Some generalizations of Suzuki and Edelstein type theorems

Ovidiu Popescu*

Correspondence:
ovidiu.popescu@unitbv.ro Department of Mathematics and Computer Sciences, Transilvania University, Iuliu Maniu, Brasov, Romania

Abstract

We prove some generalizations of Suzuki's fixed point theorem and Edelstein's theorem
MSC: 54H25
Keywords: Banach principle; contraction; Suzuki's theorem; Edelstein's theorem

Introduction and preliminaries

Let (X, d) be a complete metric space and T be a selfmap of X. Then T is called a contraction if there exists $r \in[0,1)$ such that

$$
d(T x, T y) \leq r d(x, y)
$$

for all $x, y \in X$.
The following famous theorem is referred to as the Banach contraction principle.

Theorem 1 (Banach [1]) Let (X, d) be a complete metric space, and let T be a contraction on X. Then T has a unique fixed point.

This theorem is a very forceful and simple, and it has become a classical tool in nonlinear analysis. It has many generalizations, see [2-19].
In 2008, Suzuki [20] introduced a new type of mapping and presented a generalization of the Banach contraction principle in which the completeness can also be characterized by the existence of a fixed point of these mappings.

Theorem 2 [20] Let (X, d) be a complete metric space, and let T be a mapping on X. Define a nonincreasing function θ from $[0,1)$ onto $(1 / 2,1]$ by

$$
\theta(r)= \begin{cases}1 & \text { if } 0 \leq r \leq(\sqrt{5}-1) / 2 \tag{1}\\ (1-r) / r^{2} & \text { if }(\sqrt{5}-1) / 2 \leq r \leq 1 / \sqrt{2}, \\ 1 /(1+r) & \text { if } 1 / \sqrt{2} \leq r<1\end{cases}
$$

Assume that there exists $r \in[0,1)$ such that $\theta(r) d(x, T x) \leq d(x, y)$ implies $d(T x, T y) \leq$ $r d(x, y)$ for all $x, y \in X$. Then there exists a unique fixed point z of T. Moreover, $\lim _{n} T^{n} x=z$ for all $x \in X$.

Its further outcomes by Altun and Erduran [21], Karapinar [22, 23], Kikkawa and Suzuki [24, 25], Moț and Petrușel [26], Dhompongsa and Yingtaweesittikul [27], Popescu [28, 29], Singh and Mishra [30-32] are important contributions to metric fixed point theory.

Popescu [28] introduced a new type of contractive operator and proved the following theorem.

Theorem 3 [28] Let (X, d) be a complete metric space and $T: X \rightarrow X$ be a (s, r)-contractive single-valued operator:

$$
x, y \in X \quad \text { with } d(y, T x) \leq \operatorname{sd}(y, x) \quad \text { implies } \quad d(T x, T y) \leq r M_{T}(x, y),
$$

where $r \in[0,1), s>r$ and

$$
M_{T}(x, y)=\max \left\{d(x, y), d(x, T x), d(y, T y), \frac{d(x, T y)+d(y, T x)}{2}\right\} .
$$

Then T has a fixed point. Moreover, if $s \geq 1$, then T has a unique fixed point.

As a direct consequence of Theorem 3, we obtain the following result.

Theorem 4 Let (X, d) be a complete metric space, and let T be a mapping on X. Assume that there exist $r \in[0,1)$ and $s>r$ such that

$$
\begin{equation*}
d(y, T x) \leq s d(y, x) \quad \text { implies } \quad d(T x, T y) \leq r d(x, y) \tag{2}
\end{equation*}
$$

for all $x, y \in X$. Then there exists a fixed point z of T. Further, if $s \geq 1$, then there exists a unique fixed point of T.

The following theorem is a well-known result in fixed point theory.

Theorem 5 (Edelstein [33]) Let (X, d) be a compact metric space, and let T be a mapping on X. Assume $d(T x, T y)<d(x, y)$ for all $x, y \in X$ with $x \neq y$. Then T has a unique fixed point.

Inspired by Theorem 2, Suzuki [34] proved a generalization of Edelstein's fixed point theorem (see also [35-38]).

Theorem 6 [34] Let (X, d) be a compact metric space, and let T be a mapping on X. Assume that $(1 / 2) d(x, T x)<d(x, y)$ implies $d(T x, T y)<d(x, y)$ for all $x, y \in X$. Then T has a unique fixed point.

In this paper, we prove generalizations of Theorem 2, Theorem 4, Theorem 5 and extend Theorem 6. The direction of our extension is new, very simple and inspired by Theorem 3.

Main results

We start this section by proving the following theorem.

Theorem 7 Let (X, d) be a complete metric space, and let T be a mapping on X. Assume that there exist $r \in[0,1), a \in[0,1], b \in[0,1),(a+b) r^{2}+r \leq 1$ if $r \in[1 / 2,1 / \sqrt{2}), a+(a+b) r \leq$

1 if $r \in[1 / \sqrt{2}, 1)$ such that

$$
a d(x, T x)+b d(y, T x) \leq d(y, x) \quad \text { implies } \quad d(T x, T y) \leq r d(x, y)
$$

for all $x, y \in X$. Then there exists a unique fixed point z of T. Moreover, $\lim _{n} T^{n} x=z$ for all $x \in X$.

