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Five hydrological models were applied based on data from the Blue Nile Basin. Optimal parameters of each model were obtained
by automatic calibration. Model performance was tested under both moderate and extreme flow conditions. Extreme events for the
model performance evaluation were extracted based on seven criteria. Apart from graphical techniques, there were nine statistical
“goodness-of-fit” metrics used to judge the model performance. It was found that whereas the influence of model selection may be
minimal in the simulation of normal flow events, it can lead to large under- and/or overestimations of extreme events. Besides, the
selection of the best model for extreme events may be influenced by the choice of the statistical “goodness-of-fit” measures as well
as the criteria for extraction of high and low flows. It was noted that the use of overall water-balance-based objective function not
only is suitable for moderate flow conditions but also influences the models to perform better for high flows than low flows. Thus,
the choice of a particular model is recommended to be made on a case by case basis with respect to the objectives of the modeling
as well as the results from evaluation of the intermodel differences.

1. Introduction

According to the Intergovernmental Panel on Climate
Change, IPCC [1], the continued increase in the greenhouse
gas emissions will lead to the warming and changes in the
various components of the climate system. With respect to
the hydrological system, these changes are reflected in the
increased frequency and severity of risk-basedwater disasters
such as drought and floods which inflict severe damage on
public life and property inmany parts of the world on a yearly
basis. The Nile Basin in which the study area is located is
not exceptional to such hydrological disasters. Although the
Ethiopian highlands experience rainfall in excess of 1000mm
annually, extreme low rainfall conditions also tend to occur
in the Blue Nile Basin (BNB). Thus, both floods and drought
occur in the study area. Some typical examples of the occur-
rences of hydrometeorological extremes in the BNB include
the daily rainfall of 88mm (which was the highest since late
1890s) in Khartoum on the 31st July 1920 [2], the severe floods
in the months of August and September in 1988 in Sudan [3],

the devastating drought of the early 1980s in the Ethiopian
highlands [3], and drought conditions over the 1970s and
1980s which led to the decline in annual rainfall by 30% [4].

In support of the investigations of impacts of climate
variability and change on hydrological extremes, hydrological
models may be applied. The ability of such models to capture
the extreme high and low flow events is important for
planning and management of risk-based water resources
applications. Because the study area is dominated by culti-
vated area based on rain-fed agriculture, normal hydrological
events (e.g., annual mean flows) which may be indicative
of the mean net rainfall totals are vital for the management
of agricultural practices. Distributed models (from which
simulated runoff can be obtained at any point of interest
within the catchment) require more detailed spatial inputs to
reflect the spatiotemporal variability in the runoff. Concep-
tual models (which are simpler in their structures than the
fully distributed process-based models) are designed mostly
to simulate lumped runoff at the catchment outlet (as aimed
at in this study) based on catchment-wide averaged inputs.
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Some examples of rainfall-runoff models include Nedbør-
Afstrømnings Model (NAM) (Danish Hydraulic Institute
DHI [5–7]), Hydrologiska Byråns Vattenavdelning (HBV)
[8], Probability Distribution Model (PDM) [9], Precipitation
Runoff Modeling System (PRMS) [10], SIMHYD, that is,
the simplified version of HYDROLOG [11], TANK model
[12], Sacramento (SAC)model [13], AustralianWater Balance
Model (AWBM) [14], and Identification of Unit Hydro-
graphs and Component Flows from Rainfall, Evaporation
and Stream (IHACRES) flow data model [15–17]. For the
study area, several rainfall-runoff models have been applied
to model the hydrological regimes of the Blue Nile. Examples
of themodels applied include Soil andWaterAssessment Tool
(SWAT) by [18–21], HBV by [22, 23], Hydrologic Engineering
Centre-Hydrological Modeling System (HEC-HMS) by [24],
and PRMS by [25, 26]. Most of the above studies applied
only one hydrological or rainfall-runoff model. Because of
the tendency of the models to differ among themselves in
terms of their structural complexity and set of parameters
for calibration, the use of only one model in hydrological
investigations leads to lack of insight about the influence of
themodel selection on themodeled results [27]. According to
[27], the influence of the selection of a hydrologic modeling
approach which is seldom investigated is critical for impact
assessment, for example, of climate variability and change on
thewater resources of the BNB.Theuse ofmodeled results for
data scarce region like the BNB to aid water resources plan-
ning and management decisions requires clear assessment of
the possible uncertainties and their communication. Water
management decisions taken amidst uncertainty of the scien-
tific supporting information may lead to unnecessarily lavish
expenditure of the limited economic resources, for example,
for risk-based applications. To judge the confidence in the
results of modeling amidst data limitation and quality prob-
lem, evaluation of a number ofmodels in particular study is of
paramount importance to the scientific community especially
those involved in impact investigations, for example, of
climate variability and change on hydrology.

This study is therefore aimed at exploring the influence of
model selection on the simulation of (1) daily moderate and
extreme flow events, (2) temporal changes in the flows from
(1), and (3) hydrological extreme quantiles as a simultaneous
function of aggregation levels and return periods.

2. Study Area, Data, and Selected Models

2.1. Study Area and Data. The BNB (Figure 1) with the flow
outlet at Khartoum has a drainage area of about 325,000 km2
which extends in both Ethiopia and Sudan inAfrica.TheBlue
Nile with a total length of about 1,460 kmflows into and out of
Lake Tana and emanates from the Ethiopian highlands based
on the two main tributaries including the Dinder and Rahad
rivers. From Lake Tana to El Diem which is at the Ethiopian-
Sudanese border, the length of the Blue Nile is about 940 km.
The basin can receive annual rainfall up to about 2000mm,
though in some years it can reduce to less than 1000mm.The
climate of the basin is characterized by seasonal migration of
the intertropical convergence zone.
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Figure 1: Location of the BNB. The labels of the flow and rainfall
stations are consistent with those in Table 1. The Digital Elevation
Model (DEM) used as the background map was obtained online
from the International Centre for Tropical Agriculture, CIAT-CSI
SRTM website, http://srtm.csi.cgiar.org/ (accessed: 20th October,
2010).

Daily rainfall data at 14 locations (Figure 1) in and
around the BNB were obtained online from the Global
Historical Climatology Network (GHCN) [28, 29] via
the link http://www.ncdc.noaa.gov/oa/climate/ghcn-daily/
(accessed: 11th June, 2014). Gridded (0.3∘ × 0.3∘) Climate
Forecast System Reanalysis (CFSR) rainfall data from the
National Centers for Environmental Prediction (NCEP) were
also obtained via the web link http://cfs.ncep.noaa.gov/cfsr/
(accessed: 3rd February, 2016). The rainfall data obtained
from the GHCN were mainly from 1965 to 1990. The per-
centage of the missing rainfall records from the GHCN was
minimal (Table 1). From 1991 to 2000, the rainfall data from
theGHCNwere augmented by the daily CFSRdata.Themiss-
ing rainfall records were in-filled using the inverse distance
weighted interpolation technique as applied before for the
rainfall of the Nile Basin by [30]. ConsiderΩ

𝐻
as the missing

rainfall intensity at the meteorological station𝐻, let 𝑘 be the
distance between𝐻 and another station in the neighborhood
being used for interpolation, and take 𝜂 as the power param-
eter. Using 𝜏 other neighboring rainfall stations, Ω

𝐻
for a

particular period was estimated using

Ω
𝐻
=
∑
𝜏

𝑖=1
Ω
𝑖
× 𝑘
−𝜂

𝑖

∑
𝜏

𝑖=1
𝑘
−𝜂

𝑗

. (1)
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Table 1: Meteorological and hydrological stations.

S. number GHCN ID Station Long. Lat. PM (%)
Rainfall

1 ET000063331 Gondar 37.42 12.55 0.0
2 ET000063332 Bahar Dar 37.42 11.60 0.0
3 ET000063333 Combolcha 39.73 11.12 0.3

4 ET000063334 Debre
Marcos 37.67 10.33 0.0

5 ET000063402 Jimma 36.83 7.67 0.1
6 ET000063403 Gore 35.53 8.15 0.6
7 SU000062721 Khartoum 32.55 15.60 0.3
8 SU000062752 Gedaref 35.40 14.03 0.0
9 SU000062762 Sennar 33.62 13.55 0.8
10 SU000062730 Kassala 36.40 15.47 0.9
11 ET000063330 Makale 39.48 13.50 1.1

12 ET000063450 Addis
Ababa-Bole 38.75 9.03 0.5

13 ET000063451 Harar Meda 38.95 8.73 0.6
14 ET000063453 Metehara 39.90 8.87 0.7

Flow
A ∗∗∗ Khartoum 32.51 15.64 0.0
B ∗∗∗ El Diem 34.93 11.24 0.0
C ∗∗∗ Ribb 37.73 12 0.0
∗∗∗: missing station ID; PM: percentage of missing records; long.: longitude
[∘]; lat.: latitude [∘].

For a realistic value of the interpolated record, 𝜂 was set to 2.
This was to obtain optimal weights to the points both far and
near the station with the missing record.

Daily flow series from 1965 to 2000 observed at Khartoum
was adopted from a study by [23]. Daily flow data at El Diem
and Ribb observed from 1980 to 2000 were obtained from
personal sources. Minimum and maximum temperatures
were also downloaded from the data sources similar to those
of the rainfall series.

2.2. Rainfall-Runoff Models. Five internationally well-known
models including IHACRES, AWBM, TANK, SAC, and
SIMHYD were obtained from the “eWater Toolkit” of the
Cooperative Research Centre for Catchment Hydrology in
Australia via the link http://www.toolkit.net.au/ (accessed:
25th August, 2015). These models were selected because (1)
they are freely available online, (2) by modeling the runoff in
rather lumped than distributed way, they conform with the
aim of the study, and (3) their robustness for hydrological
modeling has been demonstrated for several climatic zones
by several studies, a few examples of which include [31–37].

