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This paper presents an improved gearbox fault diagnosis approach by integrating complementary ensemble empirical mode
decomposition (CEEMD) with permutation entropy (PE). The presented approach identifies faults appearing in a gearbox system
based on PE values calculated from selected intrinsic mode functions (IMFs) of vibration signals decomposed by CEEMD.
Specifically, CEEMD is first used to decompose vibration signals characterizing various defect severities into a series of IMFs.
Then, filtered vibration signals are obtained from appropriate selection of IMFs, and correlation coefficients between the filtered
signal and each IMF are used as the basis for useful IMFs selection. Subsequently, PE values of those selected IMFs are utilized as
input features to a support vectormachine (SVM) classifier for characterizing the defect severity of a gearbox. Case study conducted
on a gearbox system indicates the effectiveness of the proposed approach for identifying the gearbox faults.

1. Introduction

Gears can be considered as significant subassembly in
machines for power or rotation transmission from one shaft
to another. Their fault may cause unexpected breakdown of
the machine systems and lead to significant economic loss
or even personnel casualties [1, 2]. Since structural defect-
caused vibration signals often reflect changes of the dynamic
characteristics related to the gearbox, many researches focus
on transient feature extraction of the vibration signal and
fault recognition of the defective gearboxes using vibration
signal analysis [3]. Nonetheless, a number of factors related to
structural transformation, friction, velocity shear, and strike
affect the vibration-oriented signal study and reduce the
effectiveness of defective diagnosis. Consequently, a number
of conventional linear approaches might not operate well in
detection of dynamic changes [4, 5].

Aiming at avoiding restrictions of conventional tech-
niques, permutation entropy (PE) is used to characterize
vibration signals for the purpose of fault diagnosis. The PE
only uses the order of entropy for signal characterization
and can overcome nonlinear distortion which existed in

the signal. It has been applied in various applications. For
instance, permutation entropy is proved to offer an efficient
evaluation tomonitor rolling bearings [5]. By integrating sup-
port vectormachine (SVM)withmultiscale PE, the operating
condition of rolling bearing can be identified [6, 7]. Another
study combined optimized SVM, ensemble empirical mode
decomposition, and PE to detect and classify motor bearing
faults [8]. The effectiveness of the PE has also been proved
in detecting dynamic changes in rotating machines when
comparing with that of other features, like Lyapunov expo-
nent and fractal dimensions [9]. Furthermore, background
noise which existed in real world applications always disturbs
the result of the fault diagnosis. Therefore, performing noise
reduction in the vibration signals is necessary before the PE
method is executed.

Empirical mode decomposition (EMD), as an approach
of adaptive signal treatment in the field of time frequency
analysis, can decompose a signal into sets of intrinsic mode
functions (IMFs) based on its features [10, 11]. The approach
of EMD could be applied in pretreatment of the signals of
vibration. For instance, a novel approach for extracting fault
feature with combined AR model and EMD algorithm has
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been applied in processing bearing vibration signals [5].
Nonetheless, when the EMD is used to process a signal
with intermittent components, the signal could not be fully
decomposed because of the existence of mode mixture phe-
nomenon [12]. Further developmentwith ensemble empirical
mode decomposition (EEMD) was proposed by Huang et
al. for EMD performance improvement. EEMD becomes
more precise and efficient for decomposition of signals in
comparison with the original EMD by adding noise to the
original signal and continuously calculating the IMF means
[12]. Though the approach of EEMD has efficiently solved
the issue of mode-mixing, it takes lots of time to implement
the large amount of ensemble mean. In other words, the effi-
ciency of algorithm will be decreased. In order to resolve this
issue, the complementary approach of EEMD (CEEMD) has
been put forward [13]. Through complementary integration
of IMFs and both positive and negative added white noises
in the CEEMD, residual of the noises could be extracted out
from the combination of white noises and data.The approach
of CEEMD demonstrates similar effectiveness to that of the
EEMD with improved computational efficiency.

