive operator and proved the following

theorem.

Theorem [] Let (X,d) be a completemetric space and T : X → X be a (s, r)-contractive
single-valued operator:

x, y ∈ X with d(y,Tx) ≤ sd(y,x) implies d(Tx,Ty) ≤ rMT (x, y),

where r ∈ [, ), s > r and

MT (x, y) =max

{
d(x, y),d(x,Tx),d(y,Ty),

d(x,Ty) + d(y,Tx)


}
.

Then T has a fixed point.Moreover, if s ≥ , then T has a unique fixed point.

As a direct consequence of Theorem , we obtain the following result.

Theorem  Let (X,d) be a complete metric space, and let T be a mapping on X . Assume
that there exist r ∈ [, ) and s > r such that

d(y,Tx) ≤ sd(y,x) implies d(Tx,Ty) ≤ rd(x, y) ()

for all x, y ∈ X. Then there exists a fixed point z of T . Further, if s ≥ , then there exists a
unique fixed point of T .

The following theorem is a well-known result in fixed point theory.

Theorem  (Edelstein []) Let (X,d) be a compact metric space, and let T be a mapping
on X.Assume d(Tx,Ty) < d(x, y) for all x, y ∈ X with x �= y. Then T has a unique fixed point.

Inspired by Theorem , Suzuki [] proved a generalization of Edelstein’s fixed point
theorem (see also [–]).

Theorem  [] Let (X,d) be a compact metric space, and let T be a mapping on X. As-
sume that (/)d(x,Tx) < d(x, y) implies d(Tx,Ty) < d(x, y) for all x, y ∈ X. Then T has a
unique fixed point.

In this paper, we prove generalizations of Theorem, Theorem, Theorem  and extend
Theorem . The direction of our extension is new, very simple and inspired by Theorem .

Main results
We start this section by proving the following theorem.

Theorem  Let (X,d) be a complete metric space, and let T be a mapping on X. Assume
that there exist r ∈ [, ), a ∈ [, ], b ∈ [, ), (a+b)r + r ≤  if r ∈ [/, /

√
), a+(a+b)r ≤
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 if r ∈ [/
√
, ) such that

ad(x,Tx) + bd(y,Tx)≤ d(y,x) implies d(Tx,Ty) ≤ rd(x, y)

for all x, y ∈ X. Then there exists a unique fixed point z of T .Moreover, limn Tnx = z for all
x ∈ X.

Proof Since ad(x,Tx) + bd(Tx,Tx) = ad(x,Tx)≤ d(Tx,x) holds for every x ∈ X, by hypoth-
esis, we get

d
(
Tx,Tx

) ≤ rd(x,Tx) ()

for all x ∈ X.We now fix u ∈ X and define a sequence {un} ∈ X by un = Tnu. Then () yields
d(un,un+) ≤ rnd(u,Tu), so

∑∞
n= d(un,un+) < ∞. Hence {un} is a Cauchy sequence. Since

X is complete, {un} converges to some point z ∈ X. We next show that

d(Tx, z) ≤ rd(x, z) ()

for all x ∈ X, x �= z. Since limn d(un,Tun) = , limn d(x,Tun) = limn d(x,un) = d(x, z), there
exists a positive integer ν such that ad(un,Tun) + bd(x,Tun) ≤ d(x,un) for all n ≥ ν . By
hypothesis, we get d(Tun,Tx) ≤ rd(un,x). Letting n tend to∞, we obtain d(z,Tx) ≤ rd(z,x).
That is, we have shown ().
Now we assume that Tjz �= z for every integer j ≥ . Then () yields

d
(
Tj+z, z

) ≤ rjd(Tz, z) ()

for every integer j ≥ . We consider the following three cases:
(a)  ≤ r < /,
(b) / ≤ r < /

√
,

(c) /
√
≤ r < .

In the case (a) we note that r < . Then, by () and (), we have

d(z,Tz) ≤ d
(
z,Tz

)
+ d

(
Tz,Tz

) ≤ rd(z,Tz) + rd(z,Tz) = rd(z,Tz) < d(z,Tz).

