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In this paper, we extend the Johansen-Ledoit-Sornette (JLS) model by introducing fundamental economic factors in China
(including the interest rate and deposit reserve rate) and the historical volatilities of targeted and US equity indices into the original
model, which is a flexible tool to detect bubbles and predict regime changes in financial markets. We then derive a general method
to incorporate these selected factors in addition to the log-periodic power law signature of herding and compare the prediction
accuracy of the critical time between the original and the new JLS models (termed the JLS-factor model) by applying these two
models to fit twowell-knownChinese stock indices in three bubble periods.The results show that the JLS-factormodel withChinese
characteristics successfully depicts the evolutions of bubbles and “antibubbles” and constructs efficient end-of-bubble signals for all
bubbles in Chinese stock markets. In addition, the results of standard statistical tests demonstrate the excellent explanatory power
of these additive factors and confirm that the new JLS model provides useful improvements over the standard JLS model.

1. Introduction

As our understanding of the topic deepens, people are
gradually realizing that the stock market is a complex system
that has many participants with different characteristics that
influence each other. In addition, no stock market is com-
pletely independent of another; each connects with others
to form a larger system to some extent. For this reason, the
stock market shows a nonlinear mechanism in its operation
process. Thus, using an equilibriummodel to study the stock
market is not a suitable approach.

In consideration of the limitations of classical financial
theory, more and more researchers are using nonlinear
dynamic systems to research financial markets in the new
discipline termed “econophysics.” For the bubble prob-
lem in stock markets, financial physicists combine rational
expectations theory in economics with the self-organizing
critical phenomenon in statistical physics to diagnose the
plausible times at which the bubble burst. Among them, the
most representative scholars are Sornette and Johansen and
coworkers, who stated that bubbles are not characterized by

an exponential increase in prices but rather by a faster-than-
exponential growth in prices. They also argued that most
financial crashes are the climax of the so-called log-periodic
power law signatures (LPPLS) associated with speculative
bubbles [1].

The predictive power of LPPLS was first discovered in
acoustic emissions prior to rupture and in identifying the
precursors of earthquakes [2, 3]. However, the introduction
of LPPLS to predict the bursting of speculative bubbles
in financial markets goes back to the pioneering works of
Feigenbaum and Freund [4] and Sornette et al. [5], who
independently of each other disclosed LPPLS structures prior
to the crash of the S&P 500 in October 1987. Beyond that, by
means of extending the renormalization group approach to
the second order of perturbation, Sornette and Johansen [6]
proposed the second-order LPPL “Landau” model to capture
the evolution of stock prices over a longer precrash period,
say seven to eight years, compared with the original LPPL
model. Then, they used it to fit the Dow Jones index prior
to the 1929 crash and the S&P 500 index prior to the 1987
crash.
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Since then, a large body of empirical evidence supporting
this proposition has been presented ([7–15] (hereafter the
LPPL model is also referred to as the JLS (i.e., Johansen-
Ledoit-Sornette)model)). All this research has shown that the
time evolutions of the stock market index prior to the 1929,
1987, and 1998 crashes on Wall Street and the 1997 crash in
Hong Kong are in very good agreement with the predictions
of the LPPL model.

As for the cause of the stock market crash, Johansen and
Sornette [13] argued that a large crash is mainly caused by
local self-reinforcing imitation between investors and their
herding behavior. Under the action of the positive price-
to-price feedback mechanism, this self-reinforcing imitation
process eventually leads to a bubble. Specifically, if the
tendency for traders to “imitate” their “friends” increases
up to the “critical” point (or critical time), many traders
may place the same order (sell) at the same time, thus
causing a crash [13]. However, it is also worth noting that
imitation between investors and their herding behavior lead
not only to speculative bubbles with accelerating overvalu-
ations of financial markets possibly followed by crashes but
also to “antibubbles” with decelerating market devaluations
following all-time highs. For this, Johansen and Sornette
[16] proposed a third-order Landau expansion in which
demand decreases slowly with barriers that progressively
reduce, leading to a power law decay of the market price
accompanied by decelerating log-periodic oscillations. In
addition, they documented this behavior on the Japanese
Nikkei stock index from 1990 and on the gold future prices
after 1980, both after their all-time highs [16]. Besides, a
remarkable similarity in the behavior of the US S&P 500
index from 1996 to August 2002 and of the Japanese Nikkei
index from 1985 to 1992 (11-year shift) was presented by
Sornette and Zhou [17]. Several other examples have been
described in the Russian stock market (Sornette et al., 1999)
and in emerging and western markets [17–19]. Among them,
authors have analyzed 39 world stock market indices from
2000 to the end of 2002, finding that 22 are in an antibubble
regime (owing to the criterion of obtaining at least a solution
in the fitting procedure, they have found no evidence of an
antibubble in China during that period). However, although
this third-order LPPL Landaumodel is suitable for describing
the evolution of bubbles and antibubbles almost twelve years,
some deviations may appear when using the second-order
LPPL Landau model to calibrate antibubbles, implying that
much higher-order Landau models are useless.

In addition to the third-order LPPL Landau model,
Sornette and coworkers expanded the original LPPL model,
including (a) constructing the Weierstrass-type LPPL model
[20, 21], (b) extending the JLS model with second-order
harmonics [17], (c) proposing the JLS-factor model in which
the LPPL bubble component is augmented by fundamental
economic factors [22], (d) inferring the fundamental value
of the stock and crash nonlinearity from bubble calibration
[23] and detecting market rebounds [24], (e) extending the
JLS model to include an additional pricing factor called
the “Zipf factor,” which describes the diversification risk
of stock market portfolio [25], (f) reducing the JLS model
to a function of only three nonlinear parameters [26], (g)

presenting a volatility-confined LPPL model to describe and
diagnose situations when excessive public expectations of
future price increases cause prices to be temporarily ele-
vated [27], (h) introducing quantile regression to the LPPLS
detection problem and defining the so-called DS LPPLS
Confidence and Trust indicators that enrich considerably the
diagnosis of bubbles [28] (recently, Zhang et al. [29] added
two new indicators (DS LPPLS Bubble Status and End-of-
Bubble) into this system), (i) employing a rigorous likelihood
approach and providing interval estimates of the parameters,
including the most important critical times of market regime
changes [30], and (j) presenting a plausible microfounded
model for the previously postulated power law finite time
singular form of the crash hazard rate in the JLS model of
rational expectation bubbles [31]. In addition, the research
team at ETH Zurich has further developed an LPPLS-based
bubble detection system, as described in Sornette et al. [32]
and Zhang et al. [28].

However, although the JLS model has been extended to
many different forms, the original model remains a powerful
and flexible tool with which to detect financial bubbles and
crashes in various markets, especially Chinese stock bubbles.
Examples include the antibubble in China’s stock market that
started in August 2001 [33], two bubbles and subsequent
market crashes in two important indices of Chinese stock
markets (Shanghai Stock Exchange Composite (SSEC) index
and Shenzhen Stock Exchange Component (SZSC) index)
between May 2005 and July 2009 [34], two well-known
Chinese stock bubbles, from August 2006 to October 2007
(bubble 1) and from October 2008 to August 2009 (bubble 2)
[25], and the bubble regime that developed in Chinese stock
markets in mid-2014 and started to burst in June 2015 [32].

