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Quantum-inspired evolutionary algorithm (QEA) has been designed by integrating some quantum mechanical principles in the
framework of evolutionary algorithms. They have been successfully employed as a computational technique in solving difficult
optimization problems. It is well known that QEAs provide better balance between exploration and exploitation as compared
to the conventional evolutionary algorithms. The population in QEA is evolved by variation operators, which move the Q-bit
towards an attractor. A modification for improving the performance of QEA was proposed by changing the selection of attractors,
namely, versatile QEA. The improvement attained by versatile QEA over QEA indicates the impact of population structure on
the performance of QEA and motivates further investigation into employing fine-grained model. The QEA with fine-grained
population model (FQEA) is similar to QEA with the exception that every individual is located in a unique position on a two-
dimensional toroidal grid and has four neighbors amongst which it selects its attractor. Further, FQEA does not use migrations,
which is employed by QEAs. This paper empirically investigates the effect of the three different population structures on the
performance of QEA by solving well-known discrete benchmark optimization problems.

1. Introduction

Evolutionary algorithms (EAs) represent a class of compu-
tational techniques, which draw inspiration from nature [1]
and are loosely based on the Darwinian principle of “survival
of the fittest” [2–4]. EAs have been successfully applied in
solving wide variety of real life difficult optimization prob-
lems (i.e., problems which do not have efficient deterministic
algorithms for solving them, yet known) and where near
optimal solutions are acceptable (as EAs do not guarantee
finding optimal solutions). Moreover, EAs are not limited by
the requirements of domain specific information as in the
case of traditional calculus based optimization techniques [5].
EAs, typically, maintain a population of candidate solutions,
which compete for survival from one generation to the next,
and, with the generation of new solutions by employing the
variation operators like crossover, mutation, rotation gate,
and so forth, the population gradually evolves to contain
the optimal or near optimal solutions. EAs are popular due
to their simplicity and ease of implementation. However,

EAs suffer from convergence issues like stagnation, slow
convergence, and premature convergence [6].

Efforts have been made by researchers to overcome the
convergence issues by establishing a better balance between
exploitation and exploration. Quantum-inspired evolution-
ary algorithm (QEA) [7, 8] provides a better balance between
exploration and exploitation during the evolutionary search
process by using probabilistic Q-bit. QEAs have performed
better than classical EAs on many complex problems [9–17].

Some investigations have also been made in using struc-
tured populations to improve the performance of EAs [18].
The structure of a population is classified as follows: pan-
mixia, coarse-grained, and fine-grained models. The QEA
described in [7, 19] has employed a population structured
as coarse-grained model. The performance of this algorithm
has been improved by changing the global update strategy
in [8] and has been named versatile QEA (vQEA). The
modification to convertQEA into vQEAcan be also viewed as
equivalent to changing the population structure from coarse-
grained model in QEA to panmictic in vQEA. The improve-
ment attained by vQEA over QEA indicates the impact of
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Figure 1: Population structures.

population structure on the performance of QEA. This also
motivates investigation for employing fine-grained model
in the population structure of QEA. This paper empirically
evaluates the effect of population structures in QEA by
solving some instances of well-known benchmark problems
like COUNTSAT, 𝑃-PEAKS, and 0-1 knapsack problems.
The paper is further organized as follows. Section 2 briefly
discusses population structures. QEA, vQEA, and FQEA are
presented and their population structure is established in
Section 3. Results and analysis are presented in Section 4.
Section 5 draws conclusions and shows some directions for
further work.

2. Population Structures

The population structures in EAs can be divided into two
broad categories, namely, unstructured and structured [20],
and are shown in Figure 1. The unstructured population
model has beenwidely used in EAs, where a single population
of individuals is evolved by employing variation operators.
The advantage of unstructured population is its conceptual
and implementation simplicity. The dissemination of infor-
mation regarding the best individual is quickest as all the
individuals are connected with all the other individuals. It
works fine for EAs in which diversity can be maintained
by suitably designed variation operators for a given prob-
lem. However, if the search space is highly deceptive and
multimodal, the panmictic population may not be the most
effective model. Structured population models are viable
alternatives to the unstructured model. They have been
primarily developed during efforts to parallelize EAs for
running on multiprocessors hardware [2]. However, they
have also been used with simple EAs (run on monoprocessor
hardware) in place of panmictic population and have been
found to provide better sampling of search space along with
consequent improvement in empirical performance [21].

The structured models can be divided into two main
groups, namely, coarse-grained and fine-grainedmodels.The
coarse-grainedmodel is also known as distributedmodel and
island model. It has multiple panmictic populations, which
evolve in parallel and communicate with each other period-
ically, often exchanging or updating individuals, depending
on the specific strategy.The advantage of island model is that
it encourages niching and also allows slow dissemination of

information across the structured subpopulation evolving in
parallel. Thus, it maintains diversity in overall population to
avoid premature convergence. However, it is known to be
relatively slow in converging to optimal solution.

Fine-grained model is also known as cellular model and
diffusion model. A unique coordinate is assigned to every
individual of the single population in some space, which is
typically a grid of some dimensionality with fixed or cyclic
boundary. Individuals can only interact within a neighbor-
hood, defined by neighborhood topology, through variation
operators.The advantage of cellularmodel is slow diffusion of
information through overlapped small neighborhoods which
helps in exploring the search space by maintaining better
diversity than panmicticmodel.This in turn helps in avoiding
premature convergence [22]. Moreover, it is slower than a
corresponding panmictic model in a given EA but is faster
than a coarse-grained model. It has less communication
overhead than a coarse-grainedmodel as it maintains a single
structured population rather than multiple subpopulations
evolving in parallel. Further, it has been shown that a cellular
model is more effective in complex optimization tasks as
compared to the other models [23, 24].