This is a contradiction.
In the case (b), we note that r < . If we assume ad(Tz,Tz) + bd(z,Tz) > d(z,Tz),

then we have, in view of () and (),

d(z,Tz) ≤ d
(
z,Tz

)
+ d

(
Tz,Tz

)
< ad

(
Tz,Tz

)
+ bd

(
z,Tz

)
+ d

(
Tz,Tz

)
≤ ard(z,Tz) + brd(z,Tz) + rd(z,Tz)

=
[
(a + b)r + r

]
d(z,Tz)

≤ d(z,Tz).
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This is a contradiction. Hence ad(Tz,Tz)+bd(z,Tz) ≤ d(z,Tz). By hypothesis and (),
we have

d(z,Tz) ≤ d
(
z,Tz

)
+ d

(
Tz,Tz

)
≤ rd(z,Tz) + rd

(
z,Tz

)
≤ rd(z,Tz) + rd(z,Tz)

= rd(z,Tz)

< d(z,Tz).

This is also a contradiction.
In the case (c), we assume there exists an integer ν ≥  such that

ad(un,un+) + bd(z,un+) > d(z,un)

for all n ≥ ν . Then

d(z,un) < ad(un,un+) + b
[
ad(un+,un+) + bd(z,un+)

]
≤ (a + abr)d(un,un+) + bd(z,un+)

< (a + abr)d(un,un+) + b
[
ad(un+,un+) + bd(z,un+)

]
≤ (

a + abr + abr
)
d(un,un+) + bd(z,un+).

Continuing this process, we get

d(z,un) <
(
a + abr + abr + · · · + abp–rp–

)
d(un,un+) + bpd(z,un+p)

≤ a
 – (br)p

 – br
d(un,un+) + bpd(z,un+p)

for all n ≥ ν , p ≥ . Letting p tend to ∞, we obtain

d(z,un)≤ a
 – br

d(un,un+)

for all n ≥ ν . Thus,

d(z,un+)≤ a
 – br

d(un+,un+) ≤ ar
 – br

d(un,un+)

for all n ≥ ν , so

d(un,un+) ≤ d(z,un) + d(z,un+)

<
a

 – br
d(un,un+) +

ar
 – br

d(un,un+)

=
a + ar
 – br

d(un,un+)

≤ d(un,un+)
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for all n≥ ν . This is a contradiction. Hence there exists a subsequence {un(k)} of {un} such
that

ad(un(k),un(k)+) + bd(z,un(k)+) ≤ d(z,un(k))

for all k ≥ . By hypothesis, we get d(Tz,Tun(k)) ≤ rd(z,un(k)) for all k ≥ . Letting k tend
to ∞, we get d(z,Tz) = , that is, z = Tz. This is a contradiction.
Thus there exists an integer j ≥  such thatTjz = z. By ()we get d(z,Tz) = d(Tjz,Tj+z) ≤

rjd(z,Tz), so d(z,Tz) = , that is, Tz = z.
Now we suppose that y is another fixed point of T , that is, Ty = y. Then

ad(y,Ty) + bd(z,Ty) = bd(z, y) ≤ d(z, y),

so, by hypothesis, d(y, z) = d(Ty,Tz) ≤ rd(y, z). Hence d(y, z) = . This is a contradiction.�

Remark  For r ∈ [, /), taking a = , b = , we obtain Suzuki’s condition from Theo-
rem . Moreover, from our condition and the triangle inequality, we get

ad(x,Tx) + b
[
d(x,Tx) – d(y,x)

] ≤ d(y,x),

that is,

a + b
 + b

d(x,Tx)≤ d(y,x).

If r ∈ [/
√
, ), we have

a + b
 + b

=


 + r
= θ (r),

hence our condition implies Suzuki’s condition. We also note that if we take a = ( – r)/r,
b =  for r ∈ [/, /

√
), we get Suzuki’s condition. Therefore, our theorem generalizes,

extends and complements Suzuki’s theorem.