Unfortunately, the JLS model is based on the assumption
that crashes are the outcome of the interactions of market
players resulting in herding behavior (i.e., an endogenous
origin), while exogenous shocks (due to changes in market
fundamentals) rarely play an important role, only serving
as trigger factors, which is at odds with standard economy
theory [35]. Although Zhou and Sornette [22] presented a
general methodology under which to incorporate funda-
mental economic factors (e.g., interest rate, interest spread,
historical volatility, implied volatility, and exchange rates)
into the theory of herding to describe bubbles and antibub-
bles, the most surprising result is that the best model is the
second-order LPPL model without any factors. Indeed, the
evolution of a complex system is the result of an entan-
gled combination of endogenous organization as well as a
response to external news and exogenous shocks, especially
for an equity market such as the Chinese stock market that is
still immature and heavily influenced by exogenous shocks.
Compared with western markets, the Chinese stock market
has its own characteristics, including the following: (i) being
dominated by individual investors, (ii) being highly volatile,
(iii) nontradability of more than two-thirds of the shares, (iv)
short sale constraints, (v) response to exogenous information
such as government policies, a firm’s accounting information,
and stock exchange announcements, (vi) stronger imprints
of herding, (vii) overspeculation, (viii) overvaluation of
markets, (ix) widely taken short-term positions, (x) insider
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trading, and (xi) a distempered regulation system [33, 36].
These specific features make the market exhibit strong
idiosyncrasies and puzzles in addition to the more common
behavior of mature stock markets [37].Therefore, in addition
to the herding behavior between traders, we think that taking
into account the influence of government policies and other
exogenous shocks on the evolution of Chinese stock bubble
may be more advisable, especially the impact from changes
in monetary policy and fluctuations in international stock
markets.

Given the foregoing, we generalize the standard JLS
model by incorporating two fundamental economic factors
in China (i.e., the interest rate and deposit reserve rate) and
the historical volatility of targeted and US equity indices into
the original model. We then present an ex-post analysis of
what Jiang et al. [34] and Sornette et al. [32] earlier identified
as being the three significant bubbles developing in major
Chinese stock markets: the first bubble ran from July 2005
to October 2008, the second one ran from November 2008
to August 2009, and the third one ran from March 2014 to
July 2015. We also compare the prediction accuracy of the
critical time between the original and the new JLSmodel (i.e.,
the JLS-factor model). The empirical results show that the
JLS-factor model with Chinese characteristics successfully
diagnoses all the well-documented bubbles in Chinese stock
markets. Further, by comparing the prediction accuracy of
the original and new JLSmodels, we find that the critical time
estimated by the new JLS model for Chinese stock market
bubbles during 2005–2015 is closer to the actual time than the
original JLS model in general, which demonstrates the excel-
lent explanatory power of our proposed JLS-factor model.
In addition, the results of different standard statistical tests
show that the new JLS model is superior to the original JLS
model. Moreover, the results of significance testing provide
indirect evidence on the key role of fundamental economic
and exogenous factors in China affecting the evolution of
Chinese stock bubbles (except the 2008–2009 bubbles, which
were probably punctuated by a vanishingly small change in
some endogenous factors).

The remainder of this paper is structured as follows. In
Section 2, we summarize the mathematical formulation of
the original JLS model, while the extended JLS model is
introduced in Section 3. Section 4 presents the construction
of the JLS-factor model with Chinese characteristics. Sec-
tion 5 describes the tests of six documented Chinese stock
bubbles by using the new JLS model and the original model
and compares their respective predictive power. Section 6
shows the significance test results of the original and new JLS
models. Section 7 summarizes our conclusions.

2. Mathematical Formulation of the JLS Model

In this section, we recall the formation of the original JLS
model, which provides a flexible framework within which
to detect bubbles and predict regime changes in the price
time series of a financial asset. It combines (i) the economic
theory of rational expectation bubbles, (ii) behavioral finance
on imitation and herding of noise traders, and (iii) the
mathematical and statistical physics of bifurcations and phase

transitions. The model considers the faster-than-exponential
(power law with finite time singularity) increase in asset
prices accompanied by accelerating oscillations as the main
diagnostic of bubbles. It thus embodies a positive feedback
loop of higher return anticipations competing with the
negative feedback spirals of crash expectations [23].

Within the JLS framework, expected price 𝑝(𝑡) condi-
tioned on no crash occurring is obtained as follows (see Zhou
and Sornette [22], for the concrete derivation of the model):

𝐸
𝑡0
[𝑝 (𝑡)] = 𝑝 (𝑡0) 𝐿 (𝑡) exp [𝜅∫𝑡

𝑡0

ℎ (𝜏) 𝑑𝜏] , (1)

where 𝐿(𝑡) = exp{∫𝑡
𝑡0

[𝑟(𝜏) + 𝜎(𝜏)𝜑(𝜏)]𝑑𝜏}, 𝑟(𝑡) is the interest
rate, 𝜎(𝑡) is the price volatility, 𝜑(𝑡) is the market price of risk
of the stochastic discount factor, and ℎ(𝑡) is the crash hazard
rate, namely, the probability per unit time that the crash will
happen in the next instant if it has not yet happened.

For 𝑟(𝑡) = 𝜑(𝑡) = 0 and 𝐿(𝑡) = 1, we have
𝐸
𝑡0
[𝑝 (𝑡)] = 𝑝 (𝑡0) exp [𝜅∫𝑡

𝑡0

ℎ (𝜏) 𝑑𝜏] . (2)

Johansen et al. [14] proposed that a crash may be caused
by local self-reinforcing imitation processes between noise
traders that can be quantified by the theory of critical
phenomena developed in the physical sciences. Hence, they
assumed that the aggregate effect of noise traders can be
quantified by the following dynamics of the crash hazard rate:

ℎ (𝑡) = 𝐵𝑥𝑚−1 + 𝐶𝑥𝑚−1 cos (𝜔 ln𝑥 − 𝜙) , (3)

where 𝑥 = |𝑡
𝑐
−𝑡|, 𝑡
𝑐
is the critical time (i.e., themost probable

time for the bursting of the bubble), 𝜔 is the angular log-
frequency, and 𝜙 ∈ [0, 2𝜋] is an initial phase determining
the unit of the time. Generalizing the definition of 𝑡

𝑐
− 𝑡 into|𝑡

𝑐
−𝑡| allows for the critical time 𝑡

𝑐
to lie anywhere within the

time series, which has the advantage of introducing a degree
of flexibility into the search space for 𝑡

𝑐
with little additional

cost [17].
The power law behavior 𝑥𝑚−1 embodies the mechanisms

of positive feedback at the origin of the formation of a bubble,
while the cosine term on the RHS of (3) takes into account
the existence of a possible hierarchical cascade of panic
acceleration punctuating the course of the bubble, resulting
from either a preexisting hierarchy in noise trader sizes
and/or the interplay betweenmarket price impact inertia and
nonlinear fundamental value investing [23].

