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This paper aims at generating high-quality object proposals for object detection in autonomous driving. Most existing proposal
generation methods are designed for the general object detection, which may not perform well in a particular scene. We propose
several geometrical features suited for autonomous driving and integrate them into state-of-the-art general proposal generation
methods. In particular, we formulate the integration as a feature fusion problem by fusing the geometrical features with existing
proposal generation methods in a Bayesian framework. Experiments on the challenging KITTI benchmark demonstrate that our
approach improves the existing methods significantly. Combined with a convolutional neural net detector, our approach achieves
state-of-the-art performance on all three KITTI object classes.

1. Introduction

Object detection has been developed in many years and
there are a variety of robust approaches [1–5]. In the early
years, most of them follow the sliding-window paradigm.
But enormous numbers of windows would waste a large
amount of efforts on no-object areas. In order to overcome
this problem, an effective framework is proposed: object
proposals generation followed by a classifier. Most of the
methods are designed to generate object proposals for general
object detection, such as Edgeboxes [6] and Selective Search
[7]. They both work well on the PASCAL VOC dataset [8].

However thesemethodswould suffer a great performance
degradation, when they are applied to autonomous driving
scene, such as the challenging KITTI benchmark [9], which
contains many small objects, occlusion, high saturated areas,
and even shadows.

In this paper, we propose an effective approach to improve
the results of object proposals in autonomous driving scene.
Our work is motivated by the following observations. First,
there are three primary objects, in autonomous driving scene,
Car, Cyclist, and Pedestrian.These three objects usually lie on
the ground with different height. So the proposals should lie
on the ground. Second, the real-world size of objects in one

category would vary far less than their image-world size, but
the real-world size of different categories are also different. It
is helpful to use the object size prior of object as an indicator
to generate proposals. The details are discussed in Section 3.

This paper has two fundamental contributions.
(1) We propose two new geometric features, AR and SD2,

to represent the object size prior. We exploit D2R as an
indicator to constraint the proposals lying on the ground.
These features are demonstrated to be effective for generating
fewer proposals with higher recall.

(2) We deeply analyze the four geometric features, AR,
SD2, DMD, and D2R, and propose a method to combine
these features with existing methods efficiently. The final
results on the KITTI object detection benchmark achieve the
state-of-the-art performance in stereo-based methods.

Since it is inevitable to use the depth information to
compute the geometric features, we assume a stereo image
pair as an input and obtain depth information via the state-
of-the-art approach by Yamaguchi et al. [10].

2. Related Work

The main idea of object proposal method is to generate
relatively fewer number of bounding boxes that contain the
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objects in an image that we are interested in with high recall.
Existing proposal generationmethods are often based on low-
level image features, which can be divided into two categories
generally: grouping methods and window scoring methods.

2.1. Grouping Methods. Grouping proposal methods aim to
generate multiple segments that are likely to correspond to
objects. To cover different objects with various size, most
methods attempt to merge the output of a hierarchical image
segmentation algorithm. The decision to merge segments
is designed manually typically based on superpixel shape,
appearance features, and boundary estimates.

Selective Search [7] is one of themost well-known group-
ing methods which greedily merges superpixels to generate
proposals. The method has no learned parameters and has
been broadly used as the proposal method of choice by many
state-of-the-art object detectors, such as the R-CNN detector.

In order to detect objects with different size, MCG [11]
propose an algorithm for fast computing multiscale hierar-
chical segmentation.Theymerge the segments based on edge
strength and ranking the results using appropriate features.

Since SS and MCG both need an initial image segmen-
tation which impacts the object proposal results, CPMC
[12] does not have initial segmentations and uses graph cut
directly on pixels. Then it ranks the resulting segments based
on a large pool of features.

2.2. Window Scoring Methods. Window scoring methods are
to score each candidate window to indicate how likely an
object of interest is contained in it. Compared to grouping
approaches these methods usually directly return bound-
ing boxes with fast speed. However, they tend to generate
proposals with low localization accuracy unless the window
sampling is performed very densely.

Objectness [13, 14] is one of the earliest window scoring
proposal methods. A model is trained to distinguish objects
from the background and an initial set of proposals is
generated from salient locations in an image. Then each
proposal is scored by a Bayesian framework combining
several image features including color, edge density, saliency,
and superpixels straddling.