For the details on the structures and rainfall-runoff
generation processes which these models can simulate, the
reader is referred to [15–17, 38] for IHACRES and to [39]
for AWBM, TANK, SAC, and SIMHYD. However, some brief
description on each model as well as the general structural

details can be obtained from Appendices A.1 to A.5. The
model parameters are also presented inAppendices B.1 to B.2.

3. Methodology

3.1. Rainfall-Runoff Modeling. All the selected five models
use catchment-averaged rainfall and potential evapotranspi-
ration (PET) as inputs. Based on the PET and the soil water
storages, the actual evapotranspiration is calculated by the
models. The PET was computed using the FAO Penman-
Monteith method [40] considering minimum andmaximum
temperature.

First and foremost, before applying the models to the
entire BNB to simulate the long-term runoff at the Khar-
toum flow outlet, it was deemed important to investigate
the influence of spatial extent of the catchment on the
capacity of the models to simulate the runoff. Daily river
observed from 1980 to 2000 at Khartoum, El Diem, and
Ribb with the catchment areas of 325,000 km2, 176,000 km2,
and 1,592 km2, respectively, were used. Based on the rainfall
stations upstream of each flow station, Thiessen polygons
were constructed. The average of the observed daily rainfall
in each polygon was merged with the mean of the gridded
CFSR rainfall data (within the same polygon) so as to cover
the period similar to that of the flows. The blended rainfall
data from all the constructed polygons were jointly used to
compute the catchment-wide average rainfall for the model
inputs.

To limit the influence of subjectivity in themanual chang-
ing of model parameters, automatic calibration was done for
all the models. A number of optimizers exist for automatic
calibration including the uniform random search, Rosen-
brock multistart search, Rosenbrock single start search, mul-
tistart pattern search, single start pattern search, generic algo-
rithm [41, 42], and shuffled complex evolution (SCE) [43–45].
The SCE was adopted in this study because of two reasons.
Firstly, it has been demonstrated to be efficient and effective
in the calibration of a number of rainfall-runoff models (see,
e.g., [44, 46–48]). Secondly, the SCE has also been widely
applied for automatic rainfall-runoff calibrations (see, e.g.,
[49–52]). According to [6], the SCE method combines four
optimization strategies to simultaneously evolve a number of
potential solutions towards the region of the global optimum
of the objective function. These SCE strategies include the
simplex method, competitive evolution, controlled random
search, and complex shuffling. Note should be taken that the
adoption of the SCEwas possible for themodels incorporated
within the Rainfall Runoff Library (RRL) of the “eWater
Toolkit,” that is, AWBM, TANK, SAC, and SIMHYD. For
IHACRES which was obtained as a stand-alone model, the
calibration process is automated in two steps. Firstly, the
linearmodule calibrationwhich is controlled by fixed transfer
function is done using cross-correlation to calculate the delay
between rainfall and stream flow. Secondly, the nonlinear
module calibration is used to perform a grid search through
the parameter space to obtain the best parameter set. Further
detail on this calibration procedure for the IHACRES can
be found in [38]. For the calibration of all the models, the
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optimization objective function was in terms of the well-
known Nash-Sutcliffe Efficiency (NSE) [53].

After assessing the influence of spatial variation on the
adequacy of the modeling results, the models were rebuilt
using the long-termmodel inputs considering the entire BNB
(i.e., with the flow outlet at Khartoum). To obtain catchment-
wide rainfall average, Thiessen polygon was constructed
using all the 14 rainfall stations. For eachmodel, the automatic
calibration was done based on daily series from 01/01/1965
to 31/12/1990. The validation of the models was done using
daily data from 01/01/1991 to 31/12/2000. The “goodness-of-
fit” between the observed and modeled flows was assessed
using the NSE for both calibration and validation periods.

3.2. Comparison of Observed and Modeled Flows

3.2.1. “Goodness-of-Fit” of the Entire Time Series. Firstly, the
“goodness-of-fit” between the observed and modeled flows
considering the entire or full-time series (covering both
the calibration and validation periods) was, again, assessed
using the NSE. Secondly, to reduce/increase the sensitivity
of the NSE to high/low flows, the logarithmic values of
observed and modeled flows were to be used. However, in
this study, because some modeled flows were zero in value
for all the models (except TANK), the use of logarithmic
values to computeNSEwas not feasible. Eventually, two other
forms of statistical “goodness-of-fit” metrics which consider
the absolute relative deviations between the observed and
modeled flows as presented by [54] were used. Consider 𝑄

𝑚

as the modeled flow, 𝑄
𝑜
the observed flow, 𝑄

𝑜
the mean of

observed flow, and 𝑛 the sample size. The relative efficiency
(𝐸
𝑓
) and index of agreement (𝐼

𝑑
) were computed using

𝐸
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∑
𝑛
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(2)

If the assessment of the models is with respect to high flows,
values of the power 𝑃

𝑞
greater than 1 can be used. However, in

this study, 𝑃
𝑞
= 1 was used to obtain a balance between high

flows and low flows given that the full-time series was being
considered.

Graphically, comparison of the simulated and observed
cumulative flows was also made to investigate the water bal-
ance closing capacity of each model. Using the annual mean
flow, scatter plot points of observed versus modeled series
was also made. This was after Box-Cox (BC) transformation
procedure (as will be described in Section 3.2.2).

3.2.2. “Goodness-of-Fit” of Flow Extremes. Using the entire or
full-time series (covering both the calibration and validation
periods), flow extremes were extracted based on a number
of criteria for the model performance evaluation. Firstly, the
forecast accuracy metrics 𝐻FC and 𝐿FC relevant for high

flows and low flows, respectively, as proposed by [55] were
computed using

𝐻FC [−] =
(∑
𝑁𝐻

𝑗=1
(𝑄
𝑜,𝑗
− 𝑄
𝑚,𝑗
)
2

𝑄2
𝑚,𝑗
)
0.25

(∑
𝑁𝐻
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𝑄2
𝑜,𝑗
)
0.5

,
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,

(3)

where𝑁
𝐿
is number of low flow events lower than one-third

of the mean low flow observed; 𝑁
𝐻
is number of high flow

events greater than one-third of themean peak flowobserved.
In this study, the mean peak high flow was computed as the
average of the events above the median flow. Similarly, the
mean low flow was taken as the average of the hydrological
events less than the median flow. According to [55], the best
or perfect model performance is given by𝐻FC or 𝐿FC equal to
zero. However, it is noticeable that, even for the worst models
with the all values of 𝑄

𝑚
equal to zero, the values of 𝐻FC

or 𝐿FC also become zero. Eventually, caution must be taken
to use the metrics 𝐻FC and 𝐿FC alongside other statistical
“goodness-of-fit” measures. In this study, the model average
bias (𝑀AB) and rootmean squared error (𝑅MSE) were selected
to supplement the evaluations using 𝐻FC and 𝐿FC.𝑀AB and
𝑅MSE were computed using (4) by setting 𝑁 equal to 𝑁

𝐻
or

𝑁
𝐿
. For an unbiased model, 𝑀AB is ideally equal to zero.

Consider

𝑀AB (%) =
1
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)
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.

(4)

To investigate the effect of adjustment of extreme flow
extraction threshold on the model performance, 𝐻FC, 𝐿FC,
𝑀AB, and 𝑅MSE were also computed by setting 𝑁

𝐻
(or 𝑁

𝐿
)

from (3) and 𝑁 of (4) in terms of (1) the number of events
higher (or lower) than the 95th (5th) percentile of observed
flows and (2) the number of annual maxima and minima
flows.

Graphically, plots of the Box-Cox (BC) transformed
observed versus modeled series were made for the minimum
aswell asmaximumflows in each year. To give similarweights
to the maximum and minimum flows (𝑞) so as to obtain
homoscedastic model residuals, the parameter (𝜆) of the BC
[56] transformation (see (5)) was set to 0.25. Consider

BC (𝑞) =
𝑞
𝜆 − 1

𝜆
. (5)

3.2.3. Analyses of Temporal Changes. The differences in the
changes between observed and modeled flows were inves-
tigated using the maximum, mean, and minimum flow in
each year. The considered changes in flow were in terms of
the variability and subtrends. Subtrends are short-durational
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changes in trend direction over unknown periods within the
series [56].The identification and assessment of the temporal
subtrends and investigation of variability are vital to ascertain
the possibility of any intervention of, for example, climate
fluctuations on the hydrology.

The subtrend analysis was done using the cumulative rank
difference (CRD) technique [56]. To graphically reveal the
hidden short-durational changes (e.g., jumps in the mean,
subtrends, etc.) within the annual mean flows and the min-
imum as well as maximum flow in each year, CRD plots were
used. To construct the CRD plots, the following steps were
taken:

(i) Considering V as the number of times a data point
is exceeded, 𝑤 as the number of times a data point
appears within the given sample and 𝑛 as the sample
size, the difference (𝑑) between the exceedance and
nonexceedance counts of the data points is computed
using

𝑑
𝑖
= 2V
𝑖
− (𝑛 − 𝑤

𝑖
) for 1 ≤ 𝑖 ≤ 𝑛. (6)

To determine V or 𝑤, each data point is counted as
if it was not considered before [57]. Considering the
imaginary series (3, 2, 7, 4, 3, 4), 𝑛 = 6 and for 𝑖 =
1, 2, . . . , 𝑛, V = (3, 5, 0, 1, 3, 1), 𝑤 = (2, 1, 1, 2, 2, 2),
and 𝑑 = (2, 5, −5, −2, 2, −2).