Substituting (3) into (2) and integrating yields the LPPL
equation for the price:

ln [𝑝 (𝑡)] = 𝐴 + 𝐵𝑥𝑚 + 𝐶𝑥𝑚 cos (𝜔 ln𝑥 − 𝜙) , (4)

where𝐴 = ln[𝑝(𝑡
𝑐
)], which gives the terminal log-price at the

critical time 𝑡
𝑐
. 𝐵 = −(𝜅/𝑚)𝐵 and 𝐶 = −(𝜅/√𝑚2 + 𝜔2)𝐶,

respectively, control for the amplitude of the power law
acceleration and the log-periodic oscillations. The exponent𝑚 quantifies the degree of superexponential growth. 𝜔 is the
angular log-frequency. 𝜙 is another phase different to 𝜙 that
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contains two ingredients: information on the mechanism of
the interactions between investors and a rescaling of time.
The power law with exponent 𝑥𝑚 captures the faster-than-
exponential growth in the price and the term cos (𝜔 ln𝑥 − 𝜙)
describes the accelerating oscillation decorating the acceler-
ating price. Further, although additional constraints emerge
from a compilation of a significant number of historical
bubbles that can be summarized as 0.1 ≤ 𝑚 ≤ 0.9, 6 ≤ 𝜔 ≤ 13
[26], Zhang et al. [28] found larger search ranges 𝑚 ∈ [0, 2]
and 𝜔 ∈ [1, 50] from their research on sixteen historical
bubbles.

A more general JLS model can be expressed as

𝐼 (𝑡) = 𝐴 + 𝐵𝑥𝑚 + 𝐶𝑥𝑚 cos (𝜔 ln𝑥 − 𝜙) . (5)

Theoretically, the order parameter 𝐼(𝑡) can be the price𝑝(𝑡) or the logarithm of price ln[𝑝(𝑡)], while which one is
reasonable to be the dependent variable is dependent on the
following criterion. Zhou and Sornette [33] proposed that
the observed price is the sum 𝑝(𝑡) = 𝐹(𝑡) + 𝑀(𝑡) of a
fundamental price 𝐹(𝑡) and of a bubble or an antibubble𝑀(𝑡). They had 𝐼(𝑡) = 𝑝(𝑡) when 𝐹(𝑡) ≪ 𝑀(𝑡) and𝐼(𝑡) = ln[𝑝(𝑡)] when 𝐹(𝑡) ∼ 𝑀(𝑡). In fact, based on the
rational bubble model of Johansen et al. [14] and Johansen
et al. [38], if the magnitude of the crash is proportional to
the price increase only associated with the contribution of
the bubble, then the correct proxy is the price itself; on the
contrary, if the magnitude of the crash is proportional to the
price, then the correct proxy is the logarithm of the price
[39]. From a theoretical view point, this is unsurprising: the
rational expectationmodel of bubbles and crashes shows that,
depending on whether the size of the crash is proportional to
the price itself or that of the increase due to the bubble, either
the logarithm of the price or the price itself is the correct
quantity characterizing the bubble [12].

For the sake of simplicity, let us rewrite (5) in the
following form:

𝑦 (𝑡) = 𝐴 + 𝐵𝑓 (𝑡) + 𝐶𝑔 (𝑡) , (6)

where

𝑦 (𝑡) = ln [𝑝 (𝑡)] or 𝑝 (𝑡) ,
𝐴 = ln [𝑝 (𝑡

0
)] ,

𝑓 (𝑡) = 𝑡𝑐 − 𝑡𝑚 ,
𝑔 (𝑡) = 𝑡𝑐 − 𝑡𝑚 cos (𝜔 ln 𝑡𝑐 − 𝑡 − 𝜙) .

(7)

3. Extended JLS Model

The common JLS model is the specific form when 𝑟(𝑡) =𝜑(𝑡) = 0, as mentioned above. However, 𝑟(𝑡) and 𝜑(𝑡) do not
equal zero in the real world. Thus, we extend the original JLS
model locally. Similar to Zhou and Sornette [22], we assume
that 𝜑(𝑡) is a constant 𝜑, which does not change over time.
Moreover, we take the true values of 𝑟(𝑡) and 𝜎(𝑡) to calibrate
themodel. Specifically, we specify 𝑟(𝑡) as the risk-free interest
rate and employ the historical volatility of the targeted asset

as a proxy for the volatility factor 𝜑(𝑡). All daily data come
from the iFinD database.

Through the above extension, the original JLS model can
be converted into the following form:

𝑦 (𝑡) = 𝐴 + 𝐵𝑓 (𝑡) + 𝐶𝑔 (𝑡) + 𝛼𝑟 (𝑡) + 𝜑V (𝑡) , (8)

where
𝑦 (𝑡) = ln [𝑝 (𝑡)] or 𝑝 (𝑡) ,
𝐴 = ln [𝑝 (𝑡

0
)] ,

𝑓 (𝑡) = 𝑡𝑐 − 𝑡𝑚 ,
𝑔 (𝑡) = 𝑡𝑐 − 𝑡𝑚 cos (𝜔 ln 𝑡𝑐 − 𝑡 − 𝜙) ,
𝑟 (𝑡) = ∫𝑡

𝑡0

𝑟 (𝜏) 𝑑𝜏,
V (𝑡) = ∫𝑡

𝑡0

𝜎 (𝜏) 𝑑𝜏,

𝜎 (𝑡) = √∑𝑛𝑡=1 (𝑝𝑡 − 𝑝)2(𝑛 − 1) ,

(9)

𝑝
𝑡
is the day logarithm yield of the targeted asset, 𝑝 is the

average yield, 𝑟(𝜏) represents the risk-free interest rate, and𝜎(𝜏) denotes the historical volatility of the targeted asset.
However, the above model is only a local extension in

view of the general JLSmodel. For Chinese stockmarkets, the
influence of macroeconomic factors, national policy, and the
international economic situation on the stockmarketmust be
accounted for, except for the impact of the positive feedback
effect caused by investors’ herding behavior. Therefore, we
study the important factors that affect the volatility of Chinese
stock indices in the next section and add these to the extended
JLS model to construct a new JLS model (i.e., the JLS-factor
model), which is suitable for China.

4. JLS-Factor Model with Chinese
Characteristics

Owing to their inherent characteristics and drawbacks,
Chinese stock markets are more easily affected by changes
in monetary policy and fluctuations in international stock
markets than mature markets. Hence, in this section, we
analyze the impact of these two factors on Chinese stock
market volatility and then construct a new JLS-factor model
to calibrate the well-known Chinese stock bubbles.

First, the effect of monetary policy, mainly implemented
by adjusting the interest rates, deposit reserve rate, and
money supply, and so on, on a country’s capital market
has long been examined in agroscientific research globally.
Theoretically, in the context of the transmission mechanism,
monetary policy affects stock prices mainly through both the
traditional interest rate channel [40] and the credit channel
[41]. A number of empirical studies have applied different
proxy variables to assess the effects ofmonetary policy shocks
on stock market volatility, including the discount rate [42–
45] (Mercer and Johnson, 1996), Federal Funds rate [46–54],
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interest rate [55–62] (Octavioet al., 2013), money supply [63–
66], and Federal Funds futures [67–75].