Proof Since $a d(x, T x)+b d(T x, T x)=a d(x, T x) \leq d(T x, x)$ holds for every $x \in X$, by hypothesis, we get

$$
\begin{equation*}
d\left(T x, T^{2} x\right) \leq r d(x, T x) \tag{3}
\end{equation*}
$$

for all $x \in X$. We now fix $u \in X$ and define a sequence $\left\{u_{n}\right\} \in X$ by $u_{n}=T^{n} u$. Then (3) yields $d\left(u_{n}, u_{n+1}\right) \leq r^{n} d(u, T u)$, so $\sum_{n=1}^{\infty} d\left(u_{n}, u_{n+1}\right)<\infty$. Hence $\left\{u_{n}\right\}$ is a Cauchy sequence. Since X is complete, $\left\{u_{n}\right\}$ converges to some point $z \in X$. We next show that

$$
\begin{equation*}
d(T x, z) \leq r d(x, z) \tag{4}
\end{equation*}
$$

for all $x \in X, x \neq z$. Since $\lim _{n} d\left(u_{n}, T u_{n}\right)=0, \lim _{n} d\left(x, T u_{n}\right)=\lim _{n} d\left(x, u_{n}\right)=d(x, z)$, there exists a positive integer v such that $a d\left(u_{n}, T u_{n}\right)+b d\left(x, T u_{n}\right) \leq d\left(x, u_{n}\right)$ for all $n \geq v$. By hypothesis, we get $d\left(T u_{n}, T x\right) \leq r d\left(u_{n}, x\right)$. Letting n tend to ∞, we obtain $d(z, T x) \leq r d(z, x)$. That is, we have shown (4).

Now we assume that $T^{j} z \neq z$ for every integer $j \geq 1$. Then (4) yields

$$
\begin{equation*}
d\left(T^{j+1} z, z\right) \leq r^{j} d(T z, z) \tag{5}
\end{equation*}
$$

for every integer $j \geq 1$. We consider the following three cases:
(a) $0 \leq r<1 / 2$,
(b) $1 / 2 \leq r<1 / \sqrt{2}$,
(c) $1 / \sqrt{2} \leq r<1$.

In the case (a) we note that $2 r<1$. Then, by (3) and (5), we have

$$
d(z, T z) \leq d\left(z, T^{2} z\right)+d\left(T z, T^{2} z\right) \leq r d(z, T z)+r d(z, T z)=2 r d(z, T z)<d(z, T z)
$$

This is a contradiction.
In the case (b), we note that $2 r^{2}<1$. If we assume $a d\left(T^{2} z, T^{3} z\right)+b d\left(z, T^{3} z\right)>d\left(z, T^{2} z\right)$, then we have, in view of (3) and (5),

$$
\begin{aligned}
d(z, T z) & \leq d\left(z, T^{2} z\right)+d\left(T z, T^{2} z\right) \\
& <a d\left(T^{2} z, T^{3} z\right)+b d\left(z, T^{3} z\right)+d\left(T z, T^{2} z\right) \\
& \leq a r^{2} d(z, T z)+b r^{2} d(z, T z)+r d(z, T z) \\
& =\left[(a+b) r^{2}+r\right] d(z, T z) \\
& \leq d(z, T z) .
\end{aligned}
$$

This is a contradiction. Hence $a d\left(T^{2} z, T^{3} z\right)+b d\left(z, T^{3} z\right) \leq d\left(z, T^{2} z\right)$. By hypothesis and (5), we have

$$
\begin{aligned}
d(z, T z) & \leq d\left(z, T^{3} z\right)+d\left(T z, T^{3} z\right) \\
& \leq r^{2} d(z, T z)+r d\left(z, T^{2} z\right) \\
& \leq r^{2} d(z, T z)+r^{2} d(z, T z) \\
& =2 r^{2} d(z, T z) \\
& <d(z, T z) .
\end{aligned}
$$

This is also a contradiction.
In the case (c), we assume there exists an integer $v \geq 1$ such that

$$
a d\left(u_{n}, u_{n+1}\right)+b d\left(z, u_{n+1}\right)>d\left(z, u_{n}\right)
$$

for all $n \geq v$. Then

$$
\begin{aligned}
d\left(z, u_{n}\right) & <a d\left(u_{n}, u_{n+1}\right)+b\left[a d\left(u_{n+1}, u_{n+2}\right)+b d\left(z, u_{n+2}\right)\right] \\
& \leq(a+a b r) d\left(u_{n}, u_{n+1}\right)+b^{2} d\left(z, u_{n+2}\right) \\
& <(a+a b r) d\left(u_{n}, u_{n+1}\right)+b^{2}\left[a d\left(u_{n+2}, u_{n+3}\right)+b d\left(z, u_{n+3}\right)\right] \\
& \leq\left(a+a b r+a b^{2} r^{2}\right) d\left(u_{n}, u_{n+1}\right)+b^{3} d\left(z, u_{n+3}\right) .
\end{aligned}
$$