(ii) The cumulative sum (𝑐) of 𝑑 from (6) is given by

𝑐
𝑖
=

𝑖

∑
𝑗=1

𝑑
𝑗

for 1 ≤ 𝑖 ≤ 𝑛. (7)

For the series in Step (i), 𝑐
𝑖
= (2, 7, 2, 0, 2, 0). It can be

checked that, at 𝑖 = 𝑛, 𝑐
𝑖
is always zero.

(iii) The CRD plot was made in terms of the graph of 𝑐
𝑖

against the time unit of the series.

The short-durational changes from the CRD plots can be
identified based on the graphical guidelines illustrated in Fig-
ure 2 which was generated based on synthetic series 𝑃 of 𝑛 =
200. In the CRD plot, the 𝑐 = 0 line is taken as the reference
(i.e., the case when the data points within the series are of the
same value).The values above or below this reference are con-
sidered to characterize subtrends in the series. If the series has
no trend, the scatter points cross the reference several times
(see case (a) and (1)). When the series has a positive/negative
trend, most of (if not all) the scatter points take the form of
a curve above/below the reference (see case (b) and (2)). It
is possible that different changes can occur within the same
series. For instance, when the series has its first/second half
characterized by positive/negative trend, two curves are
formed such that the first one is above the reference and the
other is below the 𝑐 = 0 line (see case (c) and (3)). For a step
upward/downward jump in the mean of the series (assuming
there is no trend in both parts of the subseries before and after
the step jump), the scatter points form lines which meet at a
point (call it the vertex) above/below the reference (see case

(d) and (4)). For an upward/downward jump, the slope of the
first line is positive/negative, while that for the second one
is negative/positive. For further details on the use of the CRD
plots to identify changes in the series and how the significance
of the visualized overall trend can be tested, the reader is
referred to [57].

Variability was investigated using the nonparametric
anomaly indicator method (NAIM) [58]. NAIM relies on
nonparametric rescaling of the data followed by temporal
convolution or aggregation of the series. According to World
Meteorological Organization (WMO) [59], aggregation of
series allows study of the general or summarized and repre-
sentative behavior of the data. To implement the NAIM to
compute anomalies in the series, the following was done:

(i) A block length (𝐿
𝐵
) based on a sensitivity analysis

was selected. This was done while ensuring that the
periods of high or low anomalies were as nearly
independent as possible. To capture the decadal oscil-
lations (if any), sensitivity analysis was done using 𝐿

𝐵

in the range from 2 to 10 years. Finally 𝐿
𝐵
= 10 years

was adopted because it gave a more representative
smoothing of the series than for other values such as
𝐿
𝐵
= 2, 5, and 7 years.

(ii) Each value of 𝑑 from (6) was transformed using𝑋
𝑖
=

−1 × 𝑑
𝑖
for 1 ≤ 𝑖 ≤ 𝑛; this was to make the temporal

variation of the rescaled series match that of the given
data while circumventing the influence of possible
outliers (if any) on the variability analysis.

(iii) Using 𝐿
𝐵
and rescaled series 𝑋 from Steps (i) and

(ii), respectively, temporal aggregationwas done in an
overlapping way using (8) to obtain the mean (𝑀) of
the subseries in each time slice 𝑗; consider

𝑀
𝑗
=
1

𝐿
𝐵

𝑧

∑
𝑖=𝑗

𝑋
𝑖
, (8)

where 𝑧 = 𝑗 + (𝐿
𝐵
− 1) and 1 ≤ 𝑗 ≤ (𝑛 + 1 − 𝐿

𝐵
).

(iv) The anomaly (%) in each slice 𝑗 was calculated as a
ratio of 100𝑀

𝑗
to (𝑛 − 1). Actually, (𝑛 − 1) is equal to

the possible maximum absolute value of𝑋 from Step
(ii). Thus, the possible maximum anomaly is 100%.

(v) Finally, the anomaly (%) was plotted against the mid-
points of the time slices. From the plot, the long-term
mean of the series is represented by the zero percent
anomaly. The fluctuation of the anomalies above or
below the reference was considered to characterize
the variability in the series.

If the 𝐿
𝐵
of 10 years selected in Step (i) ismoved in an overlap-

pingway as described by (8), the resultant time slices based on
the data considering Khartoum flow outlet, that is, from 1965
to 2000, would be 1965–1974, 1966–1975, . . . , 1991–2000.The
mid-points of the time slices (as required in Step (v)) against
which the anomalies from Step (iv) are plotted would be
1970, 1971, . . . , 1996.

For validity of the NAIM results, the significance of the
anomalies can be tested to verify the null hypothesis (𝐻

0
)
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Figure 2: The plots for (a)–(d) synthetic series, 𝑃 of 𝑛 = 200, and (1)–(4) the cumulative effects of the temporal variations for the
corresponding series.
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that the variability in the series is caused by only natural
randomness; that is, there is no persistence in the temporal
variation. Nonparametric bootstrapping [60] byMonte Carlo
simulations is used to test𝐻

0
. Consider𝑁MC as the number of

Monte Carlo simulations; the variability bounds in the form
of (100 − 𝛼)% Confidence Interval (CI) were constructed by
(1) applying the NAIM using 𝐿

𝐵
to the original series, (2)

randomly shuffling the original full-time series, (3) applying
the NAIM using 𝐿

𝐵
to the shuffled series, (4) repeating Steps

(2)-(3)𝑁MC times to obtain𝑁MC sets of anomaly values, (5)
ranking, for each set, the anomaly values from the highest
to the lowest, and (6) taking the upper and lower limits of
the (100 − 𝛼)% CI as the [0.005 × 𝛼% × 𝑁MC]th and [{1 −
(0.005 × 𝛼%)} × 𝑁MC]th anomaly values, respectively. 𝐻

0
is

accepted if the anomaly values from Step (1) fall within the
CI. If the upper/lower CI limit is upcrossed/downcrossed,𝐻

0

is rejected. In this study,𝛼%and𝑁MC were set to 5% and 1000,
respectively.

To evaluate the performance of the models in the simula-
tion of the observed temporal variability, the following steps
of the nonparametric skill score (SC, %) were taken:

(i) The zero percent anomaly was taken as the reference
for natural randomness in the data. The symbols “+”
or “−” were assigned to a particular time slice if its
anomaly was greater or less than zero, respectively. If
the anomaly was zero, “∗” was assigned.

(ii) Again, the symbol “+” was assigned to a particular
time slice if its anomaly was greater than or equal to
the upper limit of the 95% CI; otherwise, the symbol
“−” was assigned.

(iii) Furthermore, the symbol “+” was assigned to a
particular time slice if its anomaly was less than or
equal to the lower limit of the 95% CI; otherwise, “−”
was assigned.

(iv) Rewards and penalties were awarded for the scores
assigned to the anomalies from the models. For a
given model, if its modeled flow correctly obtained
the anomaly sign (i.e., + or −) similar to that of the
observed flow in a particular time slice, a score of +1
was given to the model; otherwise a penalty of −1 was
assigned. This procedure was repeated separately for
each of the criteria from Steps (i) to (iii).

(v) The number of criteria under which the scores were
assigned was determined and denoted as 𝑢; in this
case 𝑢 = 3 because there were three aspects of accu-
racy tested, that is, in Steps (i) and (iii). Consider that
ℎ
1
, ℎ
2
, . . ., and ℎ

𝑢
denote the sumof scores for the first,

second, . . ., and the 𝑢th criterion, and if 𝑘
1
, 𝑘
2
, . . ., and

𝑘
𝑢
are the sample sizes of events for which scores

were assigned using the first, second, . . ., and the 𝑢th
criterion, generally the balance (𝑏) between the total
of the rewards and penalties would be given by 𝑏 =
(ℎ
1
/𝑘
1
) + (ℎ
2
/𝑘
2
) + ⋅ ⋅ ⋅ + (ℎ

𝑢
/𝑘
𝑢
).

(vi) The SC (%) for a particular model was calculated
using

SC (%) =
{

{

{

𝑏 × 100 × 𝑢
−1 if 𝑏 > 0

0 if 𝑏 ≤ 0.
(9)

The best model performance is given by SC of 100%. The
worst model is that with SC of zero.

3.2.4. Amplitude-Duration-Frequency Relationships. Ampli-
tude-Duration-Frequency (ADF) relationships combine
Extreme Value Distribution (EVD) over a range of
aggregation levels. ADF relationships can be considered
as one of the most important tools for risk-based water
engineering and management. ADF relationships are used
for design, operation, and/or management of water supply
projects (e.g., dikes, dams, and irrigation systems) [61] or
urban drainage facilities such as sewer conduits [62]. ADF
relationships constructed for flow and rainfall are called
QDF and IDF, respectively. In this study, QDF relationships
were constructed for both observed and simulated flows.

The first step in the construction of QDF relationships is
the selection of aggregation levels, that is, durational intervals
over which flows are averaged. To cover the relevant water
resources management or water engineering applications as
agriculture, irrigation, hydropower, domestic water supply,
pollution control, and so forth, aggregation levels may be
selected in the range of 1–90 days for high flows and the range
of 1–365 days for low flows [63].

