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A proposal for the knee position control design of paraplegic patients with functional electrical stimulation (FES) using control
systems and considering norm-bounded uncertainties is presented. A state-space representation of the knee joint model of the
paraplegic patient with its nonlinearity is also demonstrated. The use of linear matrix inequalities (LMIs) in control systems with
norm-bounded uncertainties for asymptotic stability is analyzed.Themodel was simulated in the Matlab environment.Thematrix
𝐾 of state space feedback was obtained through LMIs.

1. Introduction

The application of electrical stimulation in a person’s muscle,
more particularly in his motor neurons, causes involuntary
contraction of this muscle [1].

In order to obtain a muscle contraction it is necessary
that the amplitude (or intensity) and duration of the electrical
stimulus are inside specific bounds. Then an action potential
(AP) is generated and propagates in both directions of
the nerve fiber. Complex mechanisms of electrochemical
stimuli occur in the neuromuscular structure causing the
process of excitation-contraction coupling responsible for the
movement of the leg [2].

Themodulation of the force by a number of muscle fibers
recruited and the speed of fiber recruitment depends on
several parameters. Some of these parameters include the
proximity of the nerve fiber and the electrode, the electrode
diameter, and the variation of the number of active states of

the fibers due the variation of the amplitude or pulse duration.
As can be seen in Figure 1, the degree of muscle activation,
𝛼, is a nonlinear function. It depends on the duration of the
stimulus, 𝑑 [3].

Muscle is a highly complex nonlinear system, capable of
producing the same output for a variety of inputs. A property
exploited by physiologically activated muscle is its effort to
minimize fatigue [4].

Several researchers have used FES to restore somemotion
activities of persons with injured spinal cord [5]. However,
FES is not yet a regular clinical method, because the amount
of effort involved in using actual stimulation systems still
outweighs the functional benefits they provide.

One serious problem when using FES is that artificially
activated muscles fatigue at a faster rate than those activated
by the natural physiological processes.Due to these problems,
a considerable effort has been directed toward developing
FES systems based on closed loop control.
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Figure 1: Fibers recruitment curve (the black circles are activated
fibers) [3].

Ferrarin and Pedotti developed a dynamic model for the
relationship between electrical stimulus and joint torque [5].
In their paper, the dynamics of the lower limb were repre-
sented by a nonlinear second-order model, which took into
account the gravitational and inertial characteristics of the
anatomical segment as well as the damping and stiffness
properties of the knee joint.

Considering that when the quadriceps is electrically stim-
ulated its response is nonlinear, Teixeira et al. [7] proposed a
nonlinear controller with the aim of controlling the position
of the leg of a paraplegic patient [7]. The authors designed a
controller to vary the knee joint angle using Takagy-Sugeno
fuzzy models. When electrical stimulation is applied to the
quadriceps of a patient, using the controller, the knee joint
angle can be varied from 0

∘ to 30∘.The authors considered the
leg mathematical model proposed by [5], and they showed
that, for the conditions considered in their experiments, a
simple one-pole transfer function was able to model the
relationship between stimulus pulse width and active muscle
torque [8].

This paper presents a proposal for the leg position control
design of paraplegic patients with FES using control systems
with uncertainties bounded in norm and a feedback signal
obtained from an electrogoniometer which is the most
commonly used sensor for measuring the knee joint angle.

Asmentioned in [9] “Complex control systems have been
recently employed to control the communications among
computers, controllers, and sensors due to the enlarging scale
of control systems in nowadays applications.” Nowadays, it is
a very important issue for dynamic systems design.

2. Nonlinear Knee Joint Model

As observed by Gaino et al. in [6], the FES systems based
on open-loop control have some shortcomings related to the
lack of sensitivity to both external disturbances and changes
in internal parameters. On the other hand, FES systems
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Figure 2: Schematic representation of the patient knee joint plant
[6].

based on closed loop control allow real-time measurement
of the motion produced by means of sensors and provide
a stimulation pattern with the appropriate modulation [5].
This allows the optimization of the neurostimulator pulse
width with consequent reduction of muscle fatigue. Further-
more, Gaino et al. demonstrated in [6] that the feedback
signal related to the angle of the knee joint may be obtained
by using electrogoniometers.