Continuing this process, we get

$$
\begin{aligned}
d\left(z, u_{n}\right) & <\left(a+a b r+a b^{2} r^{2}+\cdots+a b^{p-1} r^{p-1}\right) d\left(u_{n}, u_{n+1}\right)+b^{p} d\left(z, u_{n+p}\right) \\
& \leq a \frac{1-(b r)^{p}}{1-b r} d\left(u_{n}, u_{n+1}\right)+b^{p} d\left(z, u_{n+p}\right)
\end{aligned}
$$

for all $n \geq v, p \geq 1$. Letting p tend to ∞, we obtain

$$
d\left(z, u_{n}\right) \leq \frac{a}{1-b r} d\left(u_{n}, u_{n+1}\right)
$$

for all $n \geq v$. Thus,

$$
d\left(z, u_{n+1}\right) \leq \frac{a}{1-b r} d\left(u_{n+1}, u_{n+2}\right) \leq \frac{a r}{1-b r} d\left(u_{n}, u_{n+1}\right)
$$

for all $n \geq v$, so

$$
\begin{aligned}
d\left(u_{n}, u_{n+1}\right) & \leq d\left(z, u_{n}\right)+d\left(z, u_{n+1}\right) \\
& <\frac{a}{1-b r} d\left(u_{n}, u_{n+1}\right)+\frac{a r}{1-b r} d\left(u_{n}, u_{n+1}\right) \\
& =\frac{a+a r}{1-b r} d\left(u_{n}, u_{n+1}\right) \\
& \leq d\left(u_{n}, u_{n+1}\right)
\end{aligned}
$$

for all $n \geq v$. This is a contradiction. Hence there exists a subsequence $\left\{u_{n(k)}\right\}$ of $\left\{u_{n}\right\}$ such that

$$
a d\left(u_{n(k)}, u_{n(k)+1}\right)+b d\left(z, u_{n(k)+1}\right) \leq d\left(z, u_{n(k)}\right)
$$

for all $k \geq 1$. By hypothesis, we get $d\left(T z, T u_{n(k)}\right) \leq r d\left(z, u_{n(k)}\right)$ for all $k \geq 1$. Letting k tend to ∞, we get $d(z, T z)=0$, that is, $z=T z$. This is a contradiction.
Thus there exists an integer $j \geq 1$ such that $T^{j} z=z$. By (3) we get $d(z, T z)=d\left(T^{j} z, T^{j+1} z\right) \leq$ $r^{j} d(z, T z)$, so $d(z, T z)=0$, that is, $T z=z$.

Now we suppose that y is another fixed point of T, that is, $T y=y$. Then

$$
a d(y, T y)+b d(z, T y)=b d(z, y) \leq d(z, y)
$$

so, by hypothesis, $d(y, z)=d(T y, T z) \leq r d(y, z)$. Hence $d(y, z)=0$. This is a contradiction.

Remark 1 For $r \in[0,1 / 2)$, taking $a=1, b=0$, we obtain Suzuki's condition from Theorem 2. Moreover, from our condition and the triangle inequality, we get

$$
a d(x, T x)+b[d(x, T x)-d(y, x)] \leq d(y, x),
$$

that is,

$$
\frac{a+b}{1+b} d(x, T x) \leq d(y, x)
$$

If $r \in[1 / \sqrt{2}, 1)$, we have

$$
\frac{a+b}{1+b}=\frac{1}{1+r}=\theta(r)
$$

hence our condition implies Suzuki's condition. We also note that if we take $a=(1-r) / r^{2}$, $b=0$ for $r \in[1 / 2,1 / \sqrt{2})$, we get Suzuki's condition. Therefore, our theorem generalizes, extends and complements Suzuki's theorem.

Example 1 Define a complete metric space X by $X=\{-1,0,1,2\}$ and a mapping T on X by $T x=0$ if $x \in\{-1,0,1\}$ and $T 2=-1$. Then T satisfies our condition from Theorem 7 for every $r \in[0,1 / 3) \cup[1 / 2,1)$, but T does not satisfy Suzuki's condition from Theorem 2 .

Proof Since $\theta(r) d(1, T 1) \leq 1=d(1,2)$ for every $r \in[0,1)$, and $d(T 1, T 2)=1=d(1,2), T$ does not satisfy Suzuki's condition. If $r \in[1 / 2,(\sqrt{5}-1) / 2)$, we have $r^{2}+r<1$, so taking $a+b=$ $(1-r) / r^{2}$, we get $a+b>1$. Hence $a d(1, T 1)+b d(1, T 2)=a+2 b>1=d(1,2)$ and $a d(2, T 2)+$ $b d(2, T 1)=3 a+2 b>1=d(1,2)$. Now it is obvious that T satisfies our condition. If $r \in$ $[(\sqrt{5}-1) / 2,1)$, we take $b=1 / 2$. We have two cases: $r \in[(\sqrt{5}-1) / 2,1 / \sqrt{2})$ and $r \in[1 / \sqrt{2}, 1)$. In the first case we put $a=\left(2-2 r-r^{2}\right) /\left(2 r^{2}\right)$ and in the second $a=(2-r) /(2+2 r)$. We have $a+2 b=1+a>1$ in both cases, so T satisfies our condition. If $r \in[0,1 / 3)$ for $a=1$, $b=1 / 2$, it is obvious that T satisfies our condition.