BING [15] is an extremely fast object proposal method
(300 fps/s on CPU). Gradient features are used to train a
simple linear classifier to detect object proposals in a sliding-
window framework which can yield 96.2% recall with 1000
proposals at the IOU threshold of 0.5. Meanwhile BING
needs to resize the candidate window to 8 ∗ 8 which leads
to low localization accuracy when mapping the 8∗ 8 window
back to the original image. The recall drops rapidly when the
IOU threshold gets larger.

Edgeboxes [6] is a very fast and efficient region proposal
method, which can generate millions of candidate boxes in
a fraction of one second and achieve nearly 96% recall at
overlap threshold of 0.5 by using 1000 proposals on the
PASCAL VOC dataset. The main contribution of the method
is that the number of contours wholly falling into a bounding
box is indicative of the possibility of a box covering an object.
All of the bounding boxes are generated by sliding-window
algorithm and then scored by measuring the number of edge

groups that exist in the box minus some of them that overlap
the box’s boundary.

Howevermost previousmethods are designed for general
objects; they do not performwell in a particular scene such as
the KITTI [9] benchmark. 3DOP [16] is an excellent proposal
generation method which exploits object size priors, ground
plane, and several depth informed features such as free space,
point densities inside the box, visibility, and distance to the
road to place proposals in the form of 3D bounding boxes.
After generating a large number of proposals, the method
scores every proposal by minimizing an energy function.The
energy function encodes object size priors, ground plane,
and a variety of depth informed features. Their final results
achieve a 25% higher recall with 2,000 proposals than the
state-of-the-art RGB-D method MCG-D [17] on the KITTI
benchmark.

Most grouping and scoring methods mentioned above
either purely use RGB appearance features or only use depth
informed geometric features which ignore their complement
of those two features. Although somemethods, such asMCG-
D, use RGB and depth features simultaneously, it is not suit-
able for autonomous driving because of the complex outdoor
environment. In this paper, we propose a method to exploit
both the appearance features and the geometric features. Our
work formulates the problem by fusing those two comple-
mentary features in a Bayesian framework for obtaining high-
quality object proposals in autonomous driving.

3. Methodology

As mentioned in previous sections, geometric features are
important for improving the quality of object proposals. We
introduce four geometric features: aspect Ratio, diagonal
multiplication distance, area multiplication of the square of
the object depth, and distance to the road.

3.1. Geometric Features

3.1.1. Aspect Ratio (AR). Objects in different classes usually
have magnificent difference on appearance while those in the
same class vary far less. Since an object is tightly bounded by
a square box whose aspect ratio of the same class should vary
in a specific range, based on this intuition, we use AR as a
feature to assess the possibility of an image window covering
a specific class. The aspect ratio of a square box is calculated
as follows:

AR = 𝑤𝑏ℎ𝑏
, (1)

where𝑤𝑏 is the width of a given bounding box while ℎ𝑏 is the
height.

3.1.2. Area Multiplication of the Square of the Object Depth
(SD2). Objects’ sizes in the image can be measured by the
bounding boxes covering them and they vary significantly
across the dataset.Meanwhile, the real-world size of objects in
the same class varies far less as mentioned in [18]. According
to the optical imaging principles, the real-world size 𝐴𝑇 and
the image size 𝐴𝐼 of the object have a specific relationship.
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Figure 1: The imaging principle of the camera.

As shown in Figure 1, by using the homothetic triangle
theory, the relationship between𝐴𝑇 and𝐴𝐼 can be described
as follows:

𝐴𝑇 =
𝑑2
V2
𝐴𝐼, (2)

where 𝑑 is the real-world distance of the object and V is the
camera focal length which is usually considered to be fixed.

Depth information has been utilized for object detection
in recent years; it can be computed from disparity map or
directly obtained by depth sensors, such as Kinect. In this
paper, we use a stereo image pair as an input, compute the
disparitymap via the state-of-the-art approach by Yamaguchi
et al. [10], and then calculate the depth by binocular vision
theory:

depth = 𝑓 ∗ 𝑙
disparity

, (3)

where 𝑓 is the focal length of the two lenses, 𝑙 is the distance
between two optical centers, and disparity is the horizontal
disparity of two stereo-corresponding points. After calculat-
ing the depth of all pixels for each image, the average depth
of a 3 ∗ 3 area around the center is used to approximate the
depth of an object enclosed by the box:

𝑑box =
1
9
𝑥𝑐+1

∑
𝑥𝑖=𝑥𝑐−1

𝑦𝑐+1

∑
𝑦𝑖=𝑦𝑐−1

depth (𝑥𝑖, 𝑦𝑖) , (4)

where depth(𝑥𝑖, 𝑦𝑖) is the depth of point (𝑥𝑖, 𝑦𝑖) in image and
𝑥𝑐 = 𝑥𝑙 + 𝑤𝑏/2 and 𝑦𝑐 = 𝑦𝑙 + ℎ𝑏/2 is the center point of the
box.