3. Quantum-Inspired Evolutionary Algorithms

Quantum-inspired proposals are subset of a much larger
attempt to apply quantum models in information process-
ing, which is also referred to as quantum interaction [25].
The potential advantages of parallelism offered by quantum
computing [26] through superposition of basis states in qubit
registers and simultaneous evaluation of all possible repre-
sented states have led to the development of approaches that
suggest ways to integrate aspects of quantum computing with
evolutionary computation [25]. Most types of hybridization
have focused on designing algorithms that would run on
conventional computers and not on quantum computers
and are most appropriately classified as “quantum-inspired.”
The first attempt was made by Narayanan and Moore [27]
to use quantum interpretation for designing a quantum-
inspired genetic algorithm. A number of other types of
hybridization have also been proposed, of which the most
popular is the proposal made by Han and Kim [7], which
uses a Q-bit as the smallest unit of information and a Q-bit
individual as a string ofQ-bits rather than binary, numeric, or
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symbolic representations. Results of experiments show that
QEA performs well, even with a small population, without
premature convergence as compared to the conventional
genetic algorithms. Experimental studies have also been
reported by Han and Kim to identify suitable parameter
settings for the algorithm [19]. Platel et al. [8] have shown
the weaknesses of QEA and proposed a new algorithm, called
versatile quantum-inspired evolutionary algorithm (vQEA).
They claim that vQEA is better than the QEA [7] as it guides
the search towards the best solution found in the last iteration,
which facilitates smoother and more efficient exploration.
This claim is supported by experimental evaluations.

A qubit is the smallest information element in a quantum
computer and is quantum analog of classical bit.The classical
bit can be either in state “zero” or in state “one” whereas
a quantum bit can be in a superposition of basis states in
the quantum system. It is represented by a vector in Hilbert
space with |0⟩ and |1⟩ being the basis states. The qubit can be
represented by vector |𝜓⟩, which is given by

󵄨󵄨󵄨󵄨𝜓⟩ = 𝛼 |0⟩ + 𝛽 |1⟩ , (1)

where |𝛼|2 and |𝛽|2 are the probability amplitudes of qubit
to be in state |0⟩ and |1⟩, respectively, and should satisfy the
following condition:

|𝛼|
2
+
󵄨󵄨󵄨󵄨𝛽
󵄨󵄨󵄨󵄨

2

= 1. (2)

The QEA proposed in [7, 19] primarily hybridizes the super-
position and measurement principles of quantum mechan-
ics in evolutionary computing framework by implementing
qubit as Q-bit, which is essentially a probabilistic bit, and
stores 𝛼 and 𝛽 values. A Q-bit string acts as the genotype of
an individual and the binary bit string formed by collapsing
the Q-bit forms the phenotype of the individual. A Q-bit
is modified by using quantum gates or operators, which
are also unitary in nature, as restricted by the postulates
of linear quantum mechanics [26]. The quantum gates are
implemented in QEA as unitary matrix [7]. A quantum gate
known as rotation gate has been employed in [19] and it
updates a Q-bit in the following manner:
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where 𝛼𝑡+1
𝑖

and 𝛽𝑡+1
𝑖

denote probabilities of 𝑖th Q-bit in (𝑡 +
1)th iteration. Δ𝜃

𝑖
is the angle of rotation. It acts as the main

variation operator that rotates Q-bit strings to obtain good
candidate solutions for the next generation. It also requires
an attractor [8] towards which the Q-bit will be rotated. It
further takes into account the relative current fitness level
of the individual and the attractor and also their binary
bit values for determining the magnitude and direction of
rotation. The selection of an attractor is determined by the
population model employed in a QEA. A close scrutiny of
the architecture of QEAs designed in [7, 8, 19] reveal that
attractors are the only mechanism available for interaction
between the individuals.

The QEA in [7, 19] divides the population into local
groups and implements two types ofmigrations, namely, local

and global. In local migration, the best solution within the
group is used as the attractor, whereas, in case of global
migration, the global best solution is used as the attractor.
The migration periods and size of local group are design
parameters and have to be chosen appropriately for the
problem being solved.

The quantum-inspired evolutionary algorithm is shown
in Algorithm 1 [7, 8].

In step (a), Q(t) containing Q-bit strings for all the
individuals are initialized randomly. In step (b), the binary
solutions in 𝑃(0) are constructed by measuring the states
of 𝑄(0). The process of measuring or collapsing Q-bit is
performed by generating a random number between 0 and
1 and comparing it with |𝛼|2. If the random number is less
than |𝛼|2, then the Q-bit collapses to 0 or else to 1 and this
value is assigned to the corresponding binary bit. In step
(c), each binary solution is evaluated to give a measure of
its fitness. In step (d), the initial solutions are then stored
for each individual into 𝐵(0). In step (e), the initial best
solution for each group, 𝐺

𝑗
, is then selected and stored into

respective 𝐺𝐵
𝑗
(0). In step (f), the initial global best solution,

𝑏, is then selected amongst 𝐺𝐵
𝑗
(0). In step (g), the attractors

are selected for each individual according to the strategy
decided by migration criteria. In case of local migration, the
group best, 𝐺𝐵

𝑗
(𝑡), is used as the attractor whereas, in case

of global migration, global best, 𝑏, is used. In step (h), Q-bit
individuals in𝑄(𝑡) are updated by applying Q-gates by taking
into account 𝐴𝑅(𝑡) and 𝑃(𝑡). The quantum rotation gate has
been used as the variation operator. In steps (i) and (j), the
binary solutions in 𝑃(𝑡) are formed by observing the states of
𝑄(𝑡 − 1) as in step (c), and each binary solution is evaluated
for the fitness value. In step (k), the best solutions among
𝐵(𝑡 − 1) and 𝑃(𝑡) are selected and stored into 𝐵(𝑡). In step (l),
the best solution for each group, 𝐺

𝑗
, is then selected amongst

𝐺𝐵
𝑗
(𝑡 − 1) and 𝐵(𝑡) and stored into respective 𝐺𝐵

𝑗
(𝑡). In

step (m), the global best solution, 𝑏, is then selected amongst
𝐺𝐵
𝑗
(𝑡).
It is suggested that QEA designed in [7] should have

population divided equally in 5 groups, where attractors in
each group are individuals with best fitness. There is a fixed
global migration cycle, at the end of which the attractors are
selected as the individual with the best fitness in the entire
population. Thus, upon comparing the population structure
of QEA in [7, 19] with coarse-grained model, the groups
are islands of subpopulation, which interact with each other
during global migration that occurs after fixed number of
generations. The vQEA [8] does away with the local groups
by making global migration in every generation; thus, the
population model is now panmictic and the interaction is
taking place between every individual in every generation.
Thus, the QEA with panmictic population model is referred
to as PQEA and the QEA with coarse-grained population
structure is referred to as CQEA.