By making full use of characteristics of the PE and
CEEMD, this paper proposes a hybrid approach to diagnose
gearbox faults. The CEEMD is utilized as the preprocessing
to filter signals and extract IMFs that are closely associated
with the filtered signal. Subsequently, PE value of each chosen
IMF would be calculated.The PE value of the chosen IMFs is
utilized as the feature vector to a classifier in which the sup-
port vectormachine (SVM) is applied for identifying gearbox
defect. The remaining parts of this paper are arranged as
follows. Overview of the gearbox fault diagnosis approach is
shown in Section 2. Experimental verification is conducted
on automobile transmission gearbox system in Section 3. Last
but not least, the last section presents the summary and
comment.

2. Theoretical Framework

2.1. Complementary Ensemble EmpiricalModeDecomposition.
CEEMD is developed based upon EEMD. Originally, the
EMD approach deals with a given signal 𝑥

𝑖
(𝑡) into the form

presented in (1) through recursive elimination of the mean of
the lower and upper envelope related to the maximum and
minimum of the signal [14]:

𝑥
𝑖 (

𝑡) =

𝑁

∑

𝑖=1

𝐶
𝑖,𝑁 (𝑡) + 𝑟

𝑖,𝑛 (
𝑡) , (1)

where 𝑁 refers to the number of IMFs, 𝐶
𝑖,𝑁

(𝑡) refers to
the component of IMF which covers a certain frequency
band, and 𝑟

𝑖,𝑛
(𝑡) refers to the mean trend of the signal

residue.TheEMDcan be considered as adaptive local analysis
approach for processing both nonlinear and nonstationary
signals. However, the decomposition of EMD would gener-
ally undergo mixture of modes, which is defined as either
a single IMF covering widely disparate scales or a signal
existing in different IMF components.

Later, Huang et al. have proposed a noise-guided statis-
tical approach to resolve the mode mixture issue, which is
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Figure 1: The simulated signal.

the ensemble empirical mode decomposition. However, the
effect of the additional noise could only be restricted by a
large amount of ensemble mean computation, causing high
computational load.

Complementary ensemble mode decomposition, as an
improved and noise enhanced data analysis approach, has
been developed for reducing computational burden [13]. The
procedure of CEEMD for the signal 𝑥(𝑡) is illustrated in the
following steps.

Step 1. A pair of white Gaussian noises with the same ampli-
tude is added to 𝑥(𝑡). Thus, two signals, 𝑥

1
= 𝑥 + 𝑥

𝑛
and 𝑥

2
=

𝑥 − 𝑥
𝑛
, are generated.

Step 2. Decompose 𝑥
1
and 𝑥

2
by EMD for a number of times;

then IMF
𝑥
1

referring to ensemble means of IMF from 𝑥
1
and

IMF
𝑥
2

referring to those from 𝑥
2
are obtained.

Step 3. The final IMF which is the ensemble of IMF
𝑥
1

and
IMF
𝑥
2

is calculated as the decomposition results of CEEMD
as follows:

IMF =

(IMF
𝑥
1

+ IMF
𝑥
2

)

2

.
(2)

Specifically, a simulated signal 𝑠(𝑡) composed of 𝑠
1
(𝑡),

𝑠
2
(𝑡), and 𝑠

3
(𝑡) has been adopted as an instance. 𝑠

1
(𝑡) is a

Gaussian impulse interference signal, 𝑠
2
(𝑡) is a cosine signal

with the frequency of 500Hz, and 𝑠
3
(𝑡) is a trend term.

Figure 1 illustrates the waveform of the simulated signal and
Figure 2 illustrates the decomposed results by CEEMD.

Through comparing the result in Figure 2 with the signal
waveforms in Figure 1, it is shown that there is no mode
mixture.That is to say, CEEMD is more suitable for the study
of signal.

