A REPRESENTATION OF BOUNDED COMMUTATIVE BCK-ALGEBRAS

H.A.S. ABUJABAL

Department of Mathematics, Faculty of Science King Abdul Azız University, P O Box 31464 Jeddah - 21497, SAUDI ARABIA

M. ASLAM

Department of Mathematics Quaid-i-Azam University Islamabad, PAKISTAN

A.B. THAHEEM

Department of Mathematical Sciences King Fahd University of Petroleum and Minerals P O Box 469, Dhahran 31261, SAUDI ARABIA

(Received April 26, 1993 and in revised form November 13, 1995)

ABSTRACT. In this note, we prove a representation theorem for bounded commutative BCK-algebras

KEY WORDS AND PHRASES: Bounded commutative BCK-algebra, ideal, prime ideal, quotient BCK-algebras, spectral space

1991 AMS SUBJECT CLASSIFICATION CODES: Primary 06D99, Secondary 54A

1. INTRODUCTION

The representation theory of various algebraic structures has been extensively studied The corresponding representation theory for BCK-algebras remains to be developed. Rousseau and Thaheem [1] proved a representation theorem for a positive implicative BCK-algebra as BCK-algebra of self-mappings which apparently does not possess many algebraic properties. Cornish [2] constructed a bounded implicative BCK-algebra of multipliers corresponding to a bounded implicative BCK-algebra, but no representation of these algebras has been studied there. The purpose of this note is to prove a representation theorem for a bounded commutative BCK-algebra We essentially prove that a bounded commutative BCK-algebra X is isomorphic to the bounded commutative BCK-algebra \hat{X} of mappings acting on the associated spectral space of X Our approach depends on the theory of quotient BCKalgebras as developed by Iséki and Tanaka [3] and the theory of prime deals of commutative BCK-Before we develop our results, we recall some technical preliminaries for the sake of algebras completeness A BCK-algebra is a system $(X, *, 0, \leq)$ (denoted simply by X), satisfying (i) $(x * y) * (x * z) \le z * y$ (ii) $x * (x * y) \le y$ (iii) $x \le x$ (iv) $0 \le x$ (v) $x \le y, y \le x$ imply $x = y, y \le x$ where $x \le y$ if and only if x * y = 0 for all $x, y, z \in X$ If X contains an element 1 such that $x \le 1$ for all $x \in X$, then X is said to be bounded X is said to be commutative if $x \wedge y = y \wedge x$ for all $x, y \in X$, where $x \wedge y = y * (y * x)$ A non-empty set A of a BCK-algebra X is said to be an ideal of X if $0 \in A$ and $x, y * x \in A$ imply $y \in A$ A proper ideal A of a commutative BCK-algebra X is said to be prime if $x \wedge y \in A$ implies $x \in A$ or $y \in A$. It is well-known that every maximal ideal in a commutative BCK-

algebra is prime (see e g [4]) The theory of prime ideals plays an important role in the study of commutative BCK-algebras For some information about prime ideals, we refer to [5] which contains further references about the theory of prime ideals A subset S of a commutative BCK-algebra is said to be \wedge -closed if $x \wedge y \in S$ whenever $x, y \in S$

We now state the following theorem known as the prime ideal theorem (see [6, Theorem 2 4] and [5, Corollary 3])

THEOREM A. Let I be an ideal and S be a \land -closed set of a commutative BCK-algebra X such that $S \cap I = \emptyset$. Then there exists a prime ideal P such that $I \subseteq P$ and $P \cap S = \emptyset$.

COROLLARY B. Let I be an ideal of a commutative BCK-algebra X and $a \in X$ such that $a \notin I$. Then there exists a prime ideal P such that $a \notin P$ and $I \subseteq P$.

The above corollary follows from Theorem A by choosing $s = \{a\}$ If a non-trivial commutative BCK-algebra and $I = \{0\}$, then Corollary B ensures the existence of a prime ideal in X We now recall the definition of a quotient BCK-algebra If X is a BCK-algebra and A is an ideal of X, then we define an equivalence relation \sim on X by $x \sim y$ if and only if $x * y, y * x \in A$ Let $C_x = \{y \in X : x * y, y * x \in A\}$ Let $C_x = \{y \in X : x * y, y * x \in A\}$ Let $C_x = \{y \in X : x * y, y * x \in A\}$ Let $C_x = \{y \in X : x * y, y * x \in A\}$ Let $C_x = \{y \in X : x * y, y * x \in A\}$ denote the equivalence class containing $x \in X$ Then one can see that $C_0 = A$ and $C_x = C_y$ if and only if $x \sim y$ Let X/A denote the set of all equivalence classes $C_x, x \in X$. Then X/A is a BCK-algebra (known as quotient BCK-algebra) with $C_x * C_y = C_{x*y}$, and $C_x \leq C_y$ if and only if $x * y \in A$, and $C_0 = A$ is the zero of X/A (see for instance [3-7]). If X is bounded commutative, then X/A is also bounded commutative with C_1 as the unit element For the general theory of BCK-algebras and other undefined terminology and notations used here, we refer to Iséki and Tanaka [3-7] and Cornish [8]

2. A REPRESENTATION THEOREM

Throughout X denotes a bounded commutative BCK-algebra. Let Spec(X) denote the set of all prime ideals of X, called the spectrum of X. It has been shown in [5] that Spec(X) is a compact topological space referred to as the spectral space associated with X. It is well-known that $\bigcap_{P \in Spec(X)} P = \{0\} \text{ (see e.g. [8])}.$

DEFINITION 2.1. For any $x \in X$, we define a mapping

$$\widehat{x}: Spec(X) \to \bigcup_{P \in Spec(X)} X/P$$

where $\hat{x}(P)$ denotes the image of x into X/P

It is easy to see that $\hat{x}(P) = C_0$ if and only if $x \in P$.