The following theorem is a generalization of Theorem 4.

Theorem 8 Let (X, d) be a complete metric space, and let T be a mapping on X. Assume that there exist $r \in[0,1), s>r$ such that

$$
\frac{s-r}{1+r} d(x, T x)+d(y, T x) \leq s d(y, x) \quad \text { implies } \quad d(T x, T y) \leq r d(x, y)
$$

for all $x, y \in X$. Then T has a unique fixed point. Moreover, if $s \geq 1$, then T has a unique fixed point.

Proof Let $u_{1} \in X$ and the sequence u_{n} be defined by $u_{n+1}=T u_{n}$. Since

$$
0=d\left(u_{n+1}, T u_{n}\right) \leq s d\left(u_{n+1}, u_{n}\right)-\frac{s-r}{1+r} d\left(u_{n}, T u_{n}\right)
$$

we get from hypothesis $d\left(u_{n+1}, u_{n+2}\right) \leq r d\left(u_{n+1}, u_{n}\right)$ for all $n \geq 1$. Therefore, $d\left(u_{n+1}, u_{n+2}\right) \leq$ $r^{n} d\left(u_{1}, u_{2}\right)$ for all $n \geq 1$. Thus

$$
\sum_{n=1}^{\infty} d\left(u_{n+1}, u_{n}\right) \leq \sum_{n=1}^{\infty} r^{n-1} d\left(u_{1}, u_{2}\right)<\infty
$$

Hence $\left\{u_{n}\right\}$ is a Cauchy sequence. Since X is complete, $\left\{u_{n}\right\}$ converges to some point $z \in X$.
Now, we will show that there exists a subsequence $\left\{u_{n(k)}\right\}$ of $\left\{u_{n}\right\}$ such that

$$
d\left(z, T u_{n(k)}\right) \leq s d\left(z, u_{n(k)}\right)-\frac{s-r}{1+r} d\left(u_{n(k)}, T u_{n(k)}\right)
$$

for all $k \geq 1$. Arguing by contradiction, we suppose that there exists a positive integer v such that

$$
d\left(z, T u_{n}\right)>s d\left(z, u_{n}\right)-\frac{s-r}{1+r} d\left(u_{n}, T u_{n}\right)
$$

for all $n \geq v$. Then we have

$$
\begin{aligned}
d\left(z, u_{n+2}\right) & >s d\left(z, u_{n+1}\right)-\frac{s-r}{1+r} d\left(u_{n+1}, u_{n+2}\right) \\
& >s^{2} d\left(z, u_{n}\right)-s \cdot \frac{s-r}{1+r} d\left(u_{n}, u_{n+1}\right)-\frac{s-r}{1+r} d\left(u_{n+1}, u_{n+2}\right) \\
& \geq s^{2} d\left(z, u_{n}\right)-\frac{s-r}{1+r}\left[s d\left(u_{n}, u_{n+1}\right)+r d\left(u_{n}, u_{n+1}\right)\right] \\
& =s^{2} d\left(z, u_{n}\right)-\frac{s-r}{1+r}(s+r) d\left(u_{n}, u_{n+1}\right) .
\end{aligned}
$$

By induction, we get for all $n \geq v, p \geq 1$ that

$$
d\left(z, u_{n+p}\right)>s^{p} d\left(z, u_{n}\right)-\frac{s-r}{1+r}\left(s^{p-1}+s^{p-2} r+\cdots+r^{p-1}\right) d\left(u_{n}, u_{n+1}\right) .
$$

Then we have

$$
\begin{aligned}
d\left(z, u_{n+p}\right) & >s^{p} d\left(z, u_{n}\right)-\frac{s-r}{1+r} \cdot s^{p-1} \cdot \frac{1-(r / s)^{p}}{1-r / s} d\left(u_{n}, u_{n+1}\right) \\
& =s^{p}\left[d\left(z, u_{n}\right)-\frac{s-r}{1+r} \cdot \frac{1-(r / s)^{p}}{s-r} d\left(u_{n}, u_{n+1}\right)\right] .
\end{aligned}
$$

Hence

$$
\begin{equation*}
s^{p}\left[d\left(z, u_{n}\right)-\frac{1-(r / s)^{p}}{1+r} d\left(u_{n}, u_{n+1}\right)\right]<d\left(z, u_{n+p}\right) . \tag{6}
\end{equation*}
$$

On the other hand,

$$
\begin{aligned}
d\left(u_{n+p}, u_{n}\right) & \leq d\left(u_{n}, u_{n+1}\right)+d\left(u_{n+1}, u_{n+2}\right)+\cdots+d\left(u_{n+p-1}, u_{n+p}\right) \\
& \leq\left(1+r+\cdots+r^{p-1}\right) d\left(u_{n}, u_{n+1}\right) \\
& =\frac{1-r^{p}}{1-r} d\left(u_{n}, u_{n+1}\right) .
\end{aligned}
$$