The chosen plant is the knee joint, and the open kinematic
chain is made of two rigid segments: the thigh and shank-
foot complex [5], illustrated in Figure 2. It allows us to
study the relationship between the major parameters of input
stimulation and the torque of the knee joint. In other words,
the pulse width with the output represented by the torque of
the active knee joint produced bymuscles is stimulated under
nonisometric conditions [10]. The ankle was fixed using a
plastic ankle foot orthosis (AFO), reducing the number of
plant’s degrees of freedom, causing the length of biarticular
muscles to depend only on the position of the knee joint.The
thigh was fixed to the support table so that only the dynamics
of shank-foot and flexion-extension knee movements were
considered. This model was originally proposed in [5].

The positioning of the knee at a desired angle 𝜃 between
shank and thigh in the sagittal plane is obtained by FES
stimulation of the quadriceps muscles [5, 6]. The angle
between the shank and the vertical axis in the sagittal plane is
𝜃V and the active torque produced by FES in the quadriceps
is𝑀
𝑎
[12].

As in [2, 12], the system’s point of interest is 𝜃V0 = 30
∘,

and the operating point of the system is not the origin. Thus,
according to the stability theory of Lyapunov, it is necessary
to make a change of variables to transfer the new operation
point to the origin.Thus, the state variables of (1) are given by
the following:

(i) 𝑥
1
(𝑡) = Δ𝜃V = 𝜃V − 𝜃V0, where 𝜃V is the angle between

the shank and the vertical axis in the sagittal plane;

(ii) 𝑥
2
= 𝑥̇
1
, the knee joint angular velocity;
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Table 1: Parameter values obtained experimentally in [5, 6, 11] to the shank-foot complex of a paraplegic, 30-year-old patient.

Parameter Value Unit
𝐽 Inertial moment of shank-foot complex 0.362 Kg⋅m2

𝑚 Mass of shank-foot complex 4.37 Kg
𝑙 Distance between knee and the center of the mass of shank-foot complex 23.8 cm
𝐵 Viscous coefficient 0.27 N⋅m⋅s/rad
𝜆 Coefficient of exponential term 41.208 N⋅m/rad
𝐸 Coefficient of exponential term 2.024 rad−1

𝜔 Resting elastic knee angle 2.918 rad
𝜏 Transfer function coefficient (time constant of the pole) 0.951 s
𝐺 Transfer function coefficient (static gain) 42500 N⋅m/s

(iii) 𝑥
3
= Δ𝑀

𝑎
= 𝑀
𝑎
−𝑀
𝑎0
, where𝑀

𝑎0
is the active torque

(on quadriceps muscle of the paraplegic patient) in
the operation point.

The plant parameters with their meanings and values
were obtained experimentally for the case of one patient in
[5, 6] and they are shown in Table 1.

The movement of the knee joint resulting from the
electrical stimulus applied to the quadriceps is represented by
the nonlinear state equation (1), according to Gaino et al. in
[2, 12]:

[

[

𝑥̇
1

𝑥̇
2

𝑥̇
3

]

]

=

[
[
[
[

[

0 1 0

𝑓
21
(𝑥
1
) −

𝐵

𝐽

1

𝐽

0 0 −
1

𝜏

]
]
]
]

]

[

[

𝑥
1

𝑥
2

𝑥
3

]

]

+
[
[

[

0

0

𝐺

𝜏

]
]

]

𝑃
𝑁
. (1)

The nonlinearity of the mathematical model of the plant
comes through the element 𝑎

21
→ 𝑓
21
(𝑥
1
(𝑡)) of the charac-

teristic matrix of the system [2, 6, 11, 12], which is given by

𝑓
21
(𝑥
1
(𝑡)) =

1

𝐽𝑥
1

𝑚𝑔𝑙 sin (𝑥
1
(𝑡) + 𝜃V0) −

1

𝐽𝑥
1

× [𝜆 exp(−𝐸(𝑥
1
(𝑡) + 𝜃V0 +

𝜋

2
))

⋅ (𝑥
1
(𝑡) + 𝜃V0 +

𝜋

2
− 𝑤) +𝑀

𝑎0
] .

(2)

As defined in [2, 6, 11, 12], at the operating point of
interest, the following values for the variables are found: 𝜃V =
𝜃V0 = 30

∘, and the derivatives ̇𝜃V and ̈𝜃V are null. In this case,
the active torque of the knee, 𝑀

𝑎0
, produced by electrical

stimulation, is given by

𝑀
𝑎0

= 𝑚𝑔𝑙 sin (𝜃V0)

+ 𝜆 exp (−𝐸(𝜃V0 +
𝜋

2
)) (𝜃V0 +

𝜋

2
− 𝑤) .