The QEA with fine-grained population model, FQEA,
has all the operators and strategies similar to those used in
CQEA and PQEA except for the population structure and the
neighborhood topology. The fine-grained population model
does not have local groups. Every individual is located in
a unique position on a two-dimensional toroidal grid as
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𝑆POP: Size of the population that is, number of individuals.
𝑆GRP: Size of the Group that is, population is divided in groups.
𝑆PB: Size of the Problem being solved that is, number of variables.
𝑡: Generation Counter.
𝑞
𝑘
: 𝑘th 𝑄-bit that stores the value of their 𝛼 and 𝛽.

𝑄
𝑖
: 𝑖th Quantum Individual comprising of their 𝑞

𝑘
, where 𝑘 = 1, . . . , 𝑆PB.

𝑄(𝑡): Quantum Register that comprises of all the Quantum individuals, 𝑄
𝑖
, where 𝑖 = 1, . . . , 𝑆POP.

𝑝
𝑘
: 𝑘th binary bit that stores the value of 0 or 1 formed by collapsing corresponding 𝑞

𝑘
.

𝑃
𝑖
: 𝑖th Binary Individual comprising of their 𝑝

𝑘
, where 𝑘 = 1, . . . , 𝑆PB.

𝑃(𝑡): Binary Register that comprises of all the Binary individuals, 𝑃
𝑖
, where 𝑖 = 1, . . . , 𝑆POP.

𝐵(𝑡): stores the best solution of all the Binary individuals, 𝑃
𝑖
, where 𝑖 = 1, . . . , 𝑆POP.

𝐺𝐵
𝑗
(𝑡): stores the Best solution of Group, 𝐺

𝑗
, in the current (𝑡th) generation.

AR(𝑡): Attractor Register that stores the attractor individual for every 𝑄
𝑖
, where 𝑖 = 1, . . . , 𝑆POP.

𝑏: current Global Best Solution.
begin

t = 0; assign SPOP, SGRP, SPB;

(a) initialize Q(t);

(b) make P(t) by observing the states of Q(t);

(c) evaluate P(t);

(d) store the best solutions among P(t) into B(t);

(e) stores the best solution in each Group, Gj, into respective GBj(t), j = 1,. . .,SPOP/SGRP;

(f) store the best solution b amongst GBj(t);

while (termination condition is not met) do
begin
t = t + 1;

(g) select AR(t) according to migration condition;

(h) update Q(t−1) according to P(t−1) and AR(t) using Q-gates;

(i) make P(t) by observing the states of Q(t);

(j) evaluate P(t);

(k) store the best solutions among P(t) and B(t−1) into B(t);

(l) store the best solution in each Group, Gj, and GBj(t−1) into GBj(t) respectively,

j = 1,. . .,SPOP/SGRP;

(m) store the best solution b amongst GBj(t);

end
end

Algorithm 1

(a) Von-Neumann topology (b) Von-Neumann topology on two-
dimensional grid

Figure 2: Details of fine-grained population structure.

shown in Figure 2, which is the most common topology
in fine-grained model. The size of the grid is “𝐴 cross 𝐵,”
where “𝐴” is the number of rows and “𝐵” is the number of
columns. The neighborhood on the grid is defined by Von-
Neumann topology, which has five individuals, that is, the

current individual and its immediate north, east, west, and
south neighbors. Thus, it is also called NEWS or linear 5 (L5)
neighborhood topology. The neighborhood is kept static in
the current work so it is computed only once during a single
run.
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𝑆POP: Size of the population that is, number of individuals.
𝑆PB: Size of the Problem being solved that is, number of variables.
𝐴: Number of Rows
𝐵: Number of Columns
𝑡: Generation Counter.
𝑞
𝑘
: 𝑘th 𝑄-bit that stores the value of their 𝛼 and 𝛽.

𝑄
𝑖
: 𝑖th Quantum Individual comprising of their 𝑞

𝑘
, where 𝑘 = 1, . . . , 𝑆PB.

𝑄(𝑡): Quantum Register that comprises of all the Quantum individuals, 𝑄
𝑖
, where 𝑖 = 1, . . . , 𝑆POP.

𝑝
𝑘
: 𝑘th binary bit that stores the value of 0 or 1 formed by collapsing corresponding 𝑞

𝑘
.

𝑃
𝑖
: 𝑖th Binary Individual comprising of their 𝑝

𝑘
, where 𝑘 = 1, . . . , 𝑆PB.

𝑃(𝑡): Binary Register that comprises of all the Binary individuals, 𝑃
𝑖
, where 𝑖 = 1, . . . , 𝑆POP.

𝐵(𝑡): stores the best solution of all the Binary individuals, 𝑃
𝑖
, where 𝑖 = 1, . . . , 𝑆POP.

AR(𝑡): Attractor Register that stores the attractor individual for every 𝑄
𝑖
, where 𝑖 = 1, . . . , 𝑆POP.

𝑏: current Global Best Solution.
NL: List of neighbors of all the individuals, 𝑄

𝑖
, where 𝑖 = 1, . . . , 𝑆POP.