We denote by \hat{X} , the set of all mappings $\hat{x}, x \in X$. For any $\hat{x}, \hat{y} \in \hat{X}$, we define the following operations on \hat{X} .

$$\widehat{x} * \widehat{y} = (\widehat{x * y})$$
 and $\widehat{x} \le \widehat{y}$ if and only if $\widehat{x} * \widehat{y} = \widehat{0}$.

These operations are well-defined because of the properties of quotient algebras. Indeed, as $\hat{x}(P)$ is the canonical image of x in X/P, namely the class C_x relative to P, and the union $\bigcup_{P \in Spec(X)} X/P$ is disjoint

Routine verifications similar to ones for quotient BCK-algebras (see e g [3]) lead to the following **PROPOSITION 2.2.** $(\hat{X}, *, \hat{0})$ is a bounded commutative BCK-algebra.

We now prove the following representation result.

THEOREM 2.3. The mapping $\phi : x \in X \rightarrow \hat{x} \in \hat{X}$ is an isomorphism.

PROOF. That ϕ is surjective homomorphism follows from the definition (because the mapping $x \in X \to C_x \in X/P$ is the canonical homomorphism) To prove that ϕ is injective it is enough to show

that $\phi(x) = \widehat{0}$ if and only if x = 0 For any $P \in Spec(X)$, $\phi(x)(P) = \widehat{0}$ implies that $x \in P$ for all $P \in Spec(X)$ and hence $x \in \bigcap_{p \in Spec(X)} P = \{0\}$ Thus x = 0 This completes the proof

We provide an example to explain some essential ideas developed above

EXAMPLE 2.4 ([3, p 363]) Let $X = \{0, a, b, 1\}$ be a set Define a binary operation * on X as in Table 1

*	0	а	b	1
0	0	0	0	0
а	a	0	а	0
Ь	b	Ь	0	0
1	1	b	а	0

Table 1

The (X, *, 0) is a bounded commutative BCK-algebra with $P = \{0, a\}$ and $Q = \{a, b\}$ as prime ideals (cf Table 2)

\wedge	0	a	b	1			
0	0	0	0	0			
а	0	а	0	a			
b	0	0	b	b			
1	1	a	b	1			
Table 2							

Then $Spec(X) = \{P, Q\}, X/P = \{\{0, a\}, \{b, 1\}\}, X/Q = \{\{0, b\}, \{a, 1\}\}, X/P, X/Q$, are disjoint and $\bigcup_{P \in Spec(X)} X/P$ is the disjoint union as defined above. The rest of the calculations can easily be mode to extra be conservation of X in this case.

be made to get the representation of X in this case.

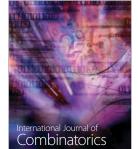
ACKNOWLEDGMENT. The authors are grateful to the referee for his useful suggestions that led to an improvement of the paper One of the authors (A B Thaheem) thanks K F U P M for providing research facilities.

REFERENCES

- ROUSSEAU, R. and THAHEEM, AB, A representation of BCK-algebras as algebras of mappings, Math. Japonica, 34 (1989), 421-427
- [2] CORNISH, W H., A multiplier approach to implicative BCK-algebras, Math. Sem. Notes, 8 (1980), 157-169
- [3] ISÉKI, K and TANAKA, S., Ideal theory of BCK-algebras, Math. Japonica, 21 (1976), 351-366
- [4] PALASINNSKI, R, Ideals in BCK-algebras which are lower semilattices, Math. Japonica, 26 (1981), 245-250
- [5] ASLAM, M and THAHEEM, A.B., On spectral properties of BCK-algebras, Math. Japonica, 38 (1993), 1121-1128
- [6] ASLAM, M and THAHEEM, A.B., A new proof of the prime ideal theorem for BCK-algebras, Math. Japonica, 38 (1993), 969-972
- [7] ISÉKI, K and TANAKA, S., An introduction to the theory of BCK-algebras, Math. Japonica, 23 (1978), 1-26
- [8] CORNISH, W.H., Algebraic structures and applications, Proc. of the First Western Australian Conference on Algebra, Marcel-Dekker, Inc, New York (1982), 101-122

Advances in **Operations Research**

The Scientific World Journal



Hindawi

Submit your manuscripts at http://www.hindawi.com

Algebra

Journal of Probability and Statistics

International Journal of Differential Equations

Complex Analysis

International Journal of

Mathematics and Mathematical Sciences

Mathematical Problems in Engineering

Abstract and Applied Analysis

Discrete Dynamics in Nature and Society

Function Spaces

International Journal of Stochastic Analysis