Example  Define a complete metric space X by X = {–, , , } and a mapping T on X
by Tx =  if x ∈ {–, , } and T = –. Then T satisfies our condition from Theorem  for
every r ∈ [, /)∪ [/, ), but T does not satisfy Suzuki’s condition from Theorem .

Proof Since θ (r)d(,T)≤  = d(, ) for every r ∈ [, ), and d(T,T) =  = d(, ),T does
not satisfy Suzuki’s condition. If r ∈ [/, (

√
 – )/), we have r + r < , so taking a + b =

(– r)/r, we get a+b > . Hence ad(,T) +bd(,T) = a+b >  = d(, ) and ad(,T)+
bd(,T) = a + b >  = d(, ). Now it is obvious that T satisfies our condition. If r ∈
[(
√
–)/, ), we take b = /.We have two cases: r ∈ [(

√
–)/, /

√
) and r ∈ [/

√
, ).

In the first case we put a = ( – r – r)/(r) and in the second a = ( – r)/( + r). We
have a + b =  + a >  in both cases, so T satisfies our condition. If r ∈ [, /) for a = ,
b = /, it is obvious that T satisfies our condition. �

The following theorem is a generalization of Theorem .
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Theorem  Let (X,d) be a complete metric space, and let T be a mapping on X. Assume
that there exist r ∈ [, ), s > r such that

s – r
 + r

d(x,Tx) + d(y,Tx) ≤ sd(y,x) implies d(Tx,Ty) ≤ rd(x, y)

for all x, y ∈ X. Then T has a unique fixed point. Moreover, if s ≥ , then T has a unique
fixed point.

Proof Let u ∈ X and the sequence un be defined by un+ = Tun. Since

 = d(un+,Tun) ≤ sd(un+,un) –
s – r
 + r

d(un,Tun),

we get from hypothesis d(un+,un+) ≤ rd(un+,un) for all n≥ . Therefore, d(un+,un+) ≤
rnd(u,u) for all n≥ . Thus

∞∑
n=

d(un+,un) ≤
∞∑
n=

rn–d(u,u) < ∞.

Hence {un} is a Cauchy sequence. SinceX is complete, {un} converges to some point z ∈ X.
Now, we will show that there exists a subsequence {un(k)} of {un} such that

d(z,Tun(k)) ≤ sd(z,un(k)) –
s – r
 + r

d(un(k),Tun(k))

for all k ≥ . Arguing by contradiction, we suppose that there exists a positive integer ν

such that

d(z,Tun) > sd(z,un) –
s – r
 + r

d(un,Tun)

for all n ≥ ν . Then we have

d(z,un+) > sd(z,un+) –
s – r
 + r

d(un+,un+)

> sd(z,un) – s · s – r
 + r

d(un,un+) –
s – r
 + r

d(un+,un+)

≥ sd(z,un) –
s – r
 + r

[
sd(un,un+) + rd(un,un+)

]

= sd(z,un) –
s – r
 + r

(s + r)d(un,un+).

By induction, we get for all n ≥ ν , p ≥  that

d(z,un+p) > spd(z,un) –
s – r
 + r

(
sp– + sp–r + · · · + rp–

)
d(un,un+).

Then we have

d(z,un+p) > spd(z,un) –
s – r
 + r

· sp– ·  – (r/s)p

 – r/s
d(un,un+)

= sp
[
d(z,un) –

s – r
 + r

·  – (r/s)p

s – r
d(un,un+)

]
.
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Hence

sp
[
d(z,un) –

 – (r/s)p

 + r
d(un,un+)

]
< d(z,un+p). ()

On the other hand,

d(un+p,un) ≤ d(un,un+) + d(un+,un+) + · · · + d(un+p–,un+p)

≤ (
 + r + · · · + rp–

)
d(un,un+)

=
 – rp

 – r
d(un,un+).

Letting p → ∞, we get for all n≥  that d(z,un) ≤ d(un,un+)/( – r). Thus

d(z,un+p) ≤ d(un+p,un+p+)/( – r) ≤ rpd(un,un+)/( – r). ()

By () and () we have for all n ≥ ν , p ≥  that

rp

 – r
d(un,un+) > sp

[
d(z,un) –

 – (r/s)p

 + r
d(un,un+)

]
,

so

(r/s)p

 – r
d(un,un+) > d(z,un) –

 – (r/s)p

 + r
d(un,un+).