As mentioned above, the relationship between the image
size and the depth information of the object can be utilized
as a proxy for the real-world object size approximately. The
camera focal length can be ignored as it is considered to be
a constant. Inspired by the observation of the relationship
between real-world size and image size, we use the product
of area of the bounding box and the square distance to the
camera as an approximate representation of the object size in
real-world. The SD2 can be written as

SD2 = 𝑤𝑏 ∗ ℎ𝑏 ∗ 𝑑box2, (5)

where𝑤𝑏∗ℎ𝑏 is the area of the bounding box and can be used
as a representation of an object image size approximately.

3.1.3. Diagonal Multiplication Distance (DMD). DMD is the
feature that could approximately represent the real-world
object size [18].

DMD = √𝑤𝑏2 + ℎ𝑏2 ∗ 𝑑box, (6)

where√𝑤𝑏2 + ℎ𝑏2 is the diagonal of a bounding box and 𝑑box
is the depth of the box.

The distributions of DMD and SD2 on Car, Cyclist, and
Pedestrian are shown in the second and the third row in
Figure 2. It is obvious that DMD and SD2 vary a few in
the same class and vary in different ranges which prove the
analysis we discussed before.

3.1.4. Distance to the Road (D2R). Since all the annotated
objects in the KITTI benchmark are on the ground, the
ground plane can be used as an important indicator to predict
the possibility that a proposal contains an object. It is more
likely to cover an object when the proposal is close to ground
plane and is less likely when the proposal is far away from the
ground plane. We use the same method in [16] to compute
the distance of every pixel to the ground. Then, as in (5), the
average of a 3 ∗ 3 area around the center is used to measure
the distance to the road of an object enclosed by the box:

D2R = 19
𝑥𝑐+1

∑
𝑥𝑖=𝑥𝑐−1

𝑦𝑐+1

∑
𝑦𝑖=𝑦𝑐−1

Dist (𝑥𝑖, 𝑦𝑖) . (7)

The distribution of D2R on Car, Cyclist, and Pedestrian is
shown in the last row in Figure 2.

3.2. Bayesian Framework. As the four proposal features are
relatively complementary, using some of them at the same
time may appear promising. AR gives only the proportion
of object projection size in the image. DMD or SD2 is the
replacement for the real-world object size, but either of them
depends on precise depth calculated from disparity map.
D2R denotes the distance to the road, which can roughly
distinguish positive examples from negative examples.

To combine these features (AR, SC, DMD, SD2, and
D2R), we train a Bayesian classifier to distinguish between
positives and negatives. SC is the initial result of the existing
method. For each training image, we sample all the proposals
that have an IOU ≥ 0.6 with any ground truth as positive
𝑊obj and IOU < 0.35 as negative 𝑊bg. As there are too
many negative proposals we just select 600 randomly for
each training image. In this paper, we choose a Naive Bayes
approach [13, 14]. In the Naive Bayes model, the features
are independent, so training consists of estimating the priors
𝑝(obj), 𝑝(bg) by relative frequency and the individual feature
likelihoods 𝑝(feature | 𝑐), feature ∈ 𝐶 and 𝑐obj, and bg from
the training set we chosen before.

After training, when given a proposal we calculate its
posterior probability using the following equation:

𝑝 (obj | 𝐶1) =
𝑝 (𝐶1 | obj) 𝑝 (obj)
𝑝 (𝐶1) , (8)
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Figure 2: Statistic of four object features. For each object class, Car, Cyclist, and Pedestrian, from top to down the features are AR, DMD,
SD2, and D2R. We could normalize them to zero mean and unit variance (mean subtraction and division by the standard deviation).
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where 𝐶1 ⊆ 𝐶. This posterior probability constitutes the
final proposal score, which is used as the indication of the
possibility of a proposal that tends to cover an object.