Equation (8) with the term 𝐿
𝐵
taken as the aggregation

level and 𝑋 as the original (i.e., unrescaled) flow is used
in averaging of the series. For analyses of low flows from
nonephemeral rivers (i.e., when 𝑋 > 0), the aggregation of
𝑋 is done after transformation of 𝑋 by (1/𝑋). For low flow
analyses, mostly Weibull or Fréchet distributions are used.
However, the transformation of the series using (1/𝑋) makes
the low flows to follow the Generalized Pareto Distribution
GPD [64] or exponential instead of Weibull or Fréchet
distribution. This transformation allows both the low flows
and high flows to be analyzed in a similar way. Consider
𝐺(𝑥) as the cumulative distribution function of the GPD,
and assume that (1/𝑋) low flows exhibit normal tail in the
exponential quantile plot (i.e., − ln{1 − 𝐺(𝑥)} in abscissa and
𝑥 in ordinate). As shown by [65], to calibrate exponential
distribution (with scale (𝛼) and location or threshold (𝑥

𝑡
)

parameters) to the series (𝑆 = 1/𝑋) above a specified
threshold 𝑠

𝑡
,

𝐺 (𝑠) = 𝑃 {𝑆 ≤ 𝑠 | 𝑆 ≥ 𝑠
𝑡
} = 1 − exp{−

(𝑠 − 𝑠
𝑡
)

𝛼
} . (10)

This equation can be transferred towards a distribution for𝑋
(using 𝑥

𝑡
= 1/𝑠
𝑡
) as follows:

𝐺 (𝑠) = 𝑃 {𝑋 ≤ 𝑥 | 𝑋 ≤ 𝑥
𝑡
} = 𝑃 {𝑆 ≥ 𝑠 | 𝑆 ≥ 𝑠

𝑡
}

= 1 − 𝑃 {𝑆 ≤ 𝑠 | 𝑆 ≥ 𝑠
𝑡
} ,

(11)



8 Advances in Meteorology

𝐺 (𝑠) = exp{−
(𝑠 − 𝑠
𝑡
)

𝛼
} = exp{−

(𝑥−1 − 𝑥−1
𝑡
)

𝛼
} , (12)

𝐺 (𝑥) = 𝑃 {𝑋 ≤ 𝑥 | 𝑋 ≤ 𝑥
𝑡
} = exp{−

(𝑥−1 − 𝑥−1
𝑡
)

𝛼
}

= exp(−𝑥
−1

𝛼
){exp(−

𝑥
−1

𝑡

𝛼
)}

−1

.

(13)

For values lower than 𝑥
𝑡
, it can be noted that (13) matches the

Fréchet distribution 𝐺(𝑥) = exp(−𝑥−𝜂/𝛼) with 𝜂 = 1.
The next step after the temporal averaging of the series

is the selection of independent hydrological extremes for
each aggregation level. In line with frequency analysis,
the requirement that the data should be independent and
identically distributed can be achieved through extraction,
from the full series, of either Annual Maxima Series (AMS)
or the Partial Duration Series (PDS)/Peak Over Threshold
(POT). The main advantage of the AMS in which the time
slice is chosen to be one hydrological year is that it produces
extremes with stronger independence compared to those of
the POT method. However, it has the disadvantages that the
sample is rather small, and because the second highest event
in each year is not considered, some useful information for
the definition of the extreme value region is lost. In the POT
method, all events above a certain truncation (threshold)
level are extracted, thereby leading to a more reasonable
sample size for extreme value analysis than that of the AMS.
Thus, the POTmethod intuitively provides a more consistent
definition of the extreme value domain than the AMS
approach [66]. Eventually, the POT method of extracting
independent hydrological extremeswas adopted in this study.
ThePOTeventswere selected using the independence criteria
based on the flow threshold and the time between successive
flow extremes as presented by [67].

The step that follows the POT extraction is fitting of the
EVD to the independent extreme events. It is known that the
POT events as used in this study follow the GPD (see (14) and
(15)) which can be valid for values of 𝑥 above the threshold 𝑥

𝑡
.

Consider

𝐺 (𝑥) = 1 − {1 + 𝛾
(𝑥 − 𝑥

𝑡
)

𝛼
}

−1/𝛾

for 𝛾 ̸= 0, (14)

𝐺 (𝑥) = 1 − exp{−
(𝑥 − 𝑥

𝑡
)

𝛼
} for 𝛾 = 0. (15)

Three classes of the GPD can be identified based on the shape
parameter 𝛾, that is, normal (𝛾 = 0), heavy (𝛾 > 0), and light
(𝛾 < 0) tails. When 𝛾 ≥ 0, the upper GPD tail goes up to
infinite values and for 𝛾 < 0, the GPD has a final right-end
point. The GPD for 𝛾 = 0 equals the exponential distribu-
tion. The parameters of the EVD were estimated using the
weighted linear regression (WLR) technique based on the
quantile incremental properties of the GPDs [68]. The WLR
technique was adopted because it was recently demonstrated
by [66] to be ostensiblymore robust to capture EVD tails than
other well-known parameter estimation methods such as the

method of moments, maximum likelihood, and 𝐿-moment
approach. To compute the parameters of the GPD (see (14)),
Pareto quantile plot (i.e., − ln{1 − 𝐺(𝑥)} in abscissa and ln(𝑥)
in ordinate) is used. In this plot, the GPD (see (14)) appears
as a line and the slope of this line especially in the tail approx-
imates to 𝛾. Eventually, for the GPD (see (14)), 𝛼 is computed
using (16), and 𝛾 can be estimated by least square weighted
linear regression based on the Hill weights [69] using (17). To
compute the parameters of the exponential distribution (see
(15)), exponential quantile plot (i.e., −ln{1−𝐺(𝑥)} in abscissa,
and 𝑥 in ordinate) is used. In this plot, the exponential
distribution takes the form of a line whose slope is equal to 𝛼
which can be estimated again based on the Hill weights [69]
using (18). Consider 𝑡 as the number of POT events above the
threshold 𝑥

𝑡
and

𝛼
𝑡
= 𝛾
𝑡
× 𝑥
𝑡
, (16)

𝛾
𝑡
=

1

𝑡 − 1
{

𝑡−1

∑
𝑖=1

ln (𝑥
𝑖
)} − ln (𝑥

𝑡
) , (17)

𝛼
𝑡
=

1

𝑡 − 1
{

𝑡−1

∑
𝑖=1

𝑥
𝑖
} − 𝑥

𝑡
. (18)

The optimal 𝑥
𝑡
is obtained as the value of 𝑥 for which the

mean squared error (MSE) isminimal. For theGPD (see (14))
and exponential distribution (see (15)), the MSE of the WLR
in the Pareto and exponential quantile plot can be given by
(19) and (20), respectively. Consider

MSE
𝑡
=

1

𝑡 − 1
{

𝑡−1

∑
𝑖=1

(− ln( 𝑖
𝑡
))
−1

⋅ (ln(
𝑥
𝑖

𝑥
𝑡

) − 𝛾
𝑡
ln(𝑡

𝑖
))

2

} ,

(19)

MSE
𝑡
=

1

𝑡 − 1
{

𝑡−1

∑
𝑖=1

(− ln( 𝑖
𝑡
))
−1

⋅ (𝑥
𝑖
− 𝑥
𝑡
− 𝛼
𝑡
ln(𝑡

𝑖
))
2

} .

(20)

The second last step of QDF construction comprises the
estimation of the flow quantiles. Considering 𝑟 as the data
record length in years and 𝑖 as the rank of the POT events
(𝑖 = 1 for the highest), the relationship between the 𝑇-year
flow𝑄

𝑇
and the return period𝑇 based on calibratedGPD and

empirical data can be calculated using (21) and (22), respec-
tively. Consider

𝑇 (years) = (𝑟
𝑡
)

1

1 − 𝐺 (𝑄
𝑇
)
, (21)

𝑇 (years) = (𝑟
𝑖
) . (22)

Empirically,𝑄
𝑇
is obtained as the flow value corresponding to

𝑇 computed using (22). Based on (22), it is noticeable that the
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Figure 3: POT events in exponential quantile plots for (a) high flows and (b) low flows of 1-day aggregation level. The regression line is the
fitted EVD.

empirical𝑄
𝑇
can only be estimated for𝑇 values not exceeding

𝑟. For 𝑇 greater than 𝑟, the theoretical quantiles can be
estimated for the GPD (see (14)) and exponential distribution
(see (15)) using (23) and (24), respectively. Extrapolation
requires the choice of 𝑇 values to be made. In this study, to
minimize the possible uncertainty boost in the extreme value
analyses due to finite sample size,𝑇was ensured not to exceed
100 years (i.e., less than three times the data record length).
Besides, the range of 𝑇 from 5 to 100 can be used in planning
and designing of multipurpose risk-based water engineering
applications such as hydraulic structures along river sys-
tems (bridges, culverts, etc.). 𝑇 around 100 years may be
used for medium-sized flood protection systems, flood plain
development, and so forth [62]. In the construction of the
QDF relationships, for each aggregation level the theoretical
quantiles𝑄

𝑇
are computed for all the selected return periods.

Consider

𝑄
𝑇
= exp (ln (𝑥

𝑡
) + 𝛾 {ln (𝑇) − ln(𝑟

𝑡
)})

for 𝛾 ̸= 0,

(23)

𝑄
𝑇
= 𝑥
𝑡
+ 𝛼{ln (𝑇) − ln(𝑟

𝑡
)} for 𝛾 = 0. (24)

Figure 3 shows examples of calibrated exponential distribu-
tion or normal tailed GPD as regression lines in exponential
quantile plots for both high flows and low flows. It is
noticeable that the linear behavior of the quantiles is obtained
towards the tail of the distribution of events. The regression
lines can be seen to be extrapolated up to 𝑇 of 100 years for
both high flows (Figure 3(a)) and low flows (Figure 3(b)).
For low flows, back transformation is applied to the (1/𝑋)
transformed 𝑇-year events to obtain the actual quantiles.

Finally, the QDF relationships comprise the compiled
values of 𝑄

𝑇
for all the aggregation levels as well as the

different selected return periods. This makes possible the
estimation of cumulative volumes of water during drought or
flood periods at various aggregation levels or return periods.