Letting $p \rightarrow \infty$, we get for all $n \geq 1$ that $d\left(z, u_{n}\right) \leq d\left(u_{n}, u_{n+1}\right) /(1-r)$. Thus

$$
\begin{equation*}
d\left(z, u_{n+p}\right) \leq d\left(u_{n+p}, u_{n+p+1}\right) /(1-r) \leq r^{p} d\left(u_{n}, u_{n+1}\right) /(1-r) . \tag{7}
\end{equation*}
$$

By (6) and (7) we have for all $n \geq v, p \geq 1$ that

$$
\frac{r^{p}}{1-r} d\left(u_{n}, u_{n+1}\right)>s^{p}\left[d\left(z, u_{n}\right)-\frac{1-(r / s)^{p}}{1+r} d\left(u_{n}, u_{n+1}\right)\right],
$$

so

$$
\frac{(r / s)^{p}}{1-r} d\left(u_{n}, u_{n+1}\right)>d\left(z, u_{n}\right)-\frac{1-(r / s)^{p}}{1+r} d\left(u_{n}, u_{n+1}\right) .
$$

Taking the limit as $p \rightarrow \infty$, we obtain that $d\left(z, u_{n}\right) \leq d\left(u_{n}, u_{n+1}\right) /(1+r)$ for all $n \geq v$. Then we have

$$
d\left(z, u_{n+1}\right) \leq d\left(u_{n+1}, u_{n+2}\right) /(1+r) \leq r d\left(u_{n}, u_{n+1}\right) /(1+r)
$$

and

$$
r d\left(u_{n}, u_{n+1}\right) /(1+r)>\operatorname{sd}\left(z, u_{n}\right)-(s-r) d\left(u_{n}, u_{n+1}\right) /(1+r) .
$$

This implies $d\left(z, u_{n}\right)<d\left(u_{n}, u_{n+1}\right) /(1+r)$ for all $n \geq v$. Thus,

$$
d\left(u_{n}, u_{n+1}\right) \leq d\left(z, u_{n}\right)+d\left(z, u_{n+1}\right)<d\left(u_{n}, u_{n+1}\right) /(1+r)+r d\left(u_{n}, u_{n+1}\right) /(1+r)=d\left(u_{n}, u_{n+1}\right) .
$$

This is a contradiction. Therefore there exists a subsequence $\left\{u_{n(k)}\right\}$ of $\left\{u_{n}\right\}$ such that

$$
d\left(z, T u_{n(k)}\right) \leq s d\left(z, u_{n(k)}\right)-\frac{s-r}{1+r} d\left(u_{n(k)}, T u_{n(k)}\right)
$$

for all $k \geq 1$. By hypothesis, we get $d\left(T z, T u_{n(k)}\right) \leq r d\left(z, u_{n(k)}\right)$. Letting $k \rightarrow \infty$, we obtain $d(T z, z)=0$, that is, $z=T z$.
If $s \geq 1$, we assume that y is another fixed point of T. Then $d(z, T y)=d(z, y) \leq \operatorname{sd}(z, y)-$ $(s-r) d(y, T y) /(1+r)=s d(z, y)$, so, by hypothesis, $d(z, y)=d(T z, T y) \leq r d(z, y)$. Since $r<1$, this is a contradiction.

Edelstein's theorem

The following theorem extends Theorem 6 and generalizes Theorem 5 .

Theorem 9 Let (X, d) be a compact metric space, and let T be a mapping on X. Assume that

$$
\begin{equation*}
a d(x, T x)+b d(y, T x)<d(y, x) \quad \text { implies } \quad d(T x, T y)<d(x, y) \tag{8}
\end{equation*}
$$

for $x, y \in X$, where $a>0, b>0,2 a+b<1$. Then T has a unique fixed point.

Proof We put

$$
\beta=\inf \{d(x, T x): x \in X\}
$$

and choose a sequence $\left\{x_{n}\right\}$ in X such that $\lim _{n \rightarrow \infty} d\left(x_{n}, T x_{n}\right)=\beta$. Since X is compact, without loss of generality, we may assume that $\left\{x_{n}\right\}$ and $\left\{T x_{n}\right\}$ converge to some elements $v, w \in X$, respectively. We have

$$
\lim _{n \rightarrow \infty} d\left(x_{n}, w\right)=\lim _{n \rightarrow \infty} d\left(T x_{n}, v\right)=d(v, w)=\beta .
$$

We shall show $\beta=0$. Arguing by contradiction, we assume $\beta>0$. Since

$$
\lim _{n \rightarrow \infty}\left[a d\left(x_{n}, T x_{n}\right)+b d\left(w, T x_{n}\right)\right]=a \beta<\beta=\lim _{n \rightarrow \infty} d\left(w, x_{n}\right),
$$

we can choose a positive integer v such that

$$
a d\left(x_{n}, T x_{n}\right)+b d\left(w, T x_{n}\right)<d\left(w, x_{n}\right)
$$

for all $n \geq v$. By hypothesis, $d\left(T w, T x_{n}\right)<d\left(w, x_{n}\right)$ holds for $n \geq v$. This implies

$$
d(w, T w)=\lim _{n \rightarrow \infty} d\left(T w, T x_{n}\right) \leq \lim _{n \rightarrow \infty} d\left(w, x_{n}\right)=\beta
$$