2.2. Permutation Entropy. PE is a nonlinear dynamic param-
eter that characterizes a signal’s complexity. Based on the



Shock and Vibration 3

IMF 1

IMF 2

IMF 3

IMF 4

−1
0
1

Si
gn

al
 (V

)

−0.5
0

0.5

Si
gn

al
 (V

)

−0.2
0

0.2

Si
gn

al
 (V

)

−5
0
5

Si
gn

al
 (V

)

0.002 0.004 0.006 0.008 0.010

0.002 0.004 0.006 0.008 0.010

0.002 0.004 0.006 0.008 0.010

0.002 0.004 0.006 0.008 0.010
Samples n

Figure 2: The decomposition result by CEEMD.
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Figure 3: Gearbox vibration signals under various operating conditions.

principle of Takens-Maine, the phase space of time series
{𝑦(𝑖), 𝑖 = 1, 2, . . . , 𝑁} can be expressed as

𝑌 (𝑖) = {𝑦 (𝑖) , 𝑦 (𝑖 + 𝜏) , . . . , 𝑦 (𝑖 + (𝑚 − 1) 𝜏)} ,

𝑖 = 1, 2, . . . , 𝑁 − (𝑚 − 1) 𝜏,

(3)

where 𝑚 refers to the embedded dimension, while 𝜏 refers
to the delay of time. Furthermore, 𝑚 sample points of data
contained in every 𝑌(𝑖) could be sorted in an incremental
order as

{𝑦 (𝑖 + (𝑗
1

− 1) 𝜏) ≤ 𝑦 (𝑖 + (𝑗
2

− 1) 𝜏) ≤ ⋅ ⋅ ⋅

≤ 𝑦 (𝑖 + (𝑗
𝑚

− 1) 𝜏)} .

(4)

If 𝑦(𝑖 + (𝑗
1

− 1)𝜏) = 𝑦(𝑖 + (𝑗
2

− 1)𝜏), the original positions
could be classified as 𝑗

1
≤ 𝑗
2
, 𝑦(𝑖+(𝑗

1
−1)𝜏) ≤ 𝑦(𝑖+(𝑗

2
−1)𝜏).

Thus, vector𝑌(𝑖) could be shown in a set of symbols as [15, 16]

𝑇 (𝑙) = (𝑗
1
, 𝑗
2
, . . . , 𝑗

𝑚
) , (5)

where 𝑙 = 1, 2, . . . , 𝑘 and 𝑘 ≤ 𝑚!. 𝑇(𝑙) refers to 𝑚! symbol
permutation which has been shown in 𝑚 number sym-
bols (𝑗

1
, 𝑗
2
, . . . , 𝑗

𝑚
). If 𝑃

1
, 𝑃
2
, . . . , 𝑃

𝑘
are applied in denoting

the possibility distribution of each symbol sequence and

∑
𝐽

𝑗=1
𝑃
𝑗

= 1, the permutation entropy of 𝑚 for the time series
of {𝑦(𝑖), 𝑖 = 1, 2, . . . , 𝑁} could be considered as the entropy of
Shannon for 𝑘 symbol sequence as follows:

𝐻PE (𝑚) = −

𝐽

∑

𝑗=1

𝑃
𝑗
ln𝑃
𝑗
. (6)

If all the symbol sequences appear with the same possibil-
ity distribution as 𝑃

𝑗
= 1/𝑚!, the maximum value of 𝐻PE(𝑚)

could be described as ln(𝑚!). Thus, the permutation entropy
of order 𝑚 can be standardized as

0 ≤ 𝐻PE =

𝐻PE (𝑚)

ln (𝑚!)

≤ 1. (7)

𝐻PE value shows the randomness level of the time series.
A large value of 𝐻PE indicates high randomness of the time
series. On the contrary, a small value of 𝐻PE means the time
series has more regular characteristics.

To demonstrate the validity of the PE algorithm, sample
vibration signals of a gearbox under three different conditions
are shown in Figure 3, and the corresponding single factor
analysis result is shown in Figure 4. Figure 4 shows that defect
severity of the gearbox could be efficiently recognized by the
value of PE.
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2.3. Fault Diagnosis Based on CEEMD and Permutation
Entropy. In this study, a gearbox fault diagnosis method has
been developed using the CEEMD and PE, and Figure 5
shows the flow chart of the method. Particularly, the proce-
dure to implement the proposed fault diagnosis method is as
follows.