4. Results and Discussions

4.1. Rainfall-Runoff Modeling

4.1.1. Effect of Catchment Size on Simulation of Runoff.
Figure 4 shows the performance of the models in sim-
ulating runoff for catchments of different drainage areas
using hydrometeorological inputs from 1980 to 2000. It is
noticeable that the flows of Ribb (Figures 4(k)–4(o)) are
less smooth than those of El Diem (Figures 4(f)–4(j)) and
Khartoum (Figures 4(a)–4(e)). Normally, the time taken by
the water to reach the catchment outlet when the area or
size is large tends to be long. The increasing delay in the
catchment response as the catchment size increases leads to
low runoff volume from rainfall following the large losses of
rain water by infiltration, evaporation, and so forth. Given
that the flow is cumulative in volume from upstream to
downstream, the changes in flow due to the fluctuations in
rainfall-runoff tend to bemore smoothened as the catchment
size increases. However, regardless of the catchment size, it is
noticeable that the observed hydrographs arewell reproduced
by those of the modeled flows. The statistical evidence of
the agreement between the observed and modeled flows
for all the catchments is provided in Table 2. The NSE
for each model fell in the range of 0.70–0.81 regardless of
the catchment size. Similarly, the correlation between the
observed and modeled flows was between 0.8 and 0.9. This
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Figure 4: Continued.
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Figure 4: Observed and modeled daily flows at (a)–(e) Khartoum, (f)–(j) El Diem, and (k)–(o) Ribb based on (a, f, k) AWBM, (b, g, l)
IHACRES, (c, h, m) SAC, (d, i, n) SIMHYD, and (e, j, o) TANK. The number of days from 5000 to 6500 in the horizontal axis covers the
period of flows from 9/8/1993 to 17/10/1997.

Table 2: Statistical evaluation of the model performance.

Model Khartoum El Diem Ribb
NSE Corr. NSE Corr. NSE Corr.

AWBM 0.71 0.81 0.80 0.86 0.71 0.82
IHACRES 0.76 0.78 0.77 0.81 0.70 0.81
SAC 0.72 0.82 0.78 0.84 0.72 0.80
SIMHYD 0.78 0.85 0.81 0.86 0.74 0.83
TANK 0.70 0.79 0.79 0.85 0.76 0.84
Corr.: correlation between observed flow and simulated flow.

indicated the adequacy of the models to simulate long-term
runoff from the BNB. Eventually, to evaluate the performance
of the models in reproducing the variability and quantiles of
the flows considering the entire BNB, all the models were
applied to simulate runoff at Khartoum and the modeling
results are presented in Section 4.1.2.

4.1.2. Model Results for the Runoff at Khartoum. Figure 5
shows the observed and simulated daily flows from 1965 to
2000. The calibration and validation periods are shown by
the number of days in the ranges of 1–9496 and 9497–13149,
respectively. It is visually noticeable that the performance
of each model (Figures 5(a)–5(e)) is acceptable. However,
the tendency of the SIMHYD (Figure 5(d)) to overestimate
the high peak flows is also evident. The model parameters
following the SCE technique of calibration are listed in
Appendices B.1 and B.2.

Table 3 shows the statistical “goodness-of-fit” from the
different models considering calibration and validation peri-
ods separately. The NSE values for calibration were higher
than those for validation. With respect to the calibration
results, the validation NSE for AWBM, IHACRES, SAC,
SIMHYD, and TANK dropped by 20.9, 11.0, 5.4, 20.0, and
10.1%, respectively. The average drop of NSE by 13.5% (con-
sidering all the models) could be indicative of the difficulty
of the models to capture the runoff generation dynamics due

Table 3: Statisticalmeasures of the agreement between the observed
and simulated flows.

Model AWBM IHACRES SAC SIMHYD TANK
Calibration 0.86 0.73 0.74 0.75 0.79
Validation 0.68 0.65 0.70 0.61 0.71

to the possible change in catchment behavior. As stated in
Section 3.1, the model validation was from 1991 to 2000. The
land management policy in Ethiopia (where the upper part
of the BNB is located) from 1991 to 2000 was different from
that of the 1975–1990 period. This difference in policy was
due to the changes in the government or political regimes
in 1975 and 1991 [70]. For instance, from 1975 onwards,
the landlord-tenant relationship was abolished by the “land-
to-the-tillers” policy; however, by 1991, the government
decreed state ownership of land [70]. The combination of
such governmental policy changes and other factors such
as widespread poverty associated with frenzied population
growth promotes anthropogenic influences on the hydrology
through overgrazing, deforestation, significant expansion of
urbanized areas, and so forth. Such anthropogenic factors
affect hydrology by altering the amount of infiltration into
the soil, velocity of the overland runoff, the rate and amount
of evaporation, and so forth [23], thereby modifying the
catchment response to the rainfall input. The capacity of the
models to capture such changes in catchment behavior tends
to differ as seen in the differences in the NSE drop. However,
because the NSE values for all the models were higher than
0.6 for the validation, the simulated flows were considered
adequate for the comparison of the model performance in
capturing the variability of the flows.

4.2. Comparison of the Observed and Modeled Flows

4.2.1. “Goodness-of-Fit” of the Full-Time Series. Figure 6
shows the results of graphical comparison of observed and
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simulated flows combined over both calibration and vali-
dation periods. It is seen that whereas the AWBM over-
estimated the observed cumulative flows, underestimations
were obtained for the rest of the other models (Figure 6(a)).
Furthermore, the deviations between the observed and sim-
ulated flows from the various models can be confirmed by
most of the scatter points of the AWBM (and the rest of the
models) falling above (below) the bisector (Figure 6(b)). The
performances of IHACRES, SAC, SIMHYD, and TANK are
shown to be comparable (Figures 6(a) and 6(b)). The average
biases in reproducing observed cumulative flows for AWBM,
IHACRES, SAC, SIMHYD, and TANK were 17.68, −6.86,
−10.18, −12.56, and −10.37%, respectively. One probable cause
of these model biases indicating the deficiency in capturing
the observed water balance closure could be the overall
structural differences among the models in capturing the
dynamics of the runoff generation in the study area. Another
reason for the model biases would be the low quality of the
meteorological model inputs. However, as already seen in
Table 1, the quality of the data at each station was satisfactory
for rainfall-runoff modeling. The performance of the rainfall
from these stations, say, to explain the temporal variation
in the runoff would be good if they are to be used in a
case-specific way, for example, each station for a particular
subbasin where it is located. However, in the implementation
ofThiessen polygons for the computation of catchment-wide
average rainfall, all the stations are considered so long as
they fall within the polygons irrespective of whether they
are located over the catchment or not. Although all the 14
rainfall stations from Table 1 were used to constructThiessen
polygons, it is noticeable from Figure 1 that stations 3, 5-6,
and 10–14 are outside the BNB boundary. With respect to the
physical reality, rainwater from these stations, 3, 5-6, and 10–
14, cannot contribute directly to the overland runoff of the
BNB.The consideration of data from stations located outside
the catchment as done in this study (following the limitation
of stations with data) lowers the accuracy of the temporal
variation of the lumped catchment-wide rainfall to capture
the variation in the observed overland flow; thus it becomes
a possible reason for the mismatch between measured and
modeled flows.

Figure 7 shows the statistical measures of agreement
between observed and simulated flows. It is noticeable that all
the metrics including 𝐸

𝑓
, 𝐼
𝑑
, and NSE for each model were

above 0.5. Furthermore, considering each statistical metric,
the performances of the models are evidently comparable.
This shows that, without giving particular focus to either
flooding or drought conditions, the influence of model
selection on the simulation of the runoff of the study areamay
be minimal. Nonetheless, based on which model obtained
the highest statistical “goodness-of-fit,” the best performance
with respect to 𝐸

𝑓
and 𝐼
𝑑
was realized from TANK, followed

by IHACRES. The lowest values of 𝐸
𝑓
and 𝐼
𝑑
were obtained

by AWBM and SIMHYD, respectively. However, with respect
to NSE, the best performing model was AWBM, followed by
TANK. The lowest NSE was obtained by SIMHYD. It can
be seen that the value of 𝐸

𝑓
was lower than those of 𝐼

𝑑
and

NSE for each model. For the AWBM, the NSE was greater
than both 𝐸

𝑓
and 𝐼
𝑑
. On the contrary, the rest of the models
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Figure 7: Performance of the models in terms of the forecast
accuracy and NSE.

exhibited higher value of 𝐼
𝑑
than for the NSE. This shows

that the judgment of the model performance depends on the
selected statistical “goodness-of-fit” measure. It is therefore
recommended that a number of statistical metrics be used in
evaluating model performance in rainfall-runoff modeling.

4.2.2. “Goodness-of-Fit” of Flow Extremes. Figure 8 shows
the capacity of the models to reproduce extreme events. The
performances of the models are comparable for capturing
high flow extremes (Figures 8(a), 8(c), and 8(e)), though
SIMHYD tended to overestimate the high flows. Generally,
the values of 𝐿FC (Figures 8(b), 8(d), and 8(f)) were greater
than those of 𝐻FC. Except for the annual minima flow
(Figure 8(f)), the values of 𝐿FC from the various models are
also fairly comparable (Figures 8(b) and 8(d)). For the annual
minima flow, 𝐿FC was zero for SAC because all the modeled
minimumflow in each year was zero for the entire calibration
and validation periods. To supplement the evaluation using
𝐻FC and 𝐿FC, results based on𝑀AB and 𝑅MSE are presented
in Table 4. The overall best model (i.e., with the lowest𝑀AB)
to capture both high and low flow conditions was AWBM.
It is noticeable that the magnitude of a particular statistical
measure for evaluating the model performance tended to
differ with the variation in the criteria for extracting the
flow extremes from the full-time series. This shows that,
for the intercomparison of the performance of the models
with respect to extreme conditions, high and low flow events
should be extracted based on a number of criteria. In this
study, seven criteria were considered. The results of the use
of six criteria are presented in Figure 8. The last (i.e., the
seventh) criterion which entailed extracting events which are
nearly independent and identically distributedwas applicable
to both high and low flows and is very vital for applications
of extreme value analyses as seen in the construction of QDF
relationships (see Sections 3.2.4 and 4.2.3).