From the definition of β, we obtain $d(w, T w)=\beta$. Since $a d(w, T w)+b d(T w, T w)<d(T w, w)$, we have

$$
d\left(T w, T^{2} w\right)<d(w, T w)=\beta,
$$

which contradicts the definition of β. Therefore we obtain $\beta=0$. We have $\lim _{n \rightarrow \infty} d\left(x_{n}\right.$, $w)=\lim _{n \rightarrow \infty} d\left(T x_{n}, v\right)=\lim _{n \rightarrow \infty} d\left(T x_{n}, x_{n}\right)=d(v, w)=0$, so $v=w$. Thus, $\lim _{n \rightarrow \infty} x_{n}=$ $\lim _{n \rightarrow \infty} T x_{n}=w$.

We next show that T has a fixed point. Arguing by contradiction, we assume that T does not have a fixed point. Since $a d\left(x_{n}, T x_{n}\right)+b d\left(T x_{n}, T x_{n}\right)<d\left(T x_{n}, x_{n}\right)$ for all $n \geq$ 1, we get $d\left(T^{2} x_{n}, T x_{n}\right)<d\left(T x_{n}, x_{n}\right)$, so $\lim _{n \rightarrow \infty} T^{2} x_{n}=w$. By induction, we obtain that $d\left(T^{p} x_{n}, T^{p+1} x_{n}\right)<d\left(T^{p-1} x_{n}, T^{p} x_{n}\right)<\cdots<d\left(x_{n}, T x_{n}\right)$ and $\lim _{n \rightarrow \infty} T^{p} x_{n}=w$ for all integers $p \geq 1$. If there exist an integer $p \geq 1$ and a subsequence $\left\{x_{n(k)}\right\}$ of $\left\{x_{n}\right\}$ such that

$$
\operatorname{ad}\left(T^{p-1} x_{n(k)}, T^{p} x_{n(k)}\right)+b d\left(w, T^{p} x_{n(k)}\right)<d\left(w, T^{p-1} x_{n(k)}\right)
$$

for all $k \geq 1$, by hypothesis we get $d\left(T w, T^{p} x_{n(k)}\right)<d\left(w, T^{p-1} x_{n(k)}\right)$. Taking the limit as $k \rightarrow$ ∞, we obtain $d(w, T w)=0$, that is, $T w=w$, which is a contradiction. Hence, we can assume that for every $m \geq 1$, there exists an integer $n(m) \geq 1$ such that

$$
\begin{equation*}
a d\left(T^{m-1} x_{n}, T^{m} x_{n}\right)+b d\left(w, T^{m} x_{n}\right) \geq d\left(w, T^{m-1} x_{n}\right) \tag{9}
\end{equation*}
$$

for all $n \geq n(m)$. Since

$$
\lim _{p \rightarrow \infty} \frac{p b^{p}}{1-b^{p}}=0
$$

and

$$
\frac{2 a}{1-b}<1,
$$

we can choose p satisfying

$$
\begin{equation*}
\frac{p b^{p}}{1-b^{p}}+\frac{(p-1) b^{p-1}}{1-b^{p-1}}+\frac{2 a}{1-b}<1 \tag{10}
\end{equation*}
$$

We put $v=\max \{n(1), n(2), \ldots, n(p)\}$. Then by (9) we have

$$
\begin{aligned}
d\left(w, x_{n}\right) \leq & a d\left(x_{n}, T x_{n}\right)+b d\left(w, T x_{n}\right) \\
\leq & a d\left(x_{n}, T x_{n}\right)+b\left[a d\left(T x_{n}, T^{2} x_{n}\right)+b d\left(w, T^{2} x_{n}\right)\right] \\
= & a d\left(x_{n}, T x_{n}\right)+a b d\left(T x_{n}, T^{2} x_{n}\right)+b^{2} d\left(w, T^{2} x_{n}\right) \\
\leq & \cdots \\
\leq & a d\left(x_{n}, T x_{n}\right)+a b d\left(T x_{n}, T^{2} x_{n}\right)+\cdots \\
& +a b^{p-1} d\left(T^{p-2} x_{n}, T^{p-1} x_{n}\right)+b^{p} d\left(w, T^{p} x_{n}\right) \\
\leq & \left(a+a b+\cdots+a b^{p-1}\right) d\left(x_{n}, T x_{n}\right)+b^{p} d\left(w, T^{p} x_{n}\right) \\
\leq & {\left[a\left(1-b^{p}\right) /(1-b)\right] d\left(x_{n}, T x_{n}\right)+b^{p} d\left(w, T^{p} x_{n}\right) }
\end{aligned}
$$

for all $n \geq v$. Since

$$
\begin{aligned}
d\left(w, T^{p} x_{n}\right) & \leq d\left(w, x_{n}\right)+d\left(x_{n}, T x_{n}\right)+\cdots+d\left(T^{p-1} x_{n}, T^{p} x_{n}\right) \\
& <d\left(w, x_{n}\right)+\operatorname{pd}\left(x_{n}, T x_{n}\right)
\end{aligned}
$$