Taking the limit as p → ∞, we obtain that d(z,un) ≤ d(un,un+)/( + r) for all n≥ ν . Then
we have

d(z,un+)≤ d(un+,un+)/( + r) ≤ rd(un,un+)/( + r)

and

rd(un,un+)/( + r) > sd(z,un) – (s – r)d(un,un+)/( + r).

This implies d(z,un) < d(un,un+)/( + r) for all n≥ ν . Thus,

d(un,un+) ≤ d(z,un) +d(z,un+) < d(un,un+)/(+ r) + rd(un,un+)/(+ r) = d(un,un+).

This is a contradiction. Therefore there exists a subsequence {un(k)} of {un} such that

d(z,Tun(k)) ≤ sd(z,un(k)) –
s – r
 + r

d(un(k),Tun(k))

for all k ≥ . By hypothesis, we get d(Tz,Tun(k)) ≤ rd(z,un(k)). Letting k → ∞, we obtain
d(Tz, z) = , that is, z = Tz.
If s ≥ , we assume that y is another fixed point of T . Then d(z,Ty) = d(z, y) ≤ sd(z, y) –

(s – r)d(y,Ty)/( + r) = sd(z, y), so, by hypothesis, d(z, y) = d(Tz,Ty) ≤ rd(z, y). Since r < ,
this is a contradiction. �
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Edelstein’s theorem
The following theorem extends Theorem  and generalizes Theorem .

Theorem  Let (X,d) be a compact metric space, and let T be a mapping on X. Assume
that

ad(x,Tx) + bd(y,Tx) < d(y,x) implies d(Tx,Ty) < d(x, y) ()

for x, y ∈ X, where a > , b > , a + b < . Then T has a unique fixed point.

Proof We put

β = inf
{
d(x,Tx) : x ∈ X

}

and choose a sequence {xn} in X such that limn→∞ d(xn,Txn) = β . Since X is compact,
without loss of generality, we may assume that {xn} and {Txn} converge to some elements
v,w ∈ X, respectively. We have

lim
n→∞d(xn,w) = lim

n→∞d(Txn, v) = d(v,w) = β .

We shall show β = . Arguing by contradiction, we assume β > . Since

lim
n→∞

[
ad(xn,Txn) + bd(w,Txn)

]
= aβ < β = lim

n→∞d(w,xn),

we can choose a positive integer ν such that

ad(xn,Txn) + bd(w,Txn) < d(w,xn)

for all n ≥ ν . By hypothesis, d(Tw,Txn) < d(w,xn) holds for n≥ ν . This implies

d(w,Tw) = lim
n→∞d(Tw,Txn)≤ lim

n→∞d(w,xn) = β .

From the definition of β , we obtain d(w,Tw) = β . Since ad(w,Tw) +bd(Tw,Tw) < d(Tw,w),
we have

d
(
Tw,Tw

)
< d(w,Tw) = β ,

which contradicts the definition of β . Therefore we obtain β = . We have limn→∞ d(xn,
w) = limn→∞ d(Txn, v) = limn→∞ d(Txn,xn) = d(v,w) = , so v = w. Thus, limn→∞ xn =
limn→∞ Txn = w.
We next show that T has a fixed point. Arguing by contradiction, we assume that

T does not have a fixed point. Since ad(xn,Txn) + bd(Txn,Txn) < d(Txn,xn) for all n ≥
, we get d(Txn,Txn) < d(Txn,xn), so limn→∞ Txn = w. By induction, we obtain that
d(Tpxn,Tp+xn) < d(Tp–xn,Tpxn) < · · · < d(xn,Txn) and limn→∞ Tpxn = w for all integers
p≥ . If there exist an integer p ≥  and a subsequence {xn(k)} of {xn} such that

ad
(
Tp–xn(k),Tpxn(k)

)
+ bd

(
w,Tpxn(k)

)
< d

(
w,Tp–xn(k)