(3)

Considering the values of the parameters of Table 1,
taking 𝑔 = 9.8 (m/s2) and 𝜃V0 = 𝜋/6, and substituting in (3)

the value of 𝑀
𝑎0

= 4.6068 (N ⋅ m) is obtained. In the case
where 𝜃V0 = 𝜋/3 (rad),𝑀

𝑎0
= 8.7653 (N ⋅m).

The new input of the system, 𝑃
𝑁
, is defined from the sys-

tem input, 𝑃, and is known as the pulse width unreferenced
[2, 6, 11, 12]. It is given by

𝑃
𝑁
= 𝑃 −

𝑀
𝑎0

𝐺
. (4)

Since there will only be movement of the paraplegic’s leg
if an electrical stimulation pulse is applied to the skin of the
thigh, that is, 𝑃 > 0, this implies that

𝑃
𝑁
> −

𝑀
𝑎0

𝐺
. (5)

3. Robust Control Systems with
Norm-Bounded Uncertainties

In this section the concept of control systems with norm-
bounded uncertainties is presented and its methodology is
used to design a control angle of the knee joint angle in
paraplegic patients discussed in Section 2.

3.1. Systems Control with Norm-Bounded Uncertainties. Let
the plant be represented by

𝑥̇ = (𝐴 + 𝛿𝐴) 𝑥 + (𝐵 + 𝛿𝐵) 𝑢, (6)

where the uncertainty matrices are given by

𝛿𝐴 = 𝐿Δ𝑅
𝐴
, 𝛿𝐵 = 𝐿Δ𝑅

𝐵
, ΔΔ

𝑇

⪯ 𝐼. (7)

The matrix Δ is the diagonal matrix of the uncertainties,
containing the uncertain parameters normalized on themain
diagonal, while the modulus of each is less than or equal to 1.
The matrices 𝑅

𝐴
and 𝑅

𝐵
are algebraically determined, so that

it suits expressions in (6) for 𝛿𝐴 and 𝛿𝐵 given in (7).
Theorem 1, that follows the ideas of [13], establishes a

sufficient condition for the stability of system (6) in open
loop, with the uncertain matrices given in (7) and 𝑢 = 0, in
other words, null input.
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Theorem 1 (see [13]). The plant (6) is stable for any matrices
𝛿𝐴 and 𝛿𝐵 defined in (7) if there exists a matrix 𝑋 = 𝑋

𝑇 and
a real constant 𝜖 that satisfy the following conditions:

[
𝐴𝑋 + 𝑋𝐴

𝑇

+ 𝜖𝐿𝐿
𝑇

𝑋𝑅
𝑇

𝐴

𝑅
𝐴
𝑋 −𝜖𝐼

] ≺ 0,

𝑋 ≻ 0.

(8)

Consider, now, the plant (6), with the matrices 𝛿𝐴 and 𝛿𝐵
given in (7) and the control law with states feedback:

𝑢 = −𝐾𝑥. (9)

Thus, considering (6), (7), and the control law (9), the
feedback system is defined by

𝑥̇ = [(𝐴 − 𝐵𝐾) + 𝐿Δ (𝑅
𝐴
− 𝑅
𝐵
𝐾)] 𝑥. (10)

Theorem 2, that follows the ideas of [13], below corre-
sponds to Theorem 1 but applies to the closed loop system
and establishes a sufficient condition for the stability of the
feedback system (10), with uncertainmatrices given in (7) and
input 𝑢 = −𝐾𝑥.

Theorem 2 (see [13]). System (10) is stable for anymatrices 𝛿𝐴
and 𝛿𝐵 defined in (7) if there are matrices𝑋 = 𝑋

𝑇 and𝑊 and
a real constant 𝜖 which satisfies the following conditions:

[
𝐴𝑋 + 𝑋𝐴

𝑇

− 𝐵𝑊 −𝑊
𝑇

𝐵
𝑇

+ 𝜖𝐿𝐿
𝑇

𝑋𝑅
𝑇

𝐴

−𝑊
𝑇

𝑅
𝑇

𝐵

𝑅
𝐴
𝑋 − 𝑅

𝐵
𝑊 −𝜖𝐼

] ≺ 0,

(11)

𝑋 ≻ 0. (12)

Based on the solution, the matrix 𝐾 is given by 𝐾 =

𝑊𝑋
−1.