3.3. Implementation Details. After a large number of positive
and negative proposals are sampled, the distribution of
their image features (AR, SC, DMD, SD2, and D2R) is
demonstrated via the histogram (we sample all the proposals
that have an IOU ≥ 0.6with any ground truth as positive and
600 negative proposals that have IOU < 0.35 for each image).
The values of the feature𝑖 𝑉(feature𝑖 | 𝑐) are divided into 𝐾
bins in a range [𝑉min, 𝑉max]. Therefore, the priors 𝑝(feature𝑖 |
𝑐) are set by relative frequency:

𝑝 (feature𝑖 | 𝑐) =
𝑁Bin𝑗
𝑁 , 1 ≤ 𝑗 ≤ 𝐾, (9)

where 𝑁Bin𝑗 is the number of 𝑉(feature𝑖 | 𝑐) falling into the
Bin𝑗 and𝑁 is the total number of 𝑉(feature𝑖 | 𝑐). When any
proposal is given, the bin which the value 𝑉 of the (feature𝑖 |
𝑐) falls into is first determined. Then, the individual feature
likelihood 𝑝(feature𝑖 | 𝑐) is roughly equivalent to (9) for each
proposal. And the final posterior probability can be calculated
according to (8). Noted that (8) allows us to combine any
subset 𝐶 of features, for example, pairs of features 𝐶 =
{AR, SD2}, triplets 𝐶 = {AR, SD2,D2R}, or all features 𝐶 =
{AR, SD2, SC,DMD,D2R}. Function (8) can combine any
subset rapidly without recomputing the likelihoods.

4. Experiments and Analysis

In this section, we evaluate our method on the challenging
KITTI benchmark [9] for all three object classes, which
contains 7481 right, 7481 left training images, and 7518 test
images. Since the test images do not have any annotations, we
split the KITTI training set into train (3,712 images) and vali-
dation (3769 images) sets as described in [16]. Bayes model
is trained on the train set. All the experiments results are
reported on the validation set in three regimes: easy, mode-
rate, and hard, which are defined according to the occlusion
and truncation levels of objects.

Following [6], we evaluate the quality of object proposals
by using the recall metric. Recall is calculated as the fraction
of ground truth objects covered above an IOU threshold.
We use curve of the recall versus the number of proposals
to depict accuracy at different proposal budgets and recall
versus IOU curve to show the variety of recall over different
localization precision. In addition, in order to measure the
overall accuracy of proposals, we use Area Under the Curve
(AUC), which is the area under “recall versus the number of
proposals” curve. AUC is a canonical metric which has been
shown in [6].

The results of analyzing features and features integration
are tested on the hard validation set for all three objects, while
the comparison results to the state of the art are on all three
object classes and three regimes which use the same metrics
depicted in previous section.

4.1. Various Features Integration. We first verify the effective-
ness of all the geometric features independently. As our goal

is to analyze the performance of each of the features and their
combinations which is independent of the baseline method,
we only evaluate ourmethod based on Edgeboxes.The results
of the baseline method are named SC. As shown in Figure 3,
we analyze the baseline and the four proposed geometric fea-
tures independently to observe the performance of these fea-
tures. The first row of Figure 3 is the recall versus IOU curve
on 500 proposals while the second row is curve of the recall
versus the number of proposals on different IOU threshold.
For Car, the IOU threshold is 0.7, and it is 0.5 for Cyclist
and Pedestrian. We find that all the four proposed features
work better than the baseline in which we only use a single
feature to generate the proposals. Based on experiments on
the three objects we find that D2R is the most useful feature
while our proposed feature SD2 is second. DMDhas a similar
performance to SD2, because they both catch the constancy
of object size in real-world. AR is also a useful feature.

Then we combine those geometric features and SC
together in a Bayesian framework using different combina-
tion to find the best way for fusion of these features. In order
to use Bayesian function, the prior probabilities𝑝(obj),𝑝(bg),
and 𝑝(feature | 𝑐) should be first computed. The 𝑝(obj)
and 𝑝(bg) are constant value which are computed in the
training stage. The probability 𝑝(feature | 𝑐) is calculated
by using histogram as described in (9). Before we construct
the histogram, we normalize them to zero mean and unit
variance (mean subtraction and division by the standard
deviation). The mean and standard deviation values of each
feature are computed on the entire training set.