we get

$$
d\left(w, x_{n}\right)<\left[a\left(1-b^{p}\right) /(1-b)\right] d\left(x_{n}, T x_{n}\right)+b^{p}\left[d\left(w, x_{n}\right)+p d\left(x_{n}, T x_{n}\right)\right],
$$

so

$$
\begin{equation*}
d\left(w, x_{n}\right)<\left(\frac{a}{1-b}+\frac{p b^{p}}{1-b^{p}}\right) d\left(x_{n}, T x_{n}\right) \tag{11}
\end{equation*}
$$

for all $n \geq v$. Similarly, we can obtain

$$
\begin{aligned}
d\left(w, T x_{n}\right) & <\left[\frac{a}{1-b}+\frac{(p-1) b^{p-1}}{1-b^{p-1}}\right] d\left(T x_{n}, T^{2} x_{n}\right) \\
& <\left[\frac{a}{1-b}+\frac{(p-1) b^{p-1}}{1-b^{p-1}}\right] d\left(x_{n}, T x_{n}\right)
\end{aligned}
$$

for all $n \geq v$. Using (11), we get

$$
d\left(x_{n}, T x_{n}\right) \leq d\left(w, x_{n}\right)+d\left(w, T x_{n}\right)<\left[\frac{2 a}{1-b}+\frac{p b^{p}}{1-b^{p}}+\frac{(p-1) b^{p-1}}{1-b^{p-1}}\right] d\left(x_{n}, T x_{n}\right)
$$

for all $n \geq v$. Thus, by (10), we obtain $d\left(x_{n}, T x_{n}\right)<d\left(x_{n}, T x_{n}\right)$, which is a contradiction. Therefore there exists $z \in X$ such that $T z=z$. Fix $y \in X$ with $y \neq x$. Then since $\operatorname{ad}(x, T x)+$ $b d(y, T x)=b d(y, x)<d(y, x)$, we have $d(T y, x)=d(T y, T x)<d(y, x)$ and hence y is not a fixed point of T. Therefore, the fixed point of T is unique.

Remark 2 The proof of Theorem 9 is available for $a=1 / 2, b=0$. In this case we obtained Theorem 6. We do not know if Theorem 9 is still correct for $a=0, b=1$, or, more generally, for $2 a+b=1$. This is an open question.

Example 2 Define a complete metric space X by $X=\{A, B, C, D, E\}$ such that $d(A, B)=$ $d(A, C)=d(B, D)=d(C, D)=2, d(A, D)=d(B, C)=3, d(A, E)=d(C, E)=5 / 2, d(B, E)=$ $d(D, E)=1$ and a mapping T on X by $T A=B, T B=E, T C=D, T D=E, T E=E$. Then T satisfies our condition from Theorem 9 for $a=1 / 8, b=2 / 3$, but T does not satisfy Suzuki's condition from Theorem 6.

Proof We have $d(A, C)=2=d(T A, T C)$ and $(1 / 2) d(A, T A)=1<d(A, C)=2$, so T does not satisfy Suzuki's condition from Theorem 6. Moreover, we have $\operatorname{ad}(A, T A)+b d(C, T A)=$ $a d(C, T C)+b d(A, T C)=2 a+3 b=9 / 4>d(A, C)$. It is now obvious that T satisfies our condition from Theorem 9 .

Competing interests

The author declares that they have no competing interests

Acknowledgements

The author is highly indebted to the referees for their careful reading of the manuscript and valuable suggestions.