3.2. Systems Control with Output Restriction. According to
Boyd in [14, 15], stability analysis and control design problems
are likely to be described by LMIs, allowing the introduction
of other performance indices in the controller design, for
example, the specification of the transient response by the
decay rate and constraint specifications on the amplitude of
control signals and outputs.

A system that offers robust performance should be able
to maintain its performance even in the presence of pertur-
bations and disturbances, which are called uncertainties.

Considering a known initial condition 𝑥(0) and the LMIs
(14), the output 𝑦(𝑡) = 𝐶𝑥(𝑡) can be subjected to the
constraint (13), for all time 𝑡 ≥ 0:

max 󵄩󵄩󵄩󵄩𝑦(𝑡)
󵄩󵄩󵄩󵄩2

= max√𝑦𝑇 (𝑡) 𝑦 (𝑡) ≤ 𝜆
0
. (13)

Then the asymptotic stability of system (6), with the
output constraint (13), can be carried out by adding the LMIs
(14) to (12), keeping 𝑋 = 𝑋

𝑇

≻ 0, as shown in [16, 17].
Consider

[
1 𝑥 (0)

𝑇

𝑥 (0) 𝑋
] ≥ 0,

[
𝑋 𝑋𝐶

𝑇

𝐶𝑋 𝜆
2

0

𝐼
] ≥ 0.

(14)

3.3. Leg Position Control of the Paraplegic Patient. The control
of the knee paraplegic patient’s position through functional
electrical stimulation applied to the quadriceps muscle (see
Section 2) is described in [5, 7]. The state space equation is
given by (6) with

𝐴 + 𝛿𝐴 =

[
[
[
[

[

0 1 0

𝑓
21
(𝑥
1
) −

𝐵

𝐽

1

𝐽

0 0 −
1

𝜏

]
]
]
]

]

,

𝐵 + 𝛿𝐵 = [0 0
𝐺

𝜏
]

𝑇

.

(15)

As described in Section 2, the function 𝑓
21
(𝑥
1
(𝑡)) is a

nonlinearity of the system (see (2)) such that the range of
parametric uncertainties is

𝑓
21min ≤ 𝑓

21
(𝑥
1
(𝑡)) ≤ 𝑓

21max. (16)

In (2) the 𝑥
1
variable is at the denominator, and the

analysis is more difficult when 𝑥
1
is equal to zero. In order to

solve this inconvenience, Gaino, in [2], analytically expanded
(2) in Taylor series of fifth order. Studying the expanded
equation, in a closed interval of interest, Gaino, in [2], found
that the approximation error becomes practically zero. The
values found by Gaino, considering the operation point 𝜃V0 =
30
∘ and given the range of −𝜋/6 < 𝜃V < 𝜋/6, are 𝑓

21max =

−21.7834 and 𝑓
21min = −36.0086.

The nominal plant is represented by matrices 𝐴 and 𝐵,
given by

𝐴 =

[
[
[
[

[

0 1 0

𝑓
0
−
𝐵

𝐽

1

𝐽

0 0 −
1

𝜏

]
]
]
]

]

,

𝐵 = [0 0
𝐺

𝜏
]

𝑇

,

(17)

where

𝑓
0
=
𝑓
21min + 𝑓

21max
2

. (18)

The matrices 𝛿𝐴 and 𝛿𝐵, in (6), are decomposed accord-
ing to (7):

𝐿 = [0 𝛿𝑓max 0]
𝑇

,

𝑅
𝐴
= [1 0 0] ,

Δ = [𝛿] , 𝑅
𝐵
= [0] ,

(19)

where −1 ≤ 𝛿 ≤ 1 and

𝛿𝑓max =
𝑓
21max − 𝑓

21min
2

. (20)
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Figure 3: Simulation of the dynamic equation (10) of the paraplegic model for the operating point of 30∘, 𝑓
21max = −21.7834 and 𝑓

21min =

−36.0086, for 𝛿 = 0, 𝛿 = 1, and 𝛿 = −1.

4. Results

4.1. Results without considering Output Constraints. Consid-
ering the parameters defined in [5, 7] (see Table 1) for 𝜃

0
= 30
∘

and −30∘ ≤ 𝑥
1
≤ 30
∘, it follows that

𝑥 (0) = [−𝜃V0 0 −𝑀
𝑎0
]
𝑇

= [−0.5236 0 −4.6068]
𝑇

,

𝐴 = [

[

0 1 0

−28.8960 −0.7459 2.7624

0 0 −1.0515

]

]

,

𝐵 = [0 0 44690]
𝑇

,

𝐿 = [0 7.1126 0]
𝑇

,

𝐶 = [1 0 0] .