Step 1. The sampled vibration signal measured on gearbox is
decomposed using CEEMD.

Step 2. The product 𝑃
𝑗
is calculated using (8), and the

parameter 𝑅𝑃
𝑗
is calculated by (9). The signal is filtered

through comparison of the proposed threshold value and the
parameter 𝑅𝑃

𝑗
[17]. In other words, when 𝑅𝑃

𝑗
⩾ 1, it can be

assured that 𝑃
𝑗
of the 𝑗th IMF can be enhanced for a number

of times in comparison with the mean value of 𝑃
𝑗
which

can be calculated based on the former 𝑗 − 1 IMFs. Thus, the
previous 𝑗 − 1 IMFs with the term of trend can be eliminated

as noise and the residue IMFs can be considered as filtered
signal:

𝑃
𝑗

= 𝐸
𝑗

× 𝑇
𝑗
, (8)

𝑅𝑃
𝑗

=













𝑃
𝑗

− (1/ (𝑗 − 1)) ∑
𝑗−1

𝑖=1
𝑃
𝑗
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(𝑗 ≥ 2) , (9)

where 𝐸
𝑗

= (1/𝑁)∑
𝑁

𝑖=1
[𝐴
𝑗
(𝑖)]

2

refers to the 𝑗th IMF’s energy
density,𝑇

𝑗
= 2𝑁/𝑂

𝑗
refers to themean period of the 𝑗th IMF,

𝑁 represents the length of each IMF,𝐴
𝑗
denotes the 𝑗th IMF’s

amplitude, and 𝑂
𝑗
refers to the overall number of extreme

points in the 𝑗th IMF.

Step 3. The correlation coefficients between each IMF and
filtered signal are calculated by (10). IMFs closely associated
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Figure 6: The automobile transmission gearbox.

−1.5

0

1.5

a
(m
·s−

2
)

200 400 600 800 10000
Samples n

(a) Normal condition

−1.5

0

1.5

a
(m
·s−

2
)

200 400 600 800 10000
Samples n

(b) Light fault condition

−3

−1.5

0

1.5

3

a
(m
·s−

2
)

200 400 600 800 10000
Samples n

(c) Severe fault condition

Figure 7: Vibration signal waveforms of the gearbox under different conditions.

with the filtered signal are chosen to calculate the PE value
[18]:

𝜌
𝑥𝑦

=

∑
𝑁

𝑘=1
𝑥 (𝑘) 𝑦 (𝑘)

[∑
𝑁

𝑘=1
𝑥 (𝑘)
2

∑
𝑁

𝑘=1
𝑦 (𝑘)
2
]

1/2
. (10)

Step 4. The PE values of all the chosen IMFs are calculated
to generate a feature vector which can be utilized to train the
SVM for identification of gearbox operating condition.

Step 5. The PE feature vector from test gearbox vibration
signal is extracted and utilized as input to the well-trained
SVMs. In this way, the result of classification can be realized
[19, 20].

3. Experimental Evaluation

A series of gearbox fault signals acquired from LC5T81 type
transmission were used to verify the effectiveness of the
presented approach.The data was measured from the testbed
presented in Figure 6. One backward speed and five forward
speeds could be load on the tested gearbox. The vibration
signals were collected at 3000 samples per second using the
accelerometer fixed on the gearbox case. The tested gearbox
is operated with the third speed of 1600 rpm and the meshing
frequency of 500Hz.

The waveforms of the vibration signals collected from the
test gearbox under three conditions are shown in Figure 7.
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Table 1: Correlation coefficients between filtered signals and each IMF.