We combine the five features in a Bayesian framework
with all possible combinations. The combinations include
10 ways for any pairs of features, 10 for any triplets, 5 for
any four, and 1 for all features together. We have evaluated
all the combinations. Since plotting all the combinations is
difficult to observe, we only choose 2 top results from pairs of
features combinations and triplets of features combinations,
1 from four features combinations, and 1 for all five features.
The results are shown in Figure 4. It can be seen that
the best performance is obtained by the combination of
{AR,D2R, SD2,DMD} and {AR,D2R, SD2}. The results also
hint that D2R is the most effective feature, followed by SD2
and DMD, which is consistent with previous observations in
Figure 3. We also can find that SD2 and DMD are highly
dependent on each other. So we just use SD2 because SD2
is lightly better than DMD. Usually more features make
better results. However, it is noteworthy that when combining
SC with all other four features the SC does not improve
the performance but depresses it. A possible reason is that
boxes with larger SC do not mean having higher possibility
of containing Car, Cyclist, or Pedestrian. Finally, as shown
in Table 1 we summarize the statistics accuracy measures
including Area Under the Curve (AUC), the top recall the
method can reach (recall), and the number of proposals to
achieve recall = 0.75 (𝑀).

4.2. Comparison to the State of the Art. Based on the analysis
on the features in previous section, we choose D2R, SD2,
and AR as our final choice. As our method can be integrated
into any object proposal generation method, we verify its
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Figure 3: Single feature results: the first row is the recall versus IOU curve on 500 proposals while the second row is curve of the recall versus
the number of proposals on different IOU threshold. For Car the IOU threshold is 0.7, and it is 0.5 for Cyclist and Pedestrian. We analyze the
original results and the four proposed features independently to observe the usefulness of these features. We find that all the four proposed
features work better than the original result when we just use a single feature to generate the proposals. With experiments on the three objects
we find that D2R is the most useful feature while our proposed feature SD2 ranks second. DMD have similar performance with SD2, because
they both catch the constancy of object size in real-world. AR is also a useful feature.

Table 1: Results on the hard validation sets for all three object classes. AUC is the abbreviation for Area Under the Curve, recall is themaxima
recall the method can achieve, and𝑀 is the number of proposals when the recall reaches 75%. Inf means the maxima recall cannot reach
75%.

Features Cars Cyclist Pedestrian
AUC Recall (%) 𝑀 AUC Recall (%) 𝑀 AUC Recall (%) 𝑀

Single features

AR 0.13 59 Inf 0.14 52 Inf 0.2 89 Inf
SC 0.15 70 Inf 0.24 82 2209 0.29 89 1226

DMD 0.17 73 Inf 0.27 78 3735 0.28 84 1337
SD2 0.19 78 4426 0.27 74 Inf 0.31 85 1463
D2R 0.25 90 1977 0.33 88 1616 0.34 88 986

Single features

D2R + DMD 0.39 92 682 0.43 89 832 0.46 90 307
D2R + SD2 0.41 92 509 0.42 88 927 0.46 89 286

D2R + DMD + AR 0.45 92 413 0.47 89 564 0.53 90 609
D2R + SD2 + AR 0.46 92 352 0.47 89 536 0.54 89 667

D2R + DMD + SD2 + AR 0.46 92 392 0.47 89 625 0.54 91 129
All 0.45 92 423 0.44 89 568 0.52 91 234
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Figure 4: Features combination results: The first row is the recall versus IOU curve on 500 proposals while the second row is curve of the
recall versus the number of proposals on different IOU threshold. For Car the IOU threshold is 0.7, and it is 0.5 for Cyclist and Pedestrian.

effectiveness on two representativeness methods: EB (Edge-
boxes) and SS (Selective Search). Correspondingly, we name
their improved versions Our-EB145 and Our-SS145, where 1
represent AR, 2 represent SC, 3 represent DMD, 4 represent
SD2, and 5 represent D2R. Our-EB145 means the results
obtained by fusing those three geometric features, AR, SD2,
and D2R, with EB in a Bayesian framework. In the paper, we
just use Our-EB instead of Our-EB145, the same to Our-SS.
We also compare our results to 3DOP because it is the state-
of-the-artmethod that exploits geometric features to generate
object proposals.