(21)

Applying the LMIs (11) and (12), using the softwareMatlab
[18], for 𝜃

0
= 30
∘, the state feedback matrix obtained was

𝐾 = [−0.3244 0.0999 0.0605] × 10
−3 (22)

and the constant 𝜖 was

𝜖 = 12.7728. (23)

In Figure 3, the outputs of dynamic equation’s simulations
show that the graphics of the knee angles start at 0∘, corre-
sponding to Δ𝑥

1
= 𝜃V0 = 𝜋/6 = −0.5236 (rad). The graphics

of the angular velocity of the knee start up at 0 (rad/s).
Finally, the graphics of the active torques produced by the
stimuli are initiated at 0 (N ⋅ m) corresponding to Δ𝑥

3
=

𝑀
𝑎0

= 4.6068 (see Section 2). Besides, the transient response
of the dynamic compensator simulation applied to the
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Table 2: Poles of closed loop (10) for 𝜃
0

= 30
∘, for 𝛿 = 0, 𝛿 = 1, and

𝛿 = −1.

𝛿 = 0 𝛿 = 1 𝛿 = −1

−1.3777 ± 𝑗6.1086 −1.6143 ± 𝑗5.4951 −1.2186 ± 𝑗6.6799

−1.7463 −1.2732 −2.0646

dynamic of the paraplegic patient, with 𝑓
21max = −21.7834,

𝑓
21min = −36.0086, and the initial state is shown. Cases can

be studied with other operation points, as shown in [2, 11],
where a linearization result was considered for each operation
point: 𝜋/4 (rad) and 𝜋/3 (rad).

The closed loop poles of system (10) are given in Table 2.
In the first column of the table there are closed loop poles of
the nominal system and in this case 𝛿 = 0. In the other two
columns of the table there are closed loop poles considering
the extreme values of the 𝑓

21
(𝑥
1
), respectively, for 𝛿 = 1 and

𝛿 = −1. In all table columns it is possible to verify that the
real parts of the poles are negative, which means that they are
positioned in the left upper half-plane of the s-plane.

In Figure 3, the knee angle graphic for 𝛿 = 0, the curve
stabilizes at 𝜋/6 = 0.52 (rad) in a time of about 3.5 (s). The
graphic of active torque produced by the electric stimulus
shows that the curve stabilizes at the mark of 4.6 (N ⋅ m) at
3.1 (s).The graph of the angular velocity of the knee stabilizes
in the mark of 0 (rad/s) at 3.2 (s). The pulse width graphic
stabilizes in 1.07 × 10

−4 at about 2.0 (s).

4.2. Results considering Output Constraints. In the second
simulation, applying the LMIs (11), (12), and (14), with 𝜆

0
=

6.8018, using the softwareMatlab [18], for 𝜃
0
= 30
∘, the state

feedback matrix obtained was

𝐾 = [−0.2639 0.0602 0.0305] × 10
−3 (24)

and the constant 𝜖 was

𝜖 = 4.2263. (25)

The closed loop poles of the system are given in Table 3.
In the first column of the table there are the closed loop
poles of the nominal system and in this case 𝛿 = 0. In the
other two columns of the table there are the closed loop poles
considering the extreme values of the𝑓

21
(𝑥
1
), respectively, for

𝛿 = 1 and 𝛿 = −1. In all table columns it is possible to verify
that the real parts of the poles are negative, which means that
they are positioned in the left upper half-plane of the s-plane.

In Figure 4, the knee angle graphic for 𝛿 = 0, the curve
stabilizes at 𝜋/6 = 0.52 (rad) in a time of about 4.0 (s). The
graphic of active torque produced by the electric stimulus
shows that the curve stabilizes at the mark of 4.6 (N ⋅ m) at
4.0 (s).The graph of the angular velocity of the knee stabilizes
in the mark of 0 (rad/s) at 4.0 (s). The pulse width graphic
stabilizes in 1.07 × 10

−4 at about 2.7 (s).
In both designs, no decay rate was specified.
Equation (5) shows that it is necessary that the pulse

width satisfies 𝑃
𝑁

> −𝑀
𝑎0
/𝐺. Actually, any value of 𝑃

𝑁

greater than the ratio −𝑀
𝑎0
/𝐺 satisfies the requirement.