Begin
t = 0; assign SPOP, SPB, A, B;

(a) initialize Q(t);

(b) make P(t) by observing the states of Q(t);

(c) evaluate P(t);

(d) store the best solutions among P(t) into B(t);

(e) compute NL;

(f) store the best solution b amongst B(t);

while (termination condition is not met) do
begin
t = t + 1;

(g) select AR(t);

(h) update Q(t−1) according to P(t−1) and AR(t) using Q-gates;

(i) make P(t) by observing the states of Q(t);

(j) evaluate P(t);

(k) store the best solutions among P(t) and B(t−1) into B(t);

(l) stores the best solution b amongst B(t);

end
end

Algorithm 2

The steps in FQEA are shown in Algorithm 2 [7, 8].
The steps (a) to (d) are the same as those for the QEA

described earlier. In step (e), the neighborhood list NL is
computed for each individual in the population. In step (f),
the initial global best solution, 𝑏, is then selected amongst
𝐵(0). In step (g), the attractors are selected for each individual
by selecting the fittest neighbor from the four neighbors listed
in the neighborhood list, NL, of each individual.The steps (h)
to (k) are the same as those for the QEA described earlier. In
step (l), the global best solution, 𝑏, is then selected amongst
𝐵(𝑡). Further, there are no local or global migrations as well
as local isolated groups in FQEA.

The computation of neighborhood list, NL, is an addi-
tional component in FQEA as compared to the QEAs. The
neighborhood list, NL, is computed only once during a single
run of FQEA, so the overhead involved in computation of the
neighborhood is dependent on the population size, 𝑆POP, and
the number of neighbors of each individual in the population
and is independent of the size of the optimization problem
being solved and the number of generations executed in a run
of FQEA.

The implementation of selection of attractors for all the
individuals is different for the three QEAs. It is the simplest

and cheapest for PQEA as the global best solution, 𝑏, is the
attractor for all the individuals. The selection of attractors
is dependent on the local group size and the population
size in CQEA whereas, in FQEA, it is dependent on the
neighborhood size and the population size, so if the local
group size and the neighborhood size are equal along with
the population size in CQEA and FQEA, then the selection
of attractors is equally expensive in both CQEA and FQEA.
The rest of the functions has the same implementation in all
the QEAs and is equally expensive.

4. Testing, Results, and Analysis

The testing has been performed to evaluate the effect of all
the three populationmodels onQEA, namely, coarse-grained
QEA (CQEA), panmictic QEA (PQEA), and fine-grained
QEA (FQEA) on discrete optimization problems.The testing
is performed with equivalent parameter setting for all the
three algorithms so that a fair comparison of the impact of
three population structures on the performance of QEA can
be made statistically. An important point to note here is that
the parameters suggested in [7, 8, 17] especially 𝜃

1
to 𝜃
8
have

been mostly used as they all use the same variation operator
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Table 1: Parameter setting for PQEA, CQEA, and FQEA.

Parameters PQEA CQEA FQEA
Population size 50 50 50
𝜃
1
to 𝜃
8

0, 0, 0.01𝜋, 0, −0.01𝜋, 0, 0, 0, respectively
Number of observations 1 1 1
Local group size N.A. 5 N.A.
Local migration period (generations) N.A. 1 N.A.
Global migration period (generations) 1 100 N.A.
Toroidal grid size N.A. N.A. 5 cross 10
Neighborhood topology N.A. N.A. Von-Neumann
Neighborhood size N.A. N.A. 5
Stopping criterion (generations) Problem specific

and our main motive has been to determine the effect of
different population structures, keeping all the other factors
simple and similar.

The testing is performed on thirty-eight instances of
well-known diverse problems, namely, COUNTSAT (nine
instances), 𝑃-PEAKS (five instances), and 0-1 knapsack
problems (eight instances each for three different profit and
weight distributions). COUNTSAT and 𝑃-PEAKS problem
instances have been selected as their optimal values are
known; thus, it becomes easier to empirically evaluate the
performance of algorithms. 0-1 knapsack problems have
been selected as they have several practical applications. The
problem instances used in testing of the QEAs are generally
large and difficult and are explained in detail in respective
Sections 4.1 to 4.3.

The parameters used for all the three algorithms in all the
problems are given in Table 1. A population size of fifty and
number of observations per Q-bit as one in each generation
have been used in all the three algorithms. The value of 𝜃

1
to

𝜃
8
is the same for all the three QEAs. The local group size is

five, local migration period is one iteration, and the global
migration period is 100 generations for CQEA. The global
migration period is one in PQEA.The toroidal grid size of “5
cross 10” with Von-Neumann topology having neighborhood
size of five individuals is used in FQEA.The toroidal grid size
of “5 cross 10” has been used as the population size is five.The
stopping criterion is the maximum number of permissible
generations, which is problem specific.

4.1. COUNSATProblem [18]. It is an instance of theMAXSAT
problem. In COUNTSAT, the value of a given solution is
the number of satisfied clauses (among all the possible Horn
clauses of three variables) by an input composed of 𝑛 Boolean
variables. It is easy to check that the optimum is obtained
when the value of all the variables is 1; that is, 𝑠 = 𝑛. In this
study, nine different instances have been considered with 𝑛 =
20, 50, 100, 150, 200, 400, 600, 800, and 1000 variables, and,
thus, the value of the optimal solution varies from 6860 to
997003000 as given by

𝑓COUNTSAT (𝑠) = 𝑠 + 𝑛 ⋅ (𝑛 − 1) ⋅ (𝑛 − 2) − 2 ⋅ (𝑛 − 2)

⋅ (
𝑠

2
) + 6 ⋅ (

𝑠

3
)

56
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62

64

66

68

70
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Fi
tn
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s v
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2

Figure 3: COUNTSAT function with 𝑛 being 20.