Figure 9 shows the graphicalmodel performance in terms
of the Box-Cox transformed observed and modeled flows.
For an ideal model (which is said to be unbiased), the scatter
points in Figure 9 would all fall along the bisector (i.e., 45∘
line in the Cartesian plane). Consistent with the graphical
observation made on Figure 5(d) and Figures 8(a), 8(c), and
8(e), it is noticeable from Figure 9(a) that the SIMHYD
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Figure 8: Model performance considering (a) flow events greater than one-third of the observed peak high flow mean, (b) flows less than
one-third of the observed low flowmean, (c) flows greater than the 95th percentile of the observed flow, (d) flows less than the 5th percentile
of the observed flow, (e) maximum flow in each year, and (f) minimum flow in each year.

overestimated the maximum flow in each year. As seen from
Table 4, this overestimation by SIMHYD equaled 𝑀AB of
62.57%. It is shown that the TANK model underestimated
most of the annual maximum flow events. Figure 9(b) shows
that the only realistic estimations of the minimum flow in
each year were obtained by the AWBM. All the other models
including IHACRES, SAC, SIMHYD, and TANK performed
poorly in capturing the observed annual minimum flow.The
worst performance for the annual minima flow was by SAC.
This was for the reason that SAC produced zero flows during

every dry period in each year; thus, the scatter points of its
annual minima flows appear as a horizontal line (Figure 9(b))
with the constant value of −4 after applying the Box-Cox
transformation using (5) with the parameter 𝜆 set to 0.25 as
mentioned before.

4.2.3. Analyses of Temporal Changes. Figure 10 shows the
temporal anomalies in the observed and simulated flows.
The details of the temporal evolution of the anomalies
characterizing the variability in the annual maxima and
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Figure 9: Model performance evaluation for (a) maximum flow in a year and (b) minimum flow in a year. For the labels of the axes, “BC”
appearing before “()” shows that the flow (m3/s) values plotted were obtained after applying Box-Cox (BC) transformation using (5).

Table 4: Statistical measures of model performance for flow
extremes.

Metric AWBM IHACRES SAC SIMHYD TANK
Maximum flow in each year

𝑅MSE (m
3/s) 1882.10 2022.53 1943.30 5371.12 2613.39

𝑀AB (%) 0.44 2.80 10.17 62.57 −21.81
Minimum flow in each year

𝑅MSE (m
3/s) 75.35 149.41 161.23 150.55 124.06

𝑀AB (%) −9.18 −98.63 −100.00 −99.54 −78.61
Extreme events greater than one-third of the

observed peak high flow mean
𝑅MSE (m

3/s) 2133.59 1972.62 1978.95 2705.44 1808.53
𝑀AB (%) −10.89 5.49 −5.59 7.66 −5.81

Extreme events less than one-third of the
observed low flow mean

𝑅MSE (m
3/s) 300.82 413.04 780.03 504.00 311.20

𝑀AB (%) −13.57 17.73 94.54 28.22 67.02
Extreme events greater than the 95th

percentile of the observed flow
𝑅MSE (m

3/s) 1638.19 2926.47 2237.11 3629.58 2326.94
𝑀AB (%) −0.19 31.00 12.12 29.74 24.19

Extreme events less than the 5th percentile of the
observed flow

𝑅MSE (m
3/s) 208.70 251.36 535.34 306.96 108.75

𝑀AB (%) −15.27 −27.78 96.99 37.68 57.13

annual minima are presented in Table 5. It is shown that
the observed maximum flow in each year was generally

above the reference from 1970 to 1978 and again from 1991
to mid 1990s (Figure 10(a)). The annual maximum flow is
shown to be below the reference from the late 1970s to early
1990s. This decrease in the flow was significant at the level
of 5%. Visually, it is evident that all the models captured
quite well the temporal variability in the observed annual
maxima. The temporal variability of the annual maxima is
comparable with that of themean annual flows (Figure 10(b)).
For the annual minima series, it is shown in Figure 10(c)
and Table 5 that the flow events of 1970–1983 (1984–1996)
were above (below) the reference. The anomalies in annual
minima flow before and after 1984 were positive and negative,
respectively. Nonetheless, the observed annual minima flow
exhibited a steadily significant decrease from 1970 to mid
1990s. Statistically, the skill scores of the models in capturing
the anomalies of variability in the annual maxima were
66.7% (AWBM), 63.0% (IHACRES), 63.0% (SAC), 70.4%
(SIMHYD), and 66.7% (TANK). For annual mean flow,
skill scores of 55.6% (AWBM), 59.1% (IHACRES), 55.6%
(SAC), 62.9% (SIMHYD), and 70.4% (TANK) were obtained.
Generally, the models performed poorly in capturing the
variability in the annual minima flow with the skill scores
of 18.5% (AWBM), 14.8% (IHACRES), 33.3% (SIMHYD),
and 0% (TANK and SAC). According to [71], low flows
are often poorly reproduced by most rainfall-runoff models
which are tailored to capture flooding conditions. Besides, the
overall water-balance-based objective function (as applied for
calibration in this study) seemingly influences the capacity
of the models to perform better in capturing the temporal
changes in observed high flows compared to low flows. One
option (which can still remain food for thought) would be
for the model developers to revise their model structures
to capture both low flows and high flows in an acceptably
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Figure 10: Temporal variation in terms of (a)–(c) NAIM results and (d)–(f) CRD results for (a, d) maximum flow in each year, (b, e) mean
annual flow, and (c, f)minimumflow in each year.The charts (a)–(c) and (d)–(f) share the same legend at the bottomof (c) and (f), respectively.
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Table 5: Temporal anomalies in the annual maxima and annual minima flows.

Year Obs. AWBM IHACRES SAC SIMHYD TANK Obs. AWBM IHACRES SAC SIMHYD TANK
Maximum flow in each year Minimum flow in each year

1970 + + + + + + +# − − ∗ − −

1971 +# +# + + +# + +# + − ∗ + −

1972 + +# + +# +# + +# +# − ∗ + +
1973 + +# +# +# +# + +# +# + ∗ + −

1974 + +# +# +# + + +# + + ∗ + −

1975 + + + + + + +# + + ∗ + −

1976 + + + + + + +# + + ∗ + −

1977 + + + + + + + + + ∗ + −

1978 + + + + − + + + + ∗ + −

1979 − − − − − − + + + ∗ + −

1980 − − − − −# − + − + ∗ + −

1981 − − − − −
#

− + − + ∗ + −

1982 −# −# − − −# − + − − ∗ − −

1983 −# −# −# −# −# − + − − ∗ − −

1984 −
#

− −
#

−
#

−
#

− − − − ∗ − −

1985 − − − − − − − − − ∗ − −

1986 −
#

− − − −
#

− − − − ∗ − +
1987 − − − − − − − − − ∗ − +
1988 − − − − − − − − − ∗ − −

1989 − − − − − − − + + ∗ − +
1990 − − − − − − − + + ∗ − +
1991 − − − − − − − + − ∗ − +
1992 + − − − − − − + + ∗ + +
1993 + − − − − −# + + ∗ + +
1994 + − − − − − −

# + + ∗ + +
1995 + − − − + − −# + + ∗ + +
1996 + + − + + + −

# + + ∗ − +
The symbols “+” and “−” denote anomaly greater and less than zero, respectively.
The symbol “∗” indicates anomaly of zero percent. “Obs.” denotes observed change.
The cells with superscript symbol “#” are for anomalies significant at the level of 5%.
Each anomaly was placed at the center of the 10-year time slice, for example, 1965–1974, 1966–1975, . . ., 1991–2000, obtained based on the NAIM procedure as
described in Section 3.2.3.

simultaneous way. Secondly, for optimization of the numeri-
cal performance schemes during calibration, the use of water-
balance-based objective function should be combined with
other criteria which seek to strike a balance in the model
performance for both high flows and low flows jointly. Some
of the criteria which can be combined together include the
adequacy of the models to capture the overall shape of
the hydrograph, peak high flows, low flows, and temporal
changes (variability and subtrends) in high flows and low
flows.

For short-durational changes in trend direction, the
annual maxima and mean flow (Figures 10(d) and 10(e))
exhibited both negative and positive subtrends. This result
is consistent with that of [23] that found decreasing and
increasing short-durational trends over the periods of 1965–
1983 and 1984–2000, respectively, in the Blue Nile flow
at Khartoum. Like for the NAIM results, all the models

again exhibited close agreement in capturing the temporal
cumulative effect of the variations or subtrends in the annual
maxima andmean flows.The correlation coefficients between
the CRD curves for observed and simulated annual maxima
flows were 0.86 (AWBM), 0.85 (IHACRES), 0.86 (SAC), 0.93
(SIMHYD), and 0.82 (TANK). For the annual mean flows,
correlation values of 0.87 (AWBM), 0.86 (IHACRES), 0.86
(SAC), 0.89 (SIMHYD), and 0.88 (TANK) were obtained. For
the annual mean flow, there was more discrepancy between
the observed and modeled flows with respect to decreasing
than increasing subtrends. Nevertheless, some slight dis-
crepancy between the temporal subtrends of observed and
modeled flows from all the models was exhibited from 1991
to 1999. This discrepancy could be an indication of the slight
change in catchment behavior with respect to the rainfall-
runoff generation dynamics. The arguable evidence of this
change in the catchment behavior was already presented in



18 Advances in Meteorology

0
5000

10000
15000
20000

10 1001
Aggregation level (day)

Fl
ow

 (m
3
/s

)

T5

T25

T100

T5

T25

T100

(a)

0
5000

10000
15000
20000

Fl
ow

 (m
3
/s

)

10 1001
Aggregation level (day)

T5

T25

T100

T5

T25

T100

(b)

0
5000

10000
15000
20000

Fl
ow

 (m
3
/s

)

10 1001
Aggregation level (day)

T5

T25

T100

T5

T25

T100

(c)

0

10000

20000

30000

Fl
ow

 (m
3
/s

)

10 1001
Aggregation level (day)

T5

T25

T100

T5

T25

T100

(d)

0
5000

10000
15000
20000

Fl
ow

 (m
3
/s

)

10 1001
Aggregation level (day)

T5

T25

T100

T5

T25

T100

(e)

Figure 11: QDF relationships for observed peak high flows and modeled flows from (a) AWBM, (b) IHACRES, (c) SAC, (d) SIMHYD, and
(e) TANK. Markers and lines are for observed and modeled flows, respectively. In the legend, for example, 𝑇5 denotes 𝑇-year curve for 𝑇 = 5
years.