Compared with foreign scholars’ research, abundant
works in China have assessed the relationship between the
deposit reserve rate and stock market (e.g., [76–87]). All this
research argues that, after changing the supply of money,
the variation in the deposit reserve rate causes stock prices
to change in the following four ways: (i) the effect of the
market interest rate, (ii) the effect of credit scale, (iii) the
effect of market structure, and (iv) the effect of stock market
announcements. On the one hand, the variation in the
deposit reserve rate tends to directly affect the money supply
of the whole society and thus changes the capital supply to
the stockmarket and, ultimately, the evolution of stock prices.
On the other hand, as a policy signal, the adjustment in the
deposit reserve rate significant affects investors’ psycholog-
ical expectations and thus their investment strategies and,
ultimately, the evolution of stock prices. Unfortunately, early
research into the relationship between swings in the deposit
reserve rate and fluctuation in stock prices provided mixed
results, finding no consistent relationship between these two
variables and that the nature of such dynamics was unstable.
From the above, a change in the deposit reserve rate is thus
a factor that can affect asset prices. Therefore, we take into
account its effect on the evolution of Chinese stock bubbles.

Second, as China has gradually opened up its stock
market to foreign investments and cross-border listings,
the comovement between the Chinese and the interna-
tional stock market is increasingly strengthening. Indeed, in
extreme cases such as the global financial crisis, such comove-
ment is significantly enhanced given the deterioration of
global economic fundamentals and the risk contagion among
international financial markets [88, 89]. However, among all
international stock markets, domestic research shows that
stock price fluctuations in the United States have a more
remarkable impact on that in China than others (e.g., [90–
96], Hu, 2010). In particular, Zhang et al. [97] and Pan and
Liu [98] found that the volatility of US stock indices can be
used to predict the trend of Chinese stock prices.

Given the foregoing, we take into account the impact of
the deposit reserve rate and US stock index volatility on the
evolution of Chinese stock bubbles when constructing the
new JLS model. Therefore, we have

𝑦 (𝑡) = 𝐴 + 𝐵𝑓 (𝑡) + 𝐶𝑔 (𝑡) + 𝛼𝑟 (𝑡) + 𝛽𝑟𝑐 (𝑡) + 𝜑V (𝑡)
+ 𝛾V
𝑎 (𝑡) , (10)

where

𝑦 (𝑡) = ln [𝑝 (𝑡)] or 𝑝 (𝑡) ,
𝐴 = ln [𝑝 (𝑡

0
)] ,

𝑓 (𝑡) = 𝑡𝑐 − 𝑡𝑚 ,
𝑔 (𝑡) = 𝑡𝑐 − 𝑡𝑚 cos (𝜔 ln 𝑡𝑐 − 𝑡 − 𝜙) ,
𝑟 (𝑡) = ∫𝑡

𝑡0

𝑟 (𝜏) 𝑑𝜏,

𝑟
𝑐 (𝑡) = ∫𝑡

𝑡0

𝑟
𝑐 (𝜏) 𝑑𝜏,

V (𝑡) = ∫𝑡
𝑡0

𝜎 (𝜏) 𝑑𝜏,
V
𝑎 (𝑡) = ∫𝑡

𝑡0

𝜎
𝑎 (𝜏) 𝑑𝜏,

(11)

𝑟(𝜏) is the risk-free interest rate, 𝑟
𝑐
(𝜏) represents the deposit

reserve rate, and 𝜎(𝜏) and 𝜎
𝑎
(𝜏) are specified as the volatil-

ity of the targeted index and NASDAQ, respectively (the
NASDAQ Composite Index is a barometer of market value
changes in each industrial category, as it includes more
than 5000 companies, which is more than any other single
securities market. As a result, the NASDAQComposite Index
ismore representative than the S&P 500 index andDow Jones
Industrial Average).

Because the specific function forms of 𝑟(𝜏), 𝑟
𝑐
(𝜏), 𝜎(𝜏),

and𝜎
𝑎
(𝜏) cannot be determined, we use the trapezoid scheme

to integrate 𝑟(𝑡), 𝑟
𝑐
(𝑡), V(𝑡), and V

𝑎
(𝑡) in practice, following

Zhou and Sornette [22]. That is, we let

∫𝑡
𝑡0

𝑟 (𝜏) 𝑑𝜏 ≈ 𝑡∑
𝜏=𝑡0+1

[𝑟 (𝜏 − 1) + 𝑟 (𝜏)]2 ,

∫𝑡
𝑡0

𝑟
𝑐 (𝜏) 𝑑𝜏 ≈ 𝑡∑

𝜏=𝑡0+1

[𝑟
𝑐 (𝜏 − 1) + 𝑟𝑐 (𝜏)]2 ,

∫𝑡
𝑡0

𝜎 (𝜏) 𝑑𝜏 ≈ 𝑡∑
𝜏=𝑡0+1

[𝜎 (𝜏 − 1) + 𝜎 (𝜏)]2 ,

∫𝑡
𝑡0

𝜎
𝑎 (𝜏) 𝑑𝜏 ≈ 𝑡∑

𝜏=𝑡0+1

[𝜎
𝑎 (𝜏 − 1) + 𝜎𝑎 (𝜏)]2 .

(12)

5. Results of the Original and New JLS Models

To visually compare the prediction accuracy of the results
of the original and new JLS models, in this section, we
calibrate the evolutions of two well-known Chinese stock
indices (SSEC and SZSC) in three time periods, as selected
by two published papers (i.e., [32, 34]) that applied the
original JLS model to fit the tendency of these two indices
in the corresponding periods. By observing the minimum
and maximum values among the targeted indices within the
specified periods, we find that the average annual growth rate
is 244.55%. This finding implies that the fundamental price𝐹(𝑡) should be much less than the bubble 𝑀(𝑡) according
to Zhou and Sornette’s [33] assumption. In the next step, we
employ our JLS-factormodel presented in (10) to fit these two
indices within the same three periods with 𝑦(𝑡) = 𝑝(𝑡).

Each calibration uses the algorithm of Universal Global
Optimization provided by 1stOpt (First Optimization) soft-
ware, which has been independently developed by 7D-Soft
High Technology Inc. to solve any constrained or uncon-
strained linear and nonlinear equation(s). This software
allows us to estimate all parameters (𝑡

𝑐
, 𝜔,𝑚, 𝜙, 𝐴, 𝐵, 𝐶, 𝛼, 𝛽,
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(a) 05/07/11–08/10/17 SSEC bubble
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(b) 05/07/11–08/10/17 SZSC bub-
ble
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(c) 08/11/03–09/08/31 SSEC bub-
ble
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(d) 08/11/03–09/08/31 SZSC bub-
ble
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(e) 14/03/13–15/07/29 SSEC bubble
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(f) 14/03/13–15/07/29 SZSC bub-
ble

Figure 1: Daily trajectory of the SSEC and SZSC from 2005/07/11 to 2015/07/29 by using the JLS-factor model presented in (10) with 𝑦(𝑡) =𝑝(𝑡). The fit of SSEC from 2005/07/11 to 2008/10/17 is illustrated in (a) as a red solid line, whose parameters are 𝑡
𝑐
= 2007/10/16, 𝜔 = 0.03,𝑚 =