Figure 5 shows recall versus IOU on 500 proposals
and we can see that Our-EB and Our-SS obtain significant
improvement compared to the original EB and SS. For Car,
our method is better than 3DOP when the IOU is below 0.7,
while, with the IOUgetting larger, 3DOPobtain better results.
This phenomenon also appears in Cyclist. A possible reason

is that the original results are good enough when the IOU
is high. However, for Pedestrian Our-EB always shows better
performance than 3DOP.

Figure 6 shows recall versus the number of candidates.
For Car, we can achieve nearly 90% recall when the number
of candidates is 1000 for moderate and hard regimes while
for easy regimes we only need 200 candidates to get the
same results. However, the baseline cannot achieve 90% recall
no matter how many candidates are used. For Cyclist and
Pedestrian our results show similar improvements over the
baselines. Compared to 3DOP our method obtains different
degrees of improvements. For example, by using 100 propos-
als for Pedestrian our method achieves 89%, 80%, and 70%
recall for easy, moderate, hard regimes while the 3DOP is
around 70%, 60%, and 52%. However when the number of
proposals gets larger our method achieves similar result with
3DOP.
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Figure 5: Recall versus IOU for 500 proposals in three regimes. From top to down: Car, Cyclist, and Pedestrian.

4.3. Running Time. Given the depth map, our features can
be computed efficiently. Combined with the existing method,
our approach can obtain significant improvement with only
0.2 s additional runtime on a single core byMATLAB. Table 2
shows the running time of different proposal methods.

4.4. Object Detection. To evaluate the object detection per-
formance based on our proposal generation method, we
apply the state-of-the-art fast R-CNN object detector on the

bounding box proposals generated by our method, as 3DOP
in [16]. We report results on the validation set of the KITTI
benchmark and compare our methods (Our-EB and Our-SS)
with those whose bounding box proposals are generated by
Selective Search and Edgeboxes. Experiments show that the
detection performance can be improved around 18% and 15%,
respectively. We also compare our results with that of 3DOP.
The results are presented inTable 3.Our approach can achieve
comparable or better performance across all three categories.
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Figure 6: Recall versus number of proposals: the overlap threshold for Car is 0.7, and it is 0.5 for Pedestrian and Cyclist. From top to down:
Car, Cyclist, and Pedestrian.

Table 2: Running time of different proposal methods.

Method Selective Search Edgeboxes 3DOP Our-SS Our-EB
Time (second) 15 1.5 1.2 15.2 1.7

4.5. Visual Results. The visual results of our object detection
framework are shown in Figure 7. It would be best to enlarge
and view it in color. The odd rows are the ground truth
bounding box while the even rows are detection bounding
box. Different colors indicate different difficulties. Green

means not occluded, yellow means partly occluded, and
red means fully occluded. Our approach produces precise
detection result even for distant and occluded objects. But it
more failed if the object is too distant and fully occluded, since
we can not obtain enough depth or appearance information
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Table 3: Average Precision (AP) (in %) on the validation set of the KITTI object detection benchmark with 1000 proposals, while, for EB and
SS, the number of proposals is 2000.

Metric Method Cars Cyclist Pedestrian
Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

AP

SS [16] 75.91 60.00 50.98 56.23 39.16 38.83 54.06 47.55 40.56
EB [16] 86.81 70.47 61.16 55.01 37.87 35.80 57.79 49.99 42.19
3DOP 94.47 87.09 78.72 84.65 57.38 55.63 72.47 65 57.24
Our-SS 95.36 87.84 78.57 84.71 57.74 55.8 74.23 66.54 57.9
Our-EB 88.92 87.40 78.43 83.38 57.72 55.69 74.39 66.73 58.17

for object detection. And when a person rides a Cyclist, the
ground truth just has an annotation of Cyclist while our
method gives two detection results, Cyclist and Pedestrian, as
shown in the sixth row. People sitting in a chair are detected;
however they are not marked as ground truth in the KITTI
datasets.

5. Conclusion

In this paper, we propose several geometric features which
are suitable for object proposals in the autonomous driving
scene and integrate them with existing object proposal gen-
erationmethods in a Bayesian framework.We deeply analyze
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the effectiveness of each geometric feature and different
combinations of features. Experiments on the challenging
KITTI benchmark demonstrate that, by integrating these
geometric features into existing object proposal methods, we
achieve significant improvement on all three object classes.
Subsequently we improve the object detection performance.
Our future work will focus on integrating geometric features
into a totally CNN framework for boosting their performance
in the autonomous driving scene.
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