Section 4.2.1. Consistentwith theNAIMresult in Figure 10(c),
it is noticeable fromFigure 10(f) that the entireCRDcurve fell
below the reference, thereby indicating a dominantly decreas-
ing trend in the observed annual minimum flows [23]. The
models again performed poorly in capturing the subtrends
in the annual minima flows. The correlation coefficients
between the CRD curves for observed and simulated annual
minima flows were 0.28 (AWBM), −0.06 (IHACRES), 0.00
(SAC), 0.49 (SIMHYD), and −0.41 (TANK). Based on the
obtained results, the best and consistent model performance
to reproduce the observed cumulative temporal variation for
annual maxima and mean flows was SIMHYD.

4.2.4. Amplitude-Duration-Frequency Relationships. Figures
11 and 12 show the QDF relationships for extreme high flows
and low flows, respectively, compiled from the quantiles
estimated based on exponential distribution for return period
𝑇 of 5, 25, and 100 years and aggregation levels of 1, 3, 5,
7, 10, 30, 60, and 90 days (for high flows) and 1, 10, 30, 90,

150, 180, 240, and 365 days (for low flows). The slope of each
𝑇-year curve on the QDF relationships is positive (for high
flows) and negative (for low flows). It is shown that SIMHYD
(Figure 11(d)) overestimated the high flow quantiles for
aggregation level of one day. However, for higher aggregation
levels, the biases in the estimation of quantiles reduced
considerably. For aggregation levels higher than 10 days,
IHACRES (Figure 11(b)) underestimated the quantiles for𝑇 =
100 years. This might be due to the inadequacy of the model
to reproduce higher quantiles in the tail of the distribution
of extreme event, thereby leading to uncertainty in the EVD
calibration for extrapolation. For AWBM (Figure 11(a)), SAC
(Figure 11(c)), and TANK (Figure 11(e)), the quantiles from
the observed and modeled peak high flows are noticeably
comparable for all the aggregation levels. For low flows, poor
performance of all the selected models (Figures 12(b)–12(e))
except AWBM (Figure 12(a)) is evident.

The model biases in reproducing the daily aggrega-
tion observed high flow quantiles for 𝑇 between 1 and
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Figure 12: QDF relationships for observed extreme low flows and modeled flows from (a) AWBM, (b) IHACRES, (c) SAC, (d) SIMHYD,
and (e) TANK. Markers and lines are for observed and modeled flows, respectively. In the legend, for example, 𝑇25 denotes 𝑇-year curve for
𝑇 = 25 years.

40 years were −0.55% (AWBM), 5.30% (IHACRES), 6.35%
(SAC), 79.56% (SIMHYD), and −6.28% (TANK). For
low flows, the corresponding biases of −53.51% (AWBM),
−99.98% (IHACRES), −100% (SAC), −99.99% (SIMHYD),
and −79.46% (TANK) were obtained. One reason for the
biases in the models could be due to the observation errors in
the flows. For instance, in the flooding conditions when the
flow exceeds the river banks, observation errors become large
as a result of the bias from the rating curve extrapolation.
On the other hand, the difference in the biases indicates the
influence of model selection on the simulation of extreme
events. If the results from models are to be used to support
decision for risk-basedmanagement, themodel with the least
bias would be selected.

5. Conclusions

In this study, the influence of hydrological model selec-
tion on the rainfall-runoff simulation was demonstrated
using five well-known models including AWBM, IHACRES,
Sacramento (SAC), SIMHYD, and TANK applied based on
hydrometeorological data from theBNB.Optimal parameters
of all the selected models were obtained through automatic
calibration using Nash-Sutcliffe Efficiency as the objective
function. Each model was tested by evaluating its capacity
in capturing moderate and extreme hydrological events and
the temporal changes in the flows. The temporal changes
in the flows were assessed in terms of variability and sub-
trends (short-durational changes in trends within the series).
Variability was computed using the nonparametric anomaly
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indicator method and sub-trends were analyzed based on the
cumulative rank difference technique. The performance of
the models were evaluated using nine statistical “goodness-
of-fit” measures including Nash-Sutcliffe Efficiency, relative
deviation efficiency, low flow forecast accuracy, index of
agreement, high flow forecast accuracy, model bias, root
mean squared error, correlation, and skill scores. The model
performance was evaluated based on high flows, low flows,
and the overall shape of the hydrograph. To evaluate the
performance of the models in reproducing quantiles as a
simultaneous function of different return periods and aggre-
gation levels, Amplitude-Duration-Frequency (ADF) rela-
tionships constructed using observed andmodeled hydrolog-
ical extremes were compared.

Without giving particular focus to either flooding or
drought conditions, the performance of all the models in
simulating the runoff of the study area was found acceptable.
With respect to considering the overall shape of the hydro-
graph, the best performance in terms of relative efficiency
and index of agreement was realized from TANK, followed
by IHACRES. However, using the Nash-Sutcliffe Efficiency,
AWBM was the best performing model. The deficiency of
the models in capturing the observed water balance closure
evaluated using bias ranged from −6.86% (IHACRES) to
17.68% (AWBM).Thus, the best model to reproduce observed
cumulative flow was IHACRES. On an important note, the
choice of the “goodness-of-fit” measures in performance
evaluation was found to influence the selection of a particular
model.Therefore, caution should be taken to use a number of
measures in intercomparison of hydrological models.

The skill scores in reproducing temporal variability
in observed annual maximum flows varied from 63.0%
(IHACRES) to 70.4% (SIMHYD). Correspondingly, for the
minimum flows in each year, the best and worst perfor-
mances were with skill score of 14.8% (IHACRES) and 0%
(SAC), respectively. For the annual mean flow, the lowest
and the highest skill scores were 55.6% (AWBM and SAC)
and 70.4% (TANK), respectively. Whereas the changes in
observed annual minimum flows were dominated by a nega-
tive trend, the simulated flows from all the models exhibited
no trend. Eventually, the correlation between the temporal
subtrends fromobserved and simulated annualminima flows
ranged from 0.0 (SAC) to 0.49 (SIMHYD). The observed
annual maxima as well as annual mean flow exhibited both
negative and positive subtrends over the periods of 1965–
1984 and 1985–2000, respectively. These observed positive
and negative subtrends were adequately reproduced by the
simulated runoffs from all the models. Coefficients of the
correlation between observed and modeled annual mean
flows were above 0.85 for all the models. For maximum
flows in each year, correlation varied from 0.82 (TANK) to
0.93 (SIMHYD). Therefore, the best performing model to
reproduce the observed temporal variability at decadal time
scale was SIMHYD (for annual maxima and minima flow)
and TANK (for annual mean flow). For short-durational
changes in trend directions, the best and consistent model
performance to reproduce the observed cumulative temporal
variation for annualmaxima andmean andminimaflowswas
SIMHYD.

For the ADF relationships, the model bias in reproducing
the daily aggregation observed high flow quantiles for return
periods between 1 and 40 years ranged from−0.55% (AWBM)
to 79.56% (SIMHYD). Correspondingly, the biases for low
flows were from −53.51% (AWBM) to −100% (SAC). Gener-
ally, for the simulation of flooding and drought conditions,
it was found that the use of the overall water-balance-based
objective function influences the capacity of the models to
perform better in capturing the changes as well as quantiles
of observed high flows compared to low flows.Thismight not
be surprising because low flows are often poorly reproduced
by most rainfall-runoff models which are tailored to capture
flooding conditions [71].Whereas the need to revise concepts
on model structures to simultaneously capture both low
flows and high flows acceptably may still remain food for
thought, it is recommended that the use of water-balance-
based objective function be combined with other criteria
for optimization of the numerical performance schemes.
Such other criteria may include the overall shape of the
hydrograph, peak high flows, low flows, variability, and sub-
trends in low and high flows. Furthermore, it was generally
found that the choice of the criteria for extracting extreme
events from the full series for the purpose of intermodel
comparison influences themodel performance.Thus, caution
must be taken to test model performance with respect to
extreme events extracted based on a number of criteria. In
this study, a total of seven criteria were considered including
the extraction of the flow extremes based on (1) events greater
than one-third of the observed peak high flow mean, (2)
events less than one-third of the observed low flow mean,
(3) high flow events greater than the 95th percentile of the
observed flow, (4) low flows less than the 5th percentile of the
observed flow, (5)maximum flow in each year, (6)minimum
flow in each year, and (7) eventswhich are nearly independent
and identically distributed (e.g., those used for construction
of the ADF relationships). Considering all the above criteria
in a combined way, the overall best model (i.e., with the
best “goodness-of-fits”) to satisfactorily capture both high
and low flow conditions jointly was the AWBM. Because
the performance of a particular model may differ from one
criterion to another, an attempt to interrelate the performance
indicators across all various criteria should be augmented by
the expert judgment of the modeler.