1.89, 𝜙 = 0.03,𝐴 = 4971.87, 𝐵 = −4809410.22, 𝐶 = 4808854.92, 𝛼 = 215.66, 𝛽 = −32.46, 𝜑 = −25.11, and 𝛾 = 0.20 with an r.m.s. of the fit residuals𝜒 = 193.04.The fit of SZSC from 2005/07/11 to 2008/10/17 is illustrated in (b) as a red solid line, whose parameters are 𝑡
𝑐
= 2007/11/26, 𝜔 = 1.26,𝑚 = 0.31, 𝜙 = 3.48,𝐴 = 14926.14, 𝐵 = −7159.59,𝐶 = 6083.23, 𝛼 = −320.05, 𝛽 = 92.46, 𝜑 = 39.43, and 𝛾 = 2.73 with an r.m.s. of the fit residuals 𝜒 =

643.26. The fit of SSEC from 2008/11/03 to 2009/08/31 is illustrated in (c) as a red solid line, whose parameters are 𝑡
𝑐
= 2009/08/03, 𝜔 = 17.46,𝑚 = 0.45, 𝜙 = 2.14, 𝐴 = 3357.54, 𝐵 = −2150.17, 𝐶 = −122.12, 𝛼 = 74.22, 𝛽 = 37.78, 𝜑 = −83.33, and 𝛾 = −0.33 with an r.m.s. of the fit residuals 𝜒 =

60.49.The fit of SZSC from 2008/11/03 to 2009/08/31 is illustrated in (d) as a red solid line, whose parameters are 𝑡
𝑐
= 2009/08/03, 𝜔 = 17.28,𝑚

= 0.53, 𝜙 = 4.80, 𝐴 = 13437.80, 𝐵 = −10004.44, 𝐶 = 627.84, 𝛼 = 132.05, 𝛽 = 66.10, 𝜑 = −56.60, and 𝛾 = −0.25 with an r.m.s. of the fit residuals 𝜒
= 282.30. The fit of SSEC from 2014/03/13 to 2015/07/29 is illustrated in (e) as a red solid line, whose parameters are 𝑡

𝑐
= 2015/06/08, 𝜔 = 5.50,𝑚 = 0.39, 𝜙 = 1.09, 𝐴 = 5884.95, 𝐵 = −4081.11, 𝐶 = 316.83, 𝛼 = 105.11, 𝛽 = 10.50, 𝜑 = −115.53, and 𝛾 = −0.14 with an r.m.s. of the fit residuals 𝜒 =

119.37. The fit of SZSC from 2014/03/13 to 2015/07/29 is illustrated in (f) as a red solid line, whose parameters are 𝑡
𝑐
= 2015/06/08, 𝜔 = 5.63,𝑚

= 0.34, 𝜙 = 3.99,𝐴 = 13809.61, 𝐵 = −15604.59, 𝐶 = −1027.34, 𝛼 = −2.62, 𝛽 = 535.60, 𝜑 = −392.55, and 𝛾 = −0.84 with an r.m.s. of the fit residuals𝜒 = 486.32.

𝜑, and 𝛾) in a given timewindowof analysis without inputting
the initial values. The main results of our calibrations for
the evolutions of the 2005–2008, 2008-2009, and 2014-2015
bubbles are illustrated in Figure 1.

As shown in Figure 1, the six fits are very close to the real
trajectories of the SSEC and SZSC bubbles, which intuitively
shows the superiority of our JLS-factor model. Further, we
employ the 1stOpt software again to calibrate the evolutions
of the SSEC and SZSC bubbles in the same periods with the
original JLS model and compare the estimation accuracies of
critical times between the original and new JLS models. The
results are shown in Tables 1 and 2.

Tables 1 and 2 show that the estimated accuracy of the
critical time by the new JLS model is in general better than
that of the original JLS model, except for the 2005–2008
SZSC bubble. In particular, for the 2005–2008 and 2008-
2009 SSEC bubbles and the 2008-2009 SZSC bubble, the

estimation results of the new JLS model agree well with the
actual time at which the bubble burst. Figure 1(b) shows that
the 2005–2008 SZSC bubble peaked twice in just two and a
half months, which may have been the main cause of the low
estimated accuracy.

Recall the setting of 𝑥 = |𝑡
𝑐
− 𝑡| above. Two potential

problems are associated with this procedure if an antibubble
exists during the bubble period. First, it implies that the
antibubble is always associated with a bubble which, in
addition, has the same 𝑡

𝑐
. Second, it implies that the bubble

and antibubble are symmetric around 𝑡
𝑐
; that is, the same

parameters characterize the index evolution for 𝑡 < 𝑡
𝑐
and

for 𝑡 > 𝑡
𝑐
[17]. However, two peaks existed in the evolution

of the 2005–2008 SZSC bubble showed in Figure 1(b), and
the low estimated accuracy calculated by using both the new
and the original JLSmodelsmay imply two different 𝑡

𝑐
during

this period: one is the critical time corresponding to the
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Table 1: Prediction of the critical time of the SSEC bubbles burst for both models and their differences with the actual times of bubble burst.

Item Estimated time interval
2005/7/11–2008/10/17 2008/11/3–2009/8/31 2014/3/13–2015/7/29

The actual time of bubble burst 2007/10/16 (𝑡
𝑐
= 107.79) 2009/8/4 (𝑡

𝑐
= 109.59) 2015/6/12 (𝑡

𝑐
= 115.45)

The predicted critical time of the original JLS
model 2007/10/26 (𝑡

𝑐
= 107.82) 2009/7/28 (𝑡

𝑐
= 109.57) 2015/5/11 (𝑡

𝑐
= 115.36)

The difference between the original JLS model
and actual time (days) −10 7 30

The predicted critical time of the new JLS model 2007/10/16 (𝑡
𝑐
= 107.79) 2009/8/3 (𝑡

𝑐
= 109.59) 2015/6/8 (𝑡

𝑐
= 115.43)

The difference between the new JLS model and
actual time (days) 0 1 4

Value in parentheses is the predicted critical time 𝑡𝑐.

Table 2: Prediction of the critical time of the SZSC bubbles burst for both models and their differences with the actual times of bubble burst.

Item Estimated time interval
2005/7/11–2008/10/17 2008/11/3–2009/8/31 2014/3/13–2015/7/29

The actual time of bubble burst 2007/10/31 (𝑡
𝑐
= 107.83) 2009/8/4 (𝑡

𝑐
= 109.59) 2015/6/12 (𝑡

𝑐
= 115.45)

The predicted critical time of the original JLS
model 2007/11/22 (𝑡

𝑐
= 107.89) 2009/7/28 (𝑡

𝑐
= 109.57) 2015/6/3 (𝑡

𝑐
= 115.42)

The difference between the original JLS model
and actual time (days) −22 7 9

The predicted critical time of the new JLS model 2007/11/26 (𝑡
𝑐
= 107.90) 2009/8/3 (𝑡

𝑐
= 109.59) 2015/6/8 (𝑡

𝑐
= 115.43)

The difference between the new JLS model and
actual time (days) −26 1 4

Value in parentheses is the predicted critical time 𝑡𝑐.

bursting of a bubble, while the other marks the inception of
an antibubble. Hence, we conduct a Lomb analysis, using a
parametric detrending approach, to detect the log-periodic
oscillations accompanied by the 2007/11/29–2008/10/17 SZSC
antibubble (here, we only employ the Lomb analysis to detect
the log-periodic oscillations accompanied by an antibubble;
the analysis method for a bubble is the same).