Received: 29 July 2013 Accepted: 28 October 2013 Published: 25 Nov 2013

References

1. Banach, S: Sur les opérationes dans les ensembles abstraits et leur application aux équation intégrales. Fundam. Math. 3, 133-181 (1922)
2. Caristi, J: Fixed point theorems for mappings satisfying inwardness conditions. Trans. Am. Math. Soc. 215, 241-251 (1976)
3. Caristi, J, Kirk, WA: Geometric fixed point theory and inwardness conditions. Lect. Notes Math. 490, 74-83 (1975)
4. Ćirić, LB: A generalization of Banach's contraction principle. Proc. Am. Math. Soc. 45, 267-273 (1974)
5. Ćirić, LB: A new fixed-point theorem for contractive mappings. Publ. Inst. Math. (Belgr.) 30, 25-27 (1981)
6. Chauhan, S, Kadelburg, Z, Dalal, S: A common fixed point theorem in metric space under general contractive condition. J. Appl. Math. 2013, Article ID 510691 (2013)
7. Ekeland, I: On the variational principle. J. Math. Anal. Appl. 47, 324-353 (1974)
8. Imdad, M , Chauhan, S : Employing common limit range property to prove unified metrical common fixed point theorems. Int. J. Anal. 2013, Article ID 763261 (2013)
9. Imdad, M, Chauhan, S, Kadelburg, Z: Fixed point theorems for mappings with common limit range property satisfying generalized ($\psi ; \phi$)-weak contractive conditions. Math. Sci. 2013, 7-16 (2013)
10. Kannan, R: Some results on fixed points II. Am. Math. Mon. 76, 405-408 (1969)
11. Kirk, WA: Contractions mappings and extensions. In: Kirk, WA, Sims, B (eds.) Handbook of Metric Fixed Point Theory, pp. 1-34. Kluwer Academic, Dordrecht (2001)
12. Kirk, WA: Fixed point of asymptotic contractions. J. Math. Anal. Appl. 277, 645-650 (2003)
13. Meir, A, Keeler, E: A theorem on contraction mappings. J. Math. Anal. Appl. 28, 326-329 (1969)
14. Nadler, SB Jr.: Multi-valued contraction mappings. Pac. J. Math. 30, 475-488 (1969)
15. Reich, S: Kannan's fixed point theorem. Boll. Unione Mat. Ital. 4, 1-11 (1971)
16. Subrahmanyam, PV: Remarks on some fixed point theorems related to Banach's contraction principle. J. Math. Phys. Sci. 8, 445-457 (1974)
17. Sehgal, VM, Bharucha-Reid, AT: Fixed points of contraction mappings on probabilistic metric spaces. Math. Syst. Theory 6, 97-102 (1972)
18. Khan, MA, Sumitra, Kumar, R Subcompatible and subsequential continuous maps in non Archimedean Menger PM-spaces. Jordan J. Math. Stat. 5, 137-150 (2012)
19. Khan, MA, Sumitra, Kumar, R: Semi-compatible maps and common fixed point theorems in non-Archimedean Menger PM-spaces. Jordan J. Math. Stat. 5, 185-199 (2012)
20. Suzuki, T: A generalized Banach contraction principle that characterizes metric completeness. Proc. Am. Math. Soc. 136, 1861-1869 (2008)
21. Altun, I, Erduran, A: A Suzuki type fixed-point theorem. Int. J. Math. Math. Sci. 2011, Article ID 736063 (2011)
22. Karapinar, E, Tas, K: Generalized (C)-conditions and related fixed point theorems. Comput. Math. Appl. 61(11), 3370-3380 (2011)
23. Karapinar, E: Remarks on Suzuki (C)-condition. In: Dynamical Systems and Methods, pp. 227-243 (2012)
24. Kikkawa, M, Suzuki, T: Some similarity between contractions and Kannan mappings. Fixed Point Theory Appl. 2009, Article ID 192872 (2009)
25. Kikkawa, M, Suzuki, T: Three fixed point theorems for generalized contractions with constants in complete metric spaces. Nonlinear Anal. TMA 69, 2942-2949 (2008)
26. Moţ, G, Petruşel, A: Fixed point theory for a new type of contractive multivalued operators. Nonlinear Anal. TMA 70, 3371-3377 (2009)
27. Dhompongsa, S, Yingtaweesittikul, H: Fixed points for multivalued mappings and the metric completeness. Fixed Point Theory Appl. 2009, Article ID 972395 (2009)
28. Popescu, O: Two fixed point theorems for generalized contractions with constants in complete metric spaces. Cent. Eur. J. Math. 7, 529-538 (2009)
29. Popescu, O: A new type of multivalued contractive operators. Bull. Sci. Math. 137, 30-44 (2013)
30. Singh, SL, Mishra, SN: Remarks on recent fixed point theorems. Fixed Point Theory Appl. 2010, Article ID 452905 (2010)
31. Singh, SL, Pathak, HK, Mishra, SN: On a Suzuki type general fixed point theorem with applications. Fixed Point Theory Appl. 2010, Article ID 234717 (2010)
32. Singh, SL, Mishra, SN, Chugh, R, Kamal, R: General common fixed point theorems and applications. Fixed Point Theory Appl. 2012, Article ID 902312 (2012)
33. Edelstein, M: On fixed and periodic points under contractive mappings. J. Lond. Math. Soc. 37, 74-79 (1962)
34. Suzuki, T: A new type of fixed point theorem in metric spaces. Nonlinear Anal. 71, 5313-5317 (2009)
35. Dorić, D, Lazović, R: Some Suzuki type fixed point theorem for generalized multivalued mappings and applications. Fixed Point Theory Appl. 2011, Article ID 40 (2011)
36. Dorić, D, Kadelburg, Z, Radenović, S: Edelstein-Suzuki-type fixed point results in metric and abstract metric spaces. Nonlinear Anal. TMA 75(4), 1927-1932 (2012)
37. Karapinar, E: Edelstein type fixed point theorems. Fixed Point Theory Appl. 2012, Article ID 107 (2012)
38. Karapinar, E, Salimi, P: Suzuki-Edelstein type contractions via auxiliary functions. Math. Probl. Eng. 2013, Article ID 648528 (2013)
10.1186/1687-1812-2013-319

Cite this article as: Popescu: Some generalizations of Suzuki and Edelstein type theorems. Fixed Point Theory and Applications 2013, $2013: 319$

Submit your manuscript to a SpringerOpen ${ }^{\bullet}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online

High visibility within the field

- Retaining the copyright to your article

Submit your next manuscript at $>$ springeropen.com