It can be remarked that prudencemust be exercised in the
choice of a particular model which can be made on a case by
case basis in line with the objectives of the hydrological mod-
eling study. Evaluation of the intermodel differences is vital in
the choice of which hydrological models to apply for impact
investigations, for example, of climate variability and change
on water resources. Importantly, whereas the influence of
model selection may be minimal in the simulation of normal
flow events, it must be considered carefully for high flows
or low flows to minimize under- and/or overestimation of
hydrological extremes.The selection of a particularmodel for
simulating extreme flow events is, in turn, influenced by the
choice of (1) the “goodness-of-fit” measures for evaluating
the model performance and (2) the criteria for extracting
extreme events for the model performance evaluation or
intended application. Furthermore, note should be taken that
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Figure 13: The SAC model structure (Source: RRL [39]).

the performance of a hydrological model may be influenced
by (1) the quality of the data which can be translated into
the ease or difficulty of the model calibration, (2) the method
of model calibration, (3) incompatibility of the given model
structure with (a) the data availability, (b) the uniqueness of
catchments with respect to their sizes, topography, soils, veg-
etation, rocks, hydrological conditions, and anthropogenic
modifications, (c) spatiotemporal scales of the model inputs,
and so forth.

Finally, whereas the model selection has been demon-
strated to influence the adequacy of the simulated runoff,
the author does not intend that the overall message from
this paper be taken in a negative way. The results from this
study are rather to underscore acumen about how hydro-
logical models can be selected to support decisions related
to applications regarding risk-based water-related analyses,

agricultural practices, environmental planning and manage-
ment, and so forth.

For readers interested in implementing the CRD trend
test and/or performing variability analyses using theNAIMas
done in this study, the author has made freely available to the
public an Excel-basedVBA-coded tool named “CRD-NAIM”
which can be downloaded online from https://sites.google
.com/site/conyutha/tools-to-download.

Appendix

A. Structures of Selected
Rainfall-Runoff Models

A.1.The Sacramento (SAC)Model Structure (Adopted from the
RRL [39]). In the SAC model, the soil moisture storage can
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Figure 15: The IHACRES model structure.

be reduced/increased by evaporation/rainfall. The depth at
which the absorbed rainfall fraction will infiltrate depends
on the size and relative wetness of the storages. Runoff is
generated by the fraction of the rainfall in excess of that

absorbed.The runoff is transformed into surface flow through
unit hydrograph. Lateral flows which also occur from the soil
moisture stores are combined with the surface flow to yield
the total streamflow.The rainfall-runoff generation processes
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in the SAC model are controlled by mainly 16 parameters of
which 5 define the size of soil moisture stores, 3 calculate the
rate of lateral outflows, 3 estimate the percolation water from
the upper to the lower soil moisture stores, 2 compute direct
runoff, and 3 determine losses in the system (see Figure 13).

A.2. The AWBM Structure (Adopted from the RRL [39]). The
AWBM for the catchment water balance takes rainfall to
three surface water stores based on their moisture contents.
Each surface water store is considered independently of the
others. Evaporation is subtracted from each of the stores.

Themoisture in excess of the storage capacity becomes either
the surface runoff or recharge into the groundwater. The
baseflow and the surface runoff are routed separately and later
combined into the total flow at the outlet of the catchment.
In total, there are generally 8 parameters which control the
rainfall-runoff generation by the AWBM (see Figure 14).

A.3. The IHACRES Model Structure. The IHACRES model is
characterized by the catchment storage from which rainfall
is lost through evaporation, and the remaining fraction con-
tributes to the effective rainfall. Quick flow and slow flow are
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generated from the effective rainfall. Using unit hydrograph
concept, the catchment is taken as linear reservoirs in series
and/or parallel. This concept is premised on the assumed
linear relationship between effective rainfall and stream flow.
The total flow at the catchment outlet comprises the baseflow
and quick flow in a combined way. The rainfall-runoff
generation processes in the TANK model are controlled by
11 parameters (see Figure 15).

A.4. The SIMHYD Structure (Adopted from the RRL [39]). In
the SIMHYD, rainfall is lost by evaporation and infiltration.
The fraction that infiltrates is transformed into interflow,
groundwater store, and soil moisture store. Interflow and
baseflow are each assumed to follow the soil wetness in a
linear way.The infiltration excess becomes the surface runoff.
The surface runoff and interflow form the quick flow which
can be combined with the baseflow to yield the stream flow.
The SIMHYD model has 9 model parameters for calibration
(see Figure 16).

A.5. The TANKModel Structure (Adopted from the RRL [14]).
TheTANKmodel has four tanks arranged vertically in series.
The rainfall is fed into the top tank. The rainfall is lost by
evaporation from the top tank downwards in a sequential
way. The outlets at the sides of the tanks generate different
components of the total runoff, that is, surface runoff,
intermediate runoff, subbase runoff, and baseflow from the
first through to the fourth tank, respectively. The TANK
model has 18 parameters for calibration (see Figure 17).

B. Parameters of Selected
Rainfall-Runoff Models

B.1. List of Model Parameters after Calibration of SAC,
IHACRES, and AWBM. See Table 6.

B.2. List of Model Parameters after Calibration of TANK and
SIMHYD. See Table 7.
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Table 6

S. number Parameter Unit Value
SACRAMENTO

1 Additional fraction of pervious area
(Adimp) (—) 0.0023

2 Lower Zone Free Water Primary
Maximum (Lzfpm) (mm) 12.987

3 Lower Zone Free Water
Supplemental Maximum (Lzfsm) (m) 24.998

4 Ratio of water in LZFPM (Lzpk) (mm) 0.061
5 Ratio of water in LZFSM (Lzsk) (mm) 0.035

6 Lower Zone Tension Water
Maximum (Lztwm) (mm) 241.28

7 Impervious fraction of the basin
(Pctim) (—) 0.003

8 Minimum proportion of
percolation (Pfree)

(—) 0.658

9 Exponential percolation rate (𝑅exp) (—) 0.661

10 Fraction of water unavailable for
transpiration (Rserv) (—) 0.310

11 Catchment portion that loses water
by evaporation (Sarva) (—) 0.010

12 Fraction of base flow which is
groundwater flow (Side) (—) 0.330

13 Flow volume through porous
material (Ssout) m3/s/km2 0.001

14 Upper Zone Free Water Maximum
(Uzfwm) 1/day 79.728

15 Ratio of water in UZFWM (Uzk) 1/day 0.0103

16 Upper Zone Tension Water
Maximum (Uztwm) 1/day 99.659

17 Factor applied to PBASE (Zperc) (—) 11.479
IHACRES

1 Delay (day) 28.00
2 Recession rate 1 (𝛼(𝑠)) (1/day) −0.888
3 Peak response 1 (𝛽(𝑠)) (—) 0.112
4 Time constant 1 (𝜏(𝑠)) (day) 8.424
5 Volume proportion 1 (V(𝑠)) (∘C) 1.000
6 Mass balance term (𝑐) (—) 0.005

7 Drying rate at reference
temperature (𝑡

𝑤
) (∘C/day) 2.000

8 Temperature dependence of drying
rate (𝑓) (—) 0.000

9 Reference temperature (𝑡ref ) (∘C) 20.00

10 Moisture threshold for producing
flow (𝑙) (mm) 0.000

11 Power on soil moisture (𝑝) (—) 1.000
AWBM

1 Fraction of catchment area for the
first store (𝐴1) (—) 0.634

2 Fraction of catchment area for the
second store (𝐴2) (—) 0.366

3 Base flow index (BFI) (—) 0.629
4 Storage capacity of first store (𝐶1) (mm) 24.961

5 Storage capacity of second store
(𝐶2) (mm) 140.793

6 Storage capacity of third store (𝐶3) (mm) 301.082
7 Base flow recession constant (𝐾base) (day) 0.999

8 Surface flow recession constant
(𝐾surf )

(day) 0.972

Table 7

S. number Parameter Unit Value
TANK

1 Depth below the top outlet of the
first tank (𝐻11) (mm) 407.26

2 Overland runoff from the top outlet
of first tank (𝑎11) (m3/s) 0.0584

3 Overland runoff from the lower
outlet of first tank (𝑎12) (m3/s) 0.0029

4 Intermediate runoff (𝑎21) (m3/s) 0.1308
5 Subbase runoff (𝑎31) (m3/s) 0.9775
6 Base flow (𝑎41) (m3/s) 0.9517
7 Alpha (—) 0.5339

8 Outflow from the bottom of the first
tank (𝑏1) (m3/s) 0.0031

9 Outflow from the bottom of the
second tank (𝑏2) (m3/s) 0.9276

10 Outflow from the bottom of the
third tank (𝑏3) (m3/s) 0.0106

11 Water depth in the first tank (𝐶1) (mm) 90.607
12 Water depth in the second tank (𝐶2) (mm) 78.564
13 Water depth in the third tank (𝐶3) (mm) 48.240
14 Water depth in the fourth tank (𝐶4) (mm) 6.489

15 Depth below the lower outlet of the
first tank (𝐻12) (mm) 146.888

16 Depth below the outlet of the
second tank (𝐻21) (mm) 73.086

17 Depth below the outlet of the third
tank (𝐻31) (mm) 2.4874

18 Depth below the outlet of the fourth
tank (𝐻41) (mm) 5.8069

SIMHYD
1 Baseflow coefficient (—) 0.0107
2 Impervious threshold (—) 1.5412
3 Infiltration coefficient (—) 308.16
4 Infiltration shape (—) 2.8373
5 Interflow coefficient (—) 0.1534
6 Pervious fraction (—) 0.9922
7 Rainfall interception store capacity (mm) 4.9412
8 Recharge coefficient (—) 0.2806
9 Soil moisture store capacity (mm) 440.91
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