However, the previous relation implies that 𝑃
𝑁

between
−𝑀
𝑎0
/𝐺 and𝑀

𝑎0
/𝐺 satisfies the requirement (see Figure 4).

Table 3: Poles of closed loop (10) for 𝜃
0

= 30
∘, 𝜆
0

= 6.8018, for
𝛿 = 0, 𝛿 = 1, and 𝛿 = −1.

𝛿 = 0 𝛿 = 1 𝛿 = −1

−1.0627 ± 𝑗5.8995 −1.2390 ± 𝑗5.2721 −0.9457 ± 𝑗6.4770

−1.0343 −0.6818 −1.2681

5. Discussions

As can be seen, the plant input is the functional electrical
stimulation pulse applied on the quadricepsmuscle.Theplant
output is the movement of the leg of the paraplegic patient
until an angle allowed by the conditions of the patient. So
the initial objective was achieved: a state feedback matrix,
𝐾, was obtained considering norm-bounded uncertainties,
such that the system in question becomes stable.Thedesigned
controller is able to make the patient’s leg move from the rest
to a desired angle and once the stimulation of the controller
is removed, the leg goes back to the rest situation by gravity.

It was proved that Theorem 1 ensures stability for the
open-loop system, while Theorem 2 ensures the asymptotic
stability for the closed loop system.This fact can be confirmed
by the analysis of Table 3 where it can be seen that the poles
of the plant for different operating points have negative real
parts, which means that they are positioned in the upper left
half-plane of the s-plane.

Along with the study of the stability, graphical results
could have been generated to control the speed of transient
response, specifying a decay rate. It allows a shorter time
recovery, as shown in [2].

As it is clear, a negative pulse width is impractical. Then
restrictions must be imposed on input, as shown in Figure 5,
to prevent the pulse width from reaching zero or negative
values. According to Gaino in [2] with an appropriate
combination of the decay rate and the upper limiting value
for the variation of pulse width one can achieve the increasing
or the decreasing of the control law amplitude.

The resulting simulation outputs shown in Figure 4 are
identical to that obtained by Gaino in [2] in the same
conditions. Here the simulation results were obtained using a
restriction imposed on the output by a factor 𝜆

0
= 6.8018, as

it can be verified in Table 3. As a consequence, the oscillation
was eliminated from the pulse width curve, stabilizing in
values of 𝑃

𝑁
very close to one another in both simulations.

As mentioned by Sanches et al. in [8] “An electric current
with a balanced, biphasic, rectangular waveform with a pulse
width of 220𝜇s was applied to the skin surface of the
volunteer. The signal amplitude was then held constant for 3
seconds and considered a “step pattern” [5]. The pulse ampli-
tude was adjusted to obtain an incomplete knee extension,
reaching a maximum angle of 70∘ with respect to the initial
rest position. The frequency of the signal was 50Hz [5]. For
healthy persons, currents with amplitudes in the range of 60–
80mA are usually used, but in paraplegic patients, currents
can reach 120mA.” As mentioned by Ferrarin and Pedotti
in [5], “In this way the presence of nonlinearity due to the
muscle recruitment threshold and knee joint end stop could
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Figure 4: Simulation of the dynamic equation (10) of the paraplegic model for the operating point of 30∘, 𝑓
21max = −21.7834 and 𝑓

21min =

−36.0086, using bounded output by the factor 𝜆
0

= 6.8018, for 𝛿 = 0, 𝛿 = 1, and 𝛿 = −1.
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Figure 5: Range restriction for the pulse width.

be excluded.” It is less dangerous to apply step patterns than
sinusoidal wave forms.

6. Conclusions

The initial objective was achieved since a state feedback
matrix, 𝐾, considering norm-bounded uncertainties, was
obtained such that the system in question became stable. The
designed controller is able to make the patient’s leg move
from the rest to a desired angle and once the stimulation is
removed, the leg goes back to the rest situation by gravity.

It was proved that Theorem 1 ensures stability for the
open-loop system, while Theorem 2 ensures the asymptotic
stability for the closed loop system. The simulations of
Section 4 show that the curves for the cases where 𝛿 = 0 are
situated between the curves corresponding to the extremes
values of 𝛿, that is, 𝛿 = 1 and 𝛿 = −1, as it was expected.
Table 3 shows that, for all values of 𝛿, the real parts of the poles
are negative, and this indicates that the controller designed is
able to maintain the stability of the plant.
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