For (𝑛 = 20) = 𝑠 + 6840 − 18 ⋅ 𝑠 ⋅ (𝑠 − 1) + 𝑠 ⋅ (𝑠 − 1)

⋅ (𝑠 − 2)

For (𝑛 = 1000) = 𝑠 + 997002000 − 998 ⋅ 𝑠 ⋅ (𝑠 − 1) + 𝑠

⋅ (𝑠 − 1) ⋅ (𝑠 − 2) .

(4)

The COUNTSAT function is extracted from MAXSAT
with the objective of being very difficult to be solved by
evolutionary algorithms [28]. The variables are randomly
assigned values, following a uniform distribution, and so
will have approximately 𝑛/2 ones. Then, the local changes
decreasing the number of oneswill lead to better results, while
local changes increasing the number of ones decrease the
fitness as shown in Figures 3 and 4. Hence, it is expected that
EAs would quickly converge to all-zero and have difficulties
in reaching the all-one string.

The results of testing of all the three algorithms on
nine COUNTSAT problem instances have been presented in
Table 2. A total of thirty independent runs of each algorithm
were executed and the Best, Worst, Average, Median, %
success runs, that is, number of runs in which an optimum
solution was reached, and standard deviation (Std) of the
fitness alongwith the average number of function evaluations
(NFE) were recorded. The maximum number of generations
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Table 2: Comparative study between PQEA, CQEA, and FQEA using statistical results on COUNTSAT problem instances.

Problem size
(𝑛) Statistic Best Worst Average Median % success

runs Std. Average NFE

20
PQEA 6860 6841 6857 6860 83.3 7.2 9091.7
CQEA 6860 6860 6860 6860 100.0 0.0 1151.7
FQEA 6860 6860 6860 6860 100.0 0.0 1138.3

50
PQEA 117650 117601 117639 117650 76.7 21.1 14256.7
CQEA 117650 117650 117650 117650 100.0 0.0 4906.7
FQEA 117650 117650 117650 117650 100.0 0.0 4488.3

100
PQEA 970300 970201 970270.3 970300 70.0 46.1 20268.3
CQEA 970300 970300 970300 970300 100.0 0.0 10461.7
FQEA 970300 970201 970296.7 970300 96.7 18.1 10650.0

150
PQEA 3307950 3307801 3307890.4 3307950 60.0 74.2 27303.3
CQEA 3307950 3307801 3307925.2 3307950 83.3 56.5 20863.3
FQEA 3307950 3307950 3307950 3307950 100.0 0.0 13345.0

200
PQEA 7880600 7880401 7880520.4 7880600 60.0 99.2 29723.3
CQEA 7880600 7880401 7880580.1 7880600 90.0 60.7 22300.0
FQEA 7880600 7880600 7880600 7880600 100.0 0.0 16605.0

400
PQEA 63521200 62847292 63425153 63521200 76.7 189932.2 41148.3
CQEA 63521200 63258981 63512459 63521200 96.7 47874.4 34483.3
FQEA 63521200 63521200 63521200 63521200 100.0 0.0 27968.3

600
PQEA 214921800 209608152 212033464 211953199 10.0 1407346.4 49963.3
CQEA 214921800 209881401 213598979 214385692 36.7 1524388.0 48731.7
FQEA 214921800 214921800 214921800 214921800 100.0 0.0 37201.7

800
PQEA 499089026 488046846 493854763 494709763 0.0 2850315.6 50050.0
CQEA 508810386 498371881 504276211 504764499 0.0 2502890.2 50050.0
FQEA 510082400 510082400 510082400 510082400 100.0 0.0 45186.7

1000
PQEA 964320421 937999876 951762456 953408640 0.0 5614429.9 50050.0
CQEA 979662826 948748605 969462614 972362722 0.0 8750510.8 50050.0
FQEA 997003000 994023961 995543257 996005997 6.7 770362.2 50010.0
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Figure 4: COUNTSAT function with 𝑛 being 1000.

was one thousand. All the three algorithms were able to reach
the global maxima till problem size, 𝑛, being 600; however, in
problem sizes, 𝑛, being 800 and 1000, only FQEA could reach

the global optima. The performance of PQEA is inferior to
the other two algorithms on all the statistical parameters.The
performance of CQEA is as good as FQEA for problem sizes
20 and 50 on all the statistical parameters except for average
NFE, which indicates that FQEA is faster than CQEA. CQEA
has better success rate than FQEA in the problem size, 𝑛,
being 100, but FQEA has performed better than CQEA on
the remaining six problem instances as it has better success
rate.

Figures 5, 6, 7, 8, 9, 10, 11, 12, and 13 show relative
convergence rate of the QEAs on the COUNTSAT problem
instances.The convergence graphs have been plotted between
the number of generations and the objective function values
of the three QEAs. The rate of convergence of PQEA is
fastest during the early part of the search in all the problem
instances. In fact, for small size problem instances, PQEA
is the fastest QEA. However, as the problem size increases,
the performance of PQEA deteriorates and FQEA, which
was slowest on the small size problem instances, emerges
as the fastest amongst all the QEAs. CQEA has been
faster than FQEA on small size problem instances and has
also outperformed PQEAs on large size problem instances.
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Figure 5: Convergence graph of PQEA, CQEA, and FQEA on
COUNTSAT problem size, 𝑛, being 20.
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Figure 6: Convergence graph of PQEA, CQEA, and FQEA on
COUNTSAT problem size, 𝑛, being 50.

The reason for poor performance of FQEA initially on
small size problem instances is the slowest dispersion of
information as compared to PQEA and CQEA, which, in
fact, enables FQEA to explore the solution space more
comprehensively before converging to the global optimum.
In fact, slow dispersion of information helps FQEA to reach
the global optimum in large size problem instances as it
does not get trapped in the local optimum. The dispersion
of information is quickest in the case of PQEA, which helps
it to outperform both CQEA and FQEA, but also causes it
to get trapped in the local optimum, especially in large size
problem instances. The dispersion of information is slower
in CQEA as compared to PQEA so it has found global
optimum in more numbers of problem instances. Overall,
FQEA has performed better than PQEA and CQEA on all
the instances of COUNSAT problems. Therefore, the slow
rate of dispersion of information in the fine-grained model
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Figure 7: Convergence graph of PQEA, CQEA, and FQEA on
COUNTSAT problem size, 𝑛, being 100.
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Figure 8: Convergence graph of PQEA, CQEA, and FQEA on
COUNTSAT problem size, 𝑛, being 150.

had helped FQEA to perform better than the QEAs with the
other two population models in the COUNTSAT problem
instances.