Correlation coefficient
IMF 1 IMF 2 IMF 3 IMF 4 IMF 5 IMF 6 IMF 7 IMF 8 IMF 9 IMF 10

Normal condition 0.5235 0.7648 0.4783 0.4284 0.4036 0.1092 0.0971 −0.0056 −0.0012 −0.0078

Light fault condition 0.8594 0.4635 0.3582 0.2347 0.1921 0.0925 −0.0008 −0.0074 −0.0056 −0.0033

Severe fault condition 0.9219 0.2578 0.2215 0.1937 0.1625 0.0859 −0.0014 0.0008 −0.0015 0.0007

Table 2: Permutation entropy values of IMF 1∼IMF 5.

Permutation entropy value
IMF 1 IMF 2 IMF 3 IMF 4 IMF 5

Normal condition 0.958 1.239 0.782 0.837 0.5036
Light fault condition 0.710 0.859 0.518 0.421 0.8421
Severe fault condition 0.539 0.709 0.876 0.659 0.2625

Table 3: Fault diagnosis using improved approach based on CEEMD and PE.

Fault type Test sample
Classification results

Classification
rate [%] Overall classification rate [%]Normal

condition
Minor fault
condition

Serious fault
condition

Normal
condition 20 20 0 0 100

Light fault
condition 20 1 18 1 90 95

Severe fault
condition 20 0 1 19 95

Table 4: Fault diagnosis using the approach based on CEEMD and ApEn.

Fault type Test sample
Classification results

Classification
rate [%] Overall classification rate [%]Normal

condition
Minor fault
condition

Serious fault
condition

Normal
condition 20 19 0 1 95

Light fault
condition 20 1 17 2 85 88.3

Severe fault
condition 20 1 2 17 85

Figure 7(a) shows the signal under the normal condition,
Figure 7(b) shows the signal under the light fault condition,
and Figure 7(c) shows the signal from the severe fault condi-
tion.

Figure 8 illustrates the decomposed IMFs of these signals
and Table 1 shows the correlation coefficients between the
filtered signal and each of the IMFs.

It can be seen from the table that correlation coefficients
for the first 5 IMFs are all more than 0.1.They can describe the
main features of the signal and thus are selected for further
analysis. According to the main steps of the presented fault
diagnosis approach, the permutation entropy values of these
IMFs are calculated, as listed in Table 2.

In the experiment, 120 feature vectors in total were gained
from three different circumstances. 50% of the feature vectors
were applied into classifier training, while the rest of them
were used in classification of fault. Table 3 shows the results

of classification. It shows that various working conditions
can be efficiently identified. Among all the 60 groups of
feature vectors, 57 groups have been classified correctly, while
3 groups have failed. The overall classification accuracy is up
to 95%.

For purpose of comparison, the values of approximate
entropy (ApEn) from the chosen IMFs are also calculated and
applied in the SVM classifier. Table 4 shows the classification
results. It can be summarized that the method is actually
efficient for differentiating the gearbox faults. Furthermore,
the effectiveness of the approach is compared with that of the
EEMD-PE approach. It can be seen that the rates of classi-
fication in these two approaches are very similar. However,
computational load of the developed approach is lower than
that of the EEMD-PE approach.

To further study the effectiveness of the developed ap-
proach, a 10 × 10-fold cross validation procedure is employed
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Figure 8: The decomposition result by CEEMD under different conditions.
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with the selected 120 samples. The average classification rate
of the 10 × 10-fold cross validation is 94.82%. The result is
close to the classification result in Table 3.

4. Conclusions

This study develops an integrated approach by combining PE
algorithm with CEEMD to diagnose gearbox faults. With the
CEEMD, gearbox vibration signals can be decomposed into
sets of IMFs with low computational load. Then PE method
can efficiently extract fault characteristic from the selected
IMFs. Without mathematical model and the study of the
fault mechanism of the system, this developed approach can
directly recognize gearbox fault severity. Furthermore, the
CEEMD, as a preprocessing step, can be utilized to purify the
signal for PE calculation, leading to increased classification
rate (e.g., 95% for experimental data). It is envisioned that
the approach developed in this study could be used in a wide
range of applications in the field of fault diagnosis.
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