)
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for all k ≥ , by hypothesis we get d(Tw,Tpxn(k)) < d(w,Tp–xn(k)). Taking the limit as k →
∞, we obtain d(w,Tw) = , that is,Tw = w, which is a contradiction. Hence, we can assume
that for every m ≥ , there exists an integer n(m)≥  such that

ad
(
Tm–xn,Tmxn

)
+ bd

(
w,Tmxn

) ≥ d
(
w,Tm–xn

)
()

for all n ≥ n(m). Since

lim
p→∞

pbp

 – bp
= ,

and

a
 – b

< ,

we can choose p satisfying

pbp

 – bp
+
(p – )bp–

 – bp–
+

a
 – b

< . ()

We put ν =max{n(),n(), . . . ,n(p)}. Then by () we have

d(w,xn) ≤ ad(xn,Txn) + bd(w,Txn)

≤ ad(xn,Txn) + b
[
ad

(
Txn,Txn

)
+ bd

(
w,Txn

)]
= ad(xn,Txn) + abd

(
Txn,Txn

)
+ bd

(
w,Txn

)
≤ · · ·
≤ ad(xn,Txn) + abd

(
Txn,Txn

)
+ · · ·

+ abp–d
(
Tp–xn,Tp–xn

)
+ bpd

(
w,Tpxn

)
≤ (

a + ab + · · · + abp–
)
d(xn,Txn) + bpd

(
w,Tpxn

)
≤ [

a
(
 – bp

)
/( – b)

]
d(xn,Txn) + bpd

(
w,Tpxn

)

for all n ≥ ν . Since

d
(
w,Tpxn

) ≤ d(w,xn) + d(xn,Txn) + · · · + d
(
Tp–xn,Tpxn

)
< d(w,xn) + pd(xn,Txn),

we get

d(w,xn) <
[
a
(
 – bp

)
/( – b)

]
d(xn,Txn) + bp

[
d(w,xn) + pd(xn,Txn)

]
,

so

d(w,xn) <
(

a
 – b

+
pbp

 – bp

)
d(xn,Txn) ()
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for all n ≥ ν . Similarly, we can obtain

d(w,Txn) <
[

a
 – b

+
(p – )bp–

 – bp–

]
d
(
Txn,Txn

)

<
[

a
 – b

+
(p – )bp–

 – bp–

]
d(xn,Txn)

for all n ≥ ν . Using (), we get

d(xn,Txn) ≤ d(w,xn) + d(w,Txn) <
[

a
 – b

+
pbp

 – bp
+
(p – )bp–

 – bp–

]
d(xn,Txn)

for all n ≥ ν . Thus, by (), we obtain d(xn,Txn) < d(xn,Txn), which is a contradiction.
Therefore there exists z ∈ X such that Tz = z. Fix y ∈ X with y �= x. Then since ad(x,Tx) +
bd(y,Tx) = bd(y,x) < d(y,x), we have d(Ty,x) = d(Ty,Tx) < d(y,x) and hence y is not a fixed
point of T . Therefore, the fixed point of T is unique. �

Remark  The proof of Theorem  is available for a = /, b = . In this case we obtained
Theorem.We do not know if Theorem is still correct for a = , b = , or,more generally,
for a + b = . This is an open question.

Example  Define a complete metric space X by X = {A,B,C,D,E} such that d(A,B) =
d(A,C) = d(B,D) = d(C,D) = , d(A,D) = d(B,C) = , d(A,E) = d(C,E) = /, d(B,E) =
d(D,E) =  and a mapping T on X by TA = B, TB = E, TC = D, TD = E, TE = E. Then T
satisfies our condition from Theorem  for a = /, b = /, but T does not satisfy Suzuki’s
condition from Theorem .

Proof We have d(A,C) =  = d(TA,TC) and (/)d(A,TA) =  < d(A,C) = , so T does not
satisfy Suzuki’s condition from Theorem . Moreover, we have ad(A,TA) + bd(C,TA) =
ad(C,TC) + bd(A,TC) = a + b = / > d(A,C). It is now obvious that T satisfies our
condition from Theorem . �
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