4.2. 𝑃-PEAKS Problem [18, 29]. It is a multimodal problem
generator, which can easily create problem instances, which
have tunable degree of difficulty. The advantage of using a
problem generator is that it removes the opportunity to hand-
tune algorithms to a particular problem, thus, allowing a
large fairness while comparing the performance of different
algorithms or different instances of the same algorithm. It
helps in evaluating the algorithms on a large number of
random problem instances, so that the predictive power of
the results for the problem class as a whole is very high [29].

The idea of 𝑃-PEAKS is to generate “𝑃” random N-bit
strings that represent the location of 𝑃 peaks in the search
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Figure 9: Convergence graph of PQEA, CQEA, and FQEA on
COUNTSAT problem size, 𝑛, being 200.
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Figure 10: Convergence graph of PQEA, CQEA, and FQEA on
COUNTSAT problem size, 𝑛, being 400.

space.The fitness value of a string, 𝑥⃗, is the hamming distance
between 𝑥⃗ and the closest peak, Peak

𝑖
, divided by 𝑁 (as

shown in (5)). Using a higher (or lower) number of peaks, we
obtain a problemwithmore (or less) degree ofmultimodality.
The maximum fitness value for the problem instances is 1.0.
Consider

𝑓
𝑃-PEAKS( ⃗𝑥) =

1

𝑁
max
1≤𝑖≤𝑝

{𝑁 − Hamming 𝐷(𝑥⃗,Peak
𝑖
)} . (5)

The results of testing of all three algorithms on 𝑃-PEAKS
problem instances with 𝑁 being 1000 and number of peaks,
𝑃, being 20, 50, 100, 500, and 1000 have been presented in
Table 3. A total of thirty independent runs of each algorithm
were executed and the Best, Worst, Average, and Median, %
success runs, that is, number of runs in which an optimum
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Figure 11: Convergence graph of PQEA, CQEA, and FQEA on
COUNTSAT problem size, 𝑛, being 600.
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Figure 12: Convergence graph of PQEA, CQEA, and FQEA on
COUNTSAT problem size, 𝑛, being 800.

solution was reached, and standard deviation (Std) of the
fitness along with average number of function evaluations
(NFE) were recorded. The maximum number of generations
was three thousand. PQEA was quickest in the beginning
of the search process but could not reach a global optimum
even in a single run of any problem instance. CQEAwas slow
in the beginning but performed better than PQEA. FQEA
outperformed all the other QEAs as it was able to reach a
global optimum in all the runs of all the problem instances.

Figures 14, 15, 16, 17, and 18 show relative convergence
rate of the QEAs for 𝑃-PEAKS problem instances. The
convergence graphs have been plotted between the number
of generations and the objective function values of the three
QEAs. The rate of convergence of PQEA is fastest during
the early part of the search in all the five problem instances;
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Table 3: Comparative study between PQEA, CQEA, and FQEA using statistical results on 𝑃-PEAKS problem instances with size𝑁 as 1000.

Number of
peaks (𝑃) Algo Best Worst Average Median % success

runs Std Average NFE

20
PQEA 0.982 0.958 0.970 0.971 0.0 0.006 150050
CQEA 1.000 0.977 0.988 0.987 6.7 0.007 149448
FQEA 1.000 1.000 1.000 1.000 100.0 0.000 82393

50
PQEA 0.986 0.956 0.970 0.969 0.0 0.009 150050
CQEA 0.998 0.956 0.980 0.981 0.0 0.009 150050
FQEA 1.000 1.000 1.000 1.000 100.0 0.000 84097

100
PQEA 0.986 0.952 0.970 0.972 0.0 0.008 150050
CQEA 0.999 0.971 0.985 0.984 0.0 0.007 150050
FQEA 1.000 1.000 1.000 1.000 100.0 0.000 93028

500
PQEA 0.981 0.954 0.968 0.968 0.0 0.007 150050
CQEA 0.994 0.966 0.982 0.983 0.0 0.007 150050
FQEA 1.000 1.000 1.000 1.000 100.0 0.000 95803

1000
PQEA 0.977 0.948 0.965 0.966 0.0 0.008 150050
CQEA 0.994 0.969 0.982 0.984 0.0 0.006 150050
FQEA 1.000 1.000 1.000 1.000 100.0 0.000 94495
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Figure 13: Convergence graph of PQEA, CQEA, and FQEA on
COUNTSAT problem size, 𝑛, being 1000.

however, PQEA could not reach a global optimum even in
a single run of any instance. CQEA has been the slowest of
the three QEAs but has performed better than PQEA. FQEA
is faster than CQEA and has also outperformed PQEA and
CQEA on all the five problem instances. The reason for poor
performance of FQEA initially is due to the slow dispersion
of information as compared to PQEA, which enables it
to explore the solution space more comprehensively before
converging to a global optimum. In fact, slow dispersion of
information helps FQEA to reach a global optimum in large
size problem instances as it does not get trapped in a local
optimum. The dispersion of information is the quickest in
case of PQEA,which helps it to outperformCQEAand FQEA
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Figure 14: Convergence graph of PQEA, CQEA, and FQEA on 𝑃-
PEAKS problem of size, 𝑁, being 1000 and number of peaks, 𝑃,
being 20.

in the initial part of search process but also causes it to get
trapped in a local optimum. The dispersion of information
is slower in CQEA as compared to PQEA so it has found a
global optimum in some runs of a problem instance. Overall,
FQEA has performed better than PQEA and CQEA on all the
instances of 𝑃-PEAKS problems. Therefore, the slow rate of
dispersion of information in fine-grained model had helped
FQEA to perform better than the other population models in
𝑃-PEAKS problem instances.