Following Zhou and Sornette [33], the assumption that
a critical point at the inception of an antibubble exists can
be tested by investigating two possible signatures of a critical
behavior: a power law relaxation and log-periodic wobbles.
Firstly, we test the power law relaxation of the 2007/11/29–
2008/10/17 SZSC bubble.

The power law expression for an antibubble reads

𝐼 (𝑡) = 𝐴 + 𝐵 𝑡 − 𝑡c𝑚 , (13)

where 𝑡
𝑐
is an estimate of the inception of the antibubble and

the order parameter 𝐼(𝑡) can be price 𝑝(𝑡) or its logarithm
ln[𝑝(𝑡)]. If 0 < 𝑚 < 1, 𝐼(𝑡) is finite; however, its first derivative𝐼(𝑡) is singular at 𝑡

𝑐
and 𝐵 should be negative to ensure that𝐼(𝑡) decreases.

According to the specific characteristics of the 2007/
11/29–2008/10/17 SZSC bubble, we only fit it by using the
power law formula (13) with 𝐼(𝑡) = 𝑝(𝑡), whose parameters
are 𝑡
𝑐
= 2008/01/10, 𝑚 = 0.74, 𝐴 = 18732, and 𝐵 = −15108.07

with an r.m.s. of the fit residuals 𝜒 = 706.80. According to the
fitted values of𝑚 and𝐵, we can conclude that the 2007/11/29–
2008/10/17 SZSC bubble meets the signature of power law
relaxation.

As for the detection of log-periodic oscillations, this is
conveniently performed by removing the global trend of the
index. One way is to subtract the power law fit (13) from the
index and then analyze the wobbles of the obtained residuals𝑠(𝑡) by adopting an adequate spectral analysis. Similarly, we
construct the residuals 𝑠(𝑡) in the following way:

𝑠 (𝑡) = [𝑝 (𝑡) − 𝐴]𝑡 − 𝑡𝑐𝑚 , (14)

where𝐴,𝑚, and 𝑡
𝑐
are obtained from the fit of the pure power

law formula (13) to the data.
As implemented inZhou and Sornette [19, 33], we also use

a Lomb periodogram analysis of residuals 𝑠(𝑡) to assess the
statistical significance level of the extracted log-periodicity.
The Lomb periodogram of 𝑠(𝑡) is shown in Figure 2.

As shown in Figure 2, the highest peak is at 𝜔 = 3.91
with height 𝑃

𝑛
(𝜔) = 3.05 × 106. This strong significant

peak of the periodogram qualifies the existence of log-
periodicity. More precisely, we can employ the false alarm
probability 𝑃

𝑟
(false alarm probability is the chance that we

falsely detect log-periodicity in a signal without true log-
periodicity) to obtain the statistical significance level of the
extracted log-periodicity. Under the null hypothesis of i.i.d.
Gaussian fit residuals, 𝑃

𝑟
is zero [99]. However, assuming

an i.i.d. structure is too restrictive as the fit residuals usually
have some correlations. If the residuals have long range
correlations characterized by a Hurst index 𝐻, we can use
Zhou and Sornette’s [100] computational method of 𝑃

𝑟
for

various values of𝐻 > 1/2 to obtain the statistical significance
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Figure 2: The Lomb periodogram analysis of 𝑠(𝑡), where 𝑃
𝑛
(𝜔) is a

normalized Lomb power (since 𝑃
𝑛
(𝜔) is a normalized Lomb power,𝑠(𝑡) and [𝑠(𝑡) − 𝜇

𝑠
]/𝜎
𝑠
have identical Lomb periodogram, where 𝜇

𝑠

and 𝜎2s , resp., denote the mean and variance of this residuals 𝑠(𝑡))
and 𝜔 is the log-angular frequency.

level of the extracted log-periodicity. For example, if 𝐻 =
0.6, the false alarm probability corresponding to the observed
peak 𝑃

𝑛
(𝜔) = 3.05 × 106 is 𝑃

𝑟
< 10−10; if𝐻 = 0.7, it is 𝑃

𝑟
< 10−8;

if𝐻 = 0.8, it is 𝑃
𝑟
< 10−7; and if𝐻 = 0.9, it is 𝑃

𝑟
< 10−6. All of

these mean that the statistical significance of log-periodicity
is very high.

From the above, we can conclude that the 2007/11/29–
2008/10/17 SZSC bubble is indeed an antibubble. Therefore,
we separate the 2005–2008 SZSC bubble into two periods,
namely, the 2005/11/15–2007/11/28 SZSC bubble and the
2007/11/29–2008/10/17 SZSC antibubble. Then, we fit these
two bubbles by using both the new and original JLS models.
The calibrations of these two SZSC bubbles are shown in
Figure 3, while the comparison results for both models are
shown in Table 3.

Table 3 shows that the prediction result of the 2005–2007
SZSC bubble by using the new JLS model is unsatisfactory;
however, it is slightly better than the estimation result of the
original JLS model. Meanwhile, the critical time estimated by
using the new JLS model for the SZSC antibubble for 2007-
2008 is very close to the actual time, which shows that the
predictive power of the new JLS model is superior to that of
the original model. These results demonstrate that the new
JLS model quantifies the time evolution of Chinese stock
bubbles remarkably well in terms of the price ending with a
crash or a large correction at a time close to the critical time.

Moreover, the corresponding parameters for our cali-
brations for the evolutions of the 2005–2008, 2008-2009,
and 2014-2015 bubbles are listed in Table 4 for comparison
purposes.

As shown in Table 4, all the coefficients 𝐵 are negative,
which qualifies that these indices are in the bubble (or
antibubble) regime [18]. Among the other parameter values,

note that only the power law exponents 𝑚 of the indices
of 05/07/11–08/10/17 SSEC and 05/11/15–07/11/28 SZSC are
significantly larger than 1, while the others are between 0 and
1. In the absence of log-periodic oscillations, large values of𝑚 > 1 imply a relatively steep upward overall acceleration
of the index, while 0 < 𝑚 < 1 would mean that the
overall shape of these indices shows less rapid dynamics.
In addition, from the fitting results of 05/07/11–08/10/17
SSEC and 05/11/15–07/11/28 SZSC, we can find that when𝑚 are significantly larger than 1 and the angular frequency𝜔 of the log-periodic oscillations is too small, price 𝑝(𝑡)
will be compensated by a large amplitude of the power law
acceleration and log-periodic oscillations; that is, the values|𝐵| and 𝐶 will be larger. Finally, the effects of the risk-free
interest rate, the deposit reserve rate, the volatility of the
targeted index, and NASDAQ on price 𝑝(𝑡) are by and large
inconsistent. This may be because the influences of these
exogenous factors on the evolution of bubbles are different
in different periods and the reactions of different indices
to the same exogenous factors are different as the stock
market is a complex system. However, it is interesting to note
that this happens to indirectly reflect the instability of the
Chinese stock market. Relatively speaking, the effect of the
volatility of NASDAQ on price 𝑝(𝑡) is smaller than that of the
others. Possible reasons for this include the hysteresis of the
contagion effect and the lack of synchronicity between the
economic cycles of these two countries. By contrast, it also
implies that comovements between the Chinese and the US
stock markets exist, although this relationship is still weak.