4.3. 0-1 Knapsack Problem [30]. The 0-1 knapsack problem is
a profit maximization problem, in which there are 𝑀 items
of different profit and weight available for selection [30].
The selection is made to maximize the profit while keeping
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Figure 15: Convergence graph of PQEA, CQEA, and FQEA on 𝑃-
PEAKS problem of size, 𝑁, being 1000 and number of peaks, 𝑃,
being 50.
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Figure 16: Convergence graph of PQEA, CQEA, and FQEA on 𝑃-
PEAKS problem of size, 𝑁, being 1000 and number of peaks, 𝑃,
being 100.

the weight of the selected items below the capacity of the
knapsack. It is formulated as follows.

Given a set of𝑀 items and a knapsack of capacity𝐶, select
a subset of the items to maximize the profit 𝑓(𝑥):

𝑓 (𝑥) = ∑ pt
𝑖
∗ 𝑥
𝑖

(6)

subject to the condition

∑wt
𝑖
∗ 𝑥
𝑖
< 𝐶, (7)

where𝑥
𝑖
= (𝑥
1
, . . . , 𝑥

𝑀
),𝑥
𝑖
is 0 or 1, pt

𝑖
is the profit of 𝑖th item,

and wt
𝑖
is the weight of 𝑖th item. If the 𝑖th item is selected for

the knapsack, 𝑥
𝑖
= 1; else 𝑥

𝑖
= 0 and 𝑖 = 1, . . . ,𝑀.

Three groups of randomly generated instances of difficult
knapsack problems (KP) have been constructed to test the
QEAs. In all instances the weights are uniformly distributed
in a given interval. The profits are expressed as a function
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Figure 17: Convergence graph of PQEA, CQEA, and FQEA on 𝑃-
PEAKS problem of size, 𝑁, being 1000 and number of peaks, 𝑃,
being 500.
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Figure 18: Convergence graph of PQEA, CQEA, and FQEA on 𝑃-
PEAKS problem of size, 𝑁, being 1000 and number of peaks, 𝑃,
being 1000.

of the weights, yielding the specific properties of each group.
Eight different problem instances for each group of KP have
been constructed. Four different capacities of the knapsack
have been considered, namely, 10%, 5%, 2%, and 1% of the
total weight of all the items taken together. The number of
items available for selection in this study is 200 and 5000
items.

4.3.1. Multiple Strongly Correlated Instances 𝑚𝑠𝑡𝑟(𝑘
1
, 𝑘
2
, 𝑑).

They are constructed as a combination of two sets of strongly
correlated instances, which have profits pt

𝑗
:= wt
𝑗
+𝑘
𝑚
where

𝑘
𝑚
,𝑚 = 1, 2, is different for the two sets.Themultiple strongly

correlated instances mstr(𝑘
1
, 𝑘
2
, 𝑑) have been generated in

this work as follows: the weights of the𝑀 items are randomly
distributed in [1, 1000]. If the weight wt

𝑗
is divisible by 𝑑 = 6,

then we set the profit pt
𝑗
:= wt

𝑗
+ 𝑘
1
; otherwise, set it to

pt
𝑗
:= wt

𝑗
+ 𝑘
2
. The weights wt

𝑗
in the first group (i.e.,

where pt
𝑗
= wt
𝑗
+ 𝑘
1
) will all be multiples of 𝑑, so that using
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Table 4: Comparative study between PQEA, CQEA, and FQEA using statistical results on 0-1 knapsack problem with multiple strongly
correlated data instances.

% of total
weight Number of items (𝑀) Algo. Best Worst Average Median Std Average NFE

10%

200
PQEA 24222 23423 23965 24022 214.0 112880
CQEA 24319 23722 23991 24021 136.2 127532
FQEA 24322 24220 24314 24321 25.5 73515

5000
PQEA 559926 551617 555315 555546 1985.7 499348
CQEA 557944 550326 554411 554773 2015.7 498905
FQEA 592810 590092 591494 591494 806.6 498223

5%

200
PQEA 15008 14605 14804 14857 127.4 139992
CQEA 15108 14608 14871 14907 134.8 121588
FQEA 15108 15008 15104 15108 18.3 91160

5000
PQEA 334680 328120 331565 331569 1509.3 499008
CQEA 330892 325231 327619 327652 1524.9 498883
FQEA 363587 359984 362343 362450 992.1 498093

2%

200
PQEA 8398 7801 8147 8199 182.8 165077
CQEA 8400 7601 8154 8149 165.2 172823
FQEA 8400 8300 8321 8301 40.2 137615

5000
PQEA 174665 168139 171836 171895 1462.0 499140
CQEA 169071 162886 166073 166359 1654.3 498625
FQEA 197443 192821 195912 196074 1118.5 498843

1%

200
PQEA 5497 4899 5285 5299 142.6 291117
CQEA 5497 4899 5334 5396 139.4 297235
FQEA 5498 5399 5484 5497 34.0 255655

5000
PQEA 104861 101268 103519 103694 999.1 498967
CQEA 100787 95661 98035 98054 1226.2 498928
FQEA 124745 122104 123315 123145 670.8 499153

only these weights can at most use 𝑑[𝐶/𝑑] of the capacity;
therefore, in order to obtain a completely filled knapsack,
some of the items from the second distribution will also be
included. Computational experiments have shown that very
difficult instances could be obtainedwith the parametersmstr
(300, 200, and 6) [30].