6. Significance Testing of the JLS-Factor Model

In the following, we compare the performances of these fits
between the new and original JLS models by using three
statistical criteria (i.e., AIC, SC, and HQC). We also test the
significance level of the two exogenous factors in the new
JLS model, namely, the deposit reserve rate and volatility of
NASDAQ. Ideally, these tests require that the fitting residuals
are i.i.d. with Gaussian distributions. In reality, the residuals
have remaining dependence structures at small scales. As
a consequence, the standard statistical significance of the
above tests cannot be read from Gaussian statistics tables.
Nevertheless, these tests provide useful diagnostics to gauge
the relative (rather than absolute) performance of competing
models and are thus instructive to identify models [22]. The
test results are shown in Tables 5–7.

These tables show that the new JLS model performs
better than the original JLS model in all cases according
to both the adjusted R-square values and the three test
statistics. In addition, according to the significant degree of
corresponding coefficients of the deposit reserve rate and
volatility of NASDAQ, we find that although the influence
of these two factors on the evolution of the 2008-2009 SSEC
and SZSC bubbles is not significant, the fitting effect of the
whole model is improved after joining these two variables.
This finding implies that Chinese stock bubbles are due not
only to the exogenous influence of the People’s Bank of
China and volatility of international stock indices but also
to the endogenous self-organization of the markets resulting
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Table 3: Prediction of the critical time of the SZSC bubbles burst for both models and their differences with the actual times of bubble burst.

Item Estimated time interval
2005/11/15–2007/11/28 2007/11/29–2008/10/17

The actual time of bubble burst 2007/10/31 (𝑡
𝑐
= 107.83) 2008/1/14 (𝑡

𝑐
= 108.04)

The predicted critical time of the original JLS model 2007/12/13 (𝑡
𝑐
= 107.95) 2008/1/11 (𝑡

𝑐
= 108.03)

The difference between the original JLS model and actual time
(days) −43 3

The predicted critical time of the new JLS model 2007/10/8 (𝑡
𝑐
= 107.76) 2008/1/15 (𝑡

𝑐
= 108.04)

The difference between the new JLS model and actual time (days) 23 −1
Value in parentheses is the predicted critical time 𝑡𝑐.

Observations
Fitted values

20
06

-0
1-

12

20
06

-0
3-

20

20
06

-0
5-

22

20
06

-0
7-

17

20
06

-0
9-

11

20
06

-1
1-

13

20
07

-0
1-

11

20
07

-0
3-

15

20
07

-0
5-

17

20
07

-0
7-

12

20
07

-0
9-

06

20
07

-1
1-

08

20
05

-1
1-

15

0

5000

10000

15000

20000

25000

p
(t
)

(a) 05/11/15–07/11/28 SZSC bubble
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Figure 3: Daily trajectory of the SZSC from 2005/11/15 to 2008/10/17 by using the JLS-factor model presented in (10) with 𝑦(𝑡) = 𝑝(𝑡). The
fit of SZSC from 2005/11/15 to 2007/11/28 is illustrated in (a) as a red solid line, whose parameters are 𝑡

𝑐
= 2007/10/08, 𝜔 = 0.07,𝑚 = 1.86, 𝜙 =

0.07, 𝐴 = 20506.38, 𝐵 = −4784674.93, 𝐶 = 4780598.98, 𝛼 = −183.50, 𝛽 = −296.39, 𝜑 = 118.94, and 𝛾 = 1.87 with an r.m.s. of the fit residuals 𝜒 =
523.35. The fit of SZSC from 2007/11/29 to 2008/10/17 is illustrated in (b) as a red solid line, whose parameters are 𝑡

𝑐
= 2008/01/15, 𝜔 = 14.85,𝑚 = 0.53, 𝜙 = 2.82,𝐴 = 12998.06, 𝐵 = −12652.93, 𝐶 = 1164.16, 𝛼 = 861.36, 𝛽 = −275.90, 𝜑 = 101.22, and 𝛾 = 4.89 with an r.m.s. of the fit residuals𝜒 = 561.68.

from positive feedback between herding investors. For the
2008-2009 Chinese stock bubbles, as in Jiang et al.’s [34]
analysis, the regime change in these bubbles occurred in
the absence of any significant modification of the economic
and financial conditions or any visible driving force. Here, a
vanishingly small change in some of the control parameters
may have led to amacroscopic bifurcation or phase transition
[34]. This means that universal LPPLS sufficiently reflect the
fundamental tendency of investors to speculate and herd.
Further, the change in the deposit reserve rate and volatility of
NASDAQ can dramatically affect the movements of Chinese
stock bubbles in the remaining periods in different ways.

7. Conclusion and Discussion

We introduced a new JLS model that combines fundamen-
tal economic factors in China (including the interest rate

and deposit reserve rate) and the historical volatilities of
targeted indices and US equity indices with the original
model. The new JLS model not only keeps the dynamic
characteristics of a bubble caused by positive feedback but
also considers exogenous shocks that trigger the bursting of
bubbles. Further, we analyzed in detail six financial bubbles
in Chinese stock markets by calibrating the JLS-factor model
(see (10)) to two important Chinese stock indices (SSEC and
SZSC) from July 2005 to July 2015. We then compared the
prediction accuracy of the critical time fitted by the new JLS
model with that of the original model. The results of this
comparison and the indirect significance tests indicate that
all Chinese stock bubbles are a combination of speculative
herding behavior and policy-induced reactions as well as
international stock index volatility. These results confirm the
sensible explanation and superiority of our proposed JLS
model.
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Table 5: The significance test results of the new and the original JLS model for the SSEC bubbles.

Independent
variable

2005/7/11–2008/10/17 2008/11/3–2009/8/31 2014/3/13–2015/7/29
JLS model New JLS model JLS model New JLS model JLS model New JLS model

𝐴 5731.247 4992.469 2825.911 4653.301 4792.062 7704.706
(280.536)∗∗∗ (91.959)∗∗∗ (61.353)∗∗∗ (24.645)∗∗∗ (212.031)∗∗∗ (48.030)∗∗∗

𝐵 −442310.7 −441176.2 −880.458 −3444.690 −2954.052 −5275.828
(−104.248)∗∗∗ (−62.898)∗∗∗ (−10.370)∗∗∗ (−15.337)∗∗∗ (−88.287)∗∗∗ (−40.295)∗∗∗

𝐶 441796.9 440839.6 −0.518 −154.749 −362.186 −365.562
(104.014)∗∗∗ (62.763)∗∗∗ (−48.883)∗∗∗ (−12.484)∗∗∗ (−17.492)∗∗∗ (−19.400)∗∗∗

𝛼 8.616 −1.487 −13.058
(11.445)∗∗∗ (−0.852) (−4.771)∗∗∗

𝛽 −1.437 −0.203 2.568
(−6.260)∗∗∗ (−0.724) (6.028)∗∗∗

𝜑 −2.214 −0.439 −2.669
(−3.491)∗∗∗ (−0.257) (−2.855)∗∗∗

𝛾 −5.284 0.650 −22.477
(−4.733)∗∗∗ (0.693) (−9.467)∗∗∗

𝑁 796 796 340 340 340 340
𝑅2 0.978 0.983 0.913 0.984 0.961 0.986
F-statistic 17320.70∗∗∗ 7531.207∗∗∗ 1784.438∗∗∗ 2089.920∗∗∗ 4146.165∗∗∗ 3995.439∗∗∗

AIC 13.593 13.337 14.674 11.066 13.273 12.249
SC 13.610 13.378 14.708 11.180 13.307 12.328
HQC 13.599 13.353 14.688 11.112 13.286 12.280
The regression coefficients, adjusted 𝑅-squares (𝑅2), and three statistical criteria are presented.The 𝑡-statistics are reported in the parentheses. ∗∗∗Significance
at the 1% confidence level.