The results of testing of all the three algorithms on 0-
1 knapsack problem with multiple strongly correlated data
instances have been presented in Table 4. A total of thirty
independent runs of each algorithm were executed and the
Best, Worst, Average, and Median and standard deviation
(Std) of the fitness along with average number of function
evaluations (NFE) were recorded. The maximum number
of generations was ten thousand. FQEA has outperformed
PQEA and CQEA on all the problem instances as indicated
by the statistical results. CQEA has performed better than
PQEA on problems with smaller number of items but PQEA
has performed better than CQEA on problems with larger
number of items.

Figures 19, 20, 21, 22, 23, 24, 25, and 26 show relative
convergence rate of the QEAs for 0-1 knapsack problem with
multiple strongly correlated data instances. The convergence
graphs have been plotted between the number of generations
and the objective function values of the three QEAs. The
rate of convergence of PQEA is fastest during the early part

of the search in most of the problem instances; however,
FQEA was able to overtake both the QEAs in later part of
the search process. CQEA has been the slowest of the three
QEAs inmost of the instances except when the capacity of the
knapsack is small; that is, it has performed better than PQEA
in such problem instances. PQEA has performed better than
CQEA on all other problem instances. FQEA has been slow
initially but has performed better than PQEA and CQEA on
all the problem instances. The reason for poor performance
of FQEA during the initial part of the search process is due
to slow dispersion of information in FQEA as compared to
the other QEAs, which enables FQEA to explore the solution
space more comprehensively before reaching near a global
optimum. In fact, slow dispersion of information helps it to
reach near the global optimum as it avoids getting trapped in
a local optimum.The dispersion of information is quickest in
case of PQEA,which helps it to outperformCQEAand FQEA
during the initial part of search process but also causes it to
get trapped in a local optimum.Thedispersion of information
is slower in CQEA as compared to PQEA but CQEA has been
able to reach near best solution found by PQEA in the later
part of the search and in some cases CQEA has outperformed
PQEA. Overall, FQEA has performed better than PQEA
and CQEA on all the instances of 0-1 knapsack problem
withmultiple strongly correlated data distribution.Therefore,
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Figure 19: Convergence graph of PQEA, CQEA, and FQEA on 0-1
knapsack problem with multiple strongly correlated data instances
with number of items,𝑀, being 200 and capacity, 𝐶, being 10% of
total weight.
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Figure 20: Convergence graph of PQEA, CQEA, and FQEA on 0-1
knapsack problem with multiple strongly correlated data instances
with number of items,𝑀, being 5000 and capacity, 𝐶, being 10% of
total weight.

the slow rate of dispersion of information in the fine-grained
model had helped FQEA to perform better than QEAs with
the other population models in 0-1 knapsack problem with
multiple strongly correlated data instances.

4.3.2. Profit Ceiling Instances 𝑝𝑐𝑒𝑖𝑙(𝑎). These instances have
profits of all items as multiples of a given parameter 𝑎. The
weights of the𝑀 items are randomly distributed in [1, 1000],
and their profits are set to pt

𝑗
= 𝑎[wt

𝑗
/𝑎]. The parameter, 𝑎,
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Figure 21: Convergence graph of PQEA, CQEA, and FQEA on 0-1
knapsack problem with multiple strongly correlated data instances
with number of items, 𝑀, being 200 and capacity, 𝐶, being 5% of
total weight.
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Figure 22: Convergence graph of PQEA, CQEA, and FQEA on 0-1
knapsack problem with multiple strongly correlated data instances
with number of items,𝑀, being 5000 and capacity, 𝐶, being 5% of
total weight.

has been experimentally chosen as 𝑎 = 3, as this resulted in
sufficiently difficult instances [30].

The results of testing of all the three algorithms on 0-1
knapsack problem with profit ceiling distribution instances
have been presented in Table 5. A total of thirty indepen-
dent runs of each algorithm were executed and the Best,
Worst, Average, and Median and standard deviation (Std)
of the fitness along with the average number of function
evaluations (NFE) were recorded. The maximum number of
generations was ten thousand. FQEA has outperformed both
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Table 5: Comparative study between PQEA, CQEA, and FQEA using statistical results on 0-1 knapsack problem with profit ceiling data
instances.

% of total
weight Number of items (𝑀) Algo. Best Worst Average Median Std Average NFE

10.00%

200
PQEA 10113 10095 10104 10104 5.3 208817
CQEA 10116 10092 10105 10104 5.1 256945
FQEA 10137 10122 10130 10131 3.8 165498

5000
PQEA 249807 249684 249753 249750 33.2 491542
CQEA 249723 249627 249688 249687 22.2 491412
FQEA 250521 250395 250474 250478 31.7 485267

5.00%

200
PQEA 5070 5049 5060 5061 5.6 190365
CQEA 5070 5049 5061 5061 5.5 198847
FQEA 5091 5073 5082 5082 4.5 127020

5000
PQEA 125028 124944 124993 124994 23.9 483715
CQEA 125004 124929 124964 124962 20.3 482153
FQEA 125553 125448 125504 125505 26.4 488277

2.00%

200
PQEA 2040 2025 2030 2028 4.1 238790
CQEA 2040 2022 2032 2033 4.5 239368
FQEA 2052 2034 2044 2043 4.7 153933

5000
PQEA 50103 50040 50070 50066 19.4 475055
CQEA 50097 50028 50059 50066 17.1 477915
FQEA 50436 50346 50389 50390 20.0 485703

1.00%

200
PQEA 1023 1014 1017 1017 2.9 197130
CQEA 1026 1014 1018 1017 2.7 252298
FQEA 1032 1014 1023 1023 4.5 243558

5000
PQEA 25086 25029 25060 25059 13.7 472835
CQEA 25077 25026 25054 25053 11.8 471443
FQEA 25329 25236 25281 25278 21.8 491103
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Figure 23: Convergence graph of PQEA, CQEA, and FQEA on 0-1
knapsack problem with multiple strongly correlated data instances
with number of items, 𝑀, being 200 and capacity, 𝐶, being 2% of
total weight.
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Figure 24: Convergence graph of PQEA, CQEA, and FQEA on 0-