Table 6: The significance test results of the new and the original JLS model for the SZSC bubbles.

Independent
variable

2005/7/11–2008/10/17 2008/11/3–2009/8/31 2014/3/13–2015/7/29
JLS model New JLS model JLS model New JLS model JLS model New JLS model

𝐴 18490.62 20234.73 2827.723 4643.542 17060.47 28286.88
(79.333)∗∗∗ (65.072)∗∗∗ (61.104)∗∗∗ (24.763)∗∗∗ (184.250)∗∗∗ (49.029)∗∗∗

𝐵 −7103.479 −8099.557 −879.179 −3427.315 −10429.75 −19848.04
(−23.023)∗∗∗ (−29.957)∗∗∗ (−10.349)∗∗∗ (−15.398)∗∗∗ (−78.527)∗∗∗ (−41.031)∗∗∗

𝐶 6244.976 6196.875 −0.519 −154.527 −1126.786 −1288.108
(52.350)∗∗∗ (57.204)∗∗∗ (−48.751)∗∗∗ (−12.533)∗∗∗ (−14.849)∗∗∗ (−17.401)∗∗∗

𝛼 3.127 −1.639 50.255
(1.095) (−0.941) (4.384)∗∗∗

𝛽 1.877 −0.192 −5.513
(2.234)∗ (−0.686) (−3.137)∗∗

𝜑 5.347 −0.349 14.983
(3.076)∗∗ (−0.204) (3.927)∗∗∗

𝛾 −39.379 0.685 −98.284
(−11.916)∗∗∗ (0.734) (−9.908)∗∗∗

𝑁 796 796 340 340 340 340
𝑅2 0.978 0.987 0.913 0.984 0.951 0.979
F-statistic 17954.89∗∗∗ 10329.40∗∗∗ 1782.521∗∗∗ 2089.289∗∗∗ 3271.277∗∗∗ 2673.850∗∗∗

AIC 16.174 15.643 14.675 11.067 15.902 15.046
SC 16.192 15.684 14.709 11.180 15.936 15.125
HQC 16.181 15.658 14.689 11.113 15.916 15.078
The regression coefficients, adjusted 𝑅-squares (𝑅2), and three statistical criteria are presented. The t-statistics are reported in the parentheses. ∗Significance
at the 10% confidence level. ∗∗Significance at the 5% confidence level. ∗∗∗Significance at the 1% confidence level.
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Table 7: The significance test results of the new and the original JLS model for the 2005–2008 SZSC bubbles.

Independent
variable

2005/11/15–2007/11/28 2007/11/29–2008/10/17
JLS model New JLS model JLS model New JLS model

𝐴 17692.97 41967.41 15512.45 19841.75
(260.833)∗∗∗ (30.219)∗∗∗ (72.230)∗∗∗ (130.481)∗∗∗

𝐵 −39857.89 −98196.21 −10840.88 −40897.70
(−115.809)∗∗∗ (−32.662)∗∗∗ (−20.378)∗∗∗ (−21.170)∗∗∗

𝐶 −36775.25 −89665.52 −2.800 1885.201
(−105.480)∗∗∗ (−33.281)∗∗∗ (−54.535)∗∗∗ (7.814)∗∗∗

𝛼 290.262 −140.944
(20.157)∗∗∗ (−14.366)∗∗∗

𝛽 −90.608 23.000
(−20.270)∗∗∗ (13.351)∗∗∗

𝜑 8.009 107.469
(2.782)∗∗∗ (15.265)∗∗∗

𝛾 7.62 −17.028
(1.419) (−1.587)

𝑁 495 495 340 340
𝑅2 0.983 0.993 0.904 0.980
F-statistic 14598.80∗∗∗ 10925.42∗∗∗ 1594.129∗∗∗ 1731.150∗∗∗

AIC 15.899 15.108 18.096 15.380
SC 15.925 15.167 18.130 15.490
HQC 15.909 15.131 18.109 15.424
The regression coefficients, adjusted 𝑅-squares (𝑅2), and three statistical criteria are presented.The t-statistics are reported in the parentheses. ∗∗∗Significance
at the 1% confidence level.

However, it is interesting to find that there is no obvious
reason to believe that there is any critical difference between
SSEC and SZSC, while the crucial fitting parameters are very
different during the bubble time 2005–2008. In reality, the
evolutions of the standardized 2005–2008 SSEC bubble and
the standardized 2005–2008 SZSC bubble are similar and
their correlation coefficient is as high as 0.99. However, these
few differences might lead to significantly different fitting
results.

The word “critical” is used in science with different
meanings. Sornette and Johansen [101] used it in the context
of the critical phenomena studied in statistical physics in
connectionwith phase transitions.Here, however, it describes
a system at the border between order and disorder, which is
characterized by an extremely large susceptibility to external
factors and a strong correlation between different parts of the
system. Examples of such systems are liquids and magnets,
where the system will progressively become orderly under
small external changes. In particular, this helps address the
question of what is/are the cause(s) of bubbles and crashes.
The crucial insight is that a system made of competing
investors subjected to the myriad of influences, both exoge-
nous news and endogenous interactions and reflexivity, can
develop into endogenously self-organized self-reinforcing
regimes that would qualify as bubbles; moreover, crashes
occur as a global self-organized transition. The implication

of modeling a market crash as a bifurcation is to solve
the question of what makes a crash: in the framework of
bifurcation theory (or phase transitions), sudden shifts in
behavior arise from small changes in circumstances, with
qualitative changes in the nature of the solutions that can
occur abruptly when the parameters change smoothly. That
is, a minor change of circumstances, interaction strength, or
heterogeneity may lead to a sudden and dramatic change,
such as during an earthquake and a financial crash. Note
that, according to this “critical” point of view, the specific
manner by which prices collapse is not the most important
problem: a crash occurs because the market has entered an
unstable phase and any small disturbance or processmayhave
triggered the existence of this instability [102]. For example,
think of a ruler held up vertically on your finger: this unstable
positionwill lead eventually to its collapse as a result of a small
(or an absence of adequate) motion of your hand or due to
any tiny whiff of air. The collapse is fundamentally due to the
unstable position; the instantaneous cause of the collapse is
secondary [1].

From the above, we know that if the bubble state is
unstable, a small disturbance will trigger the bursting of the
bubble.Hence, although there are fewdifferences between the
2005–2008 SSEC bubble and the 2005–2008 SZSC bubble,
as long as the trigger factors (exogenous or endogenous)
show small differences, the burst time of the bubble will
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be strikingly different, as will the results of the other JLS
model parameters. Thus, the crucial fitting parameters are
very different during the bubble time of 2005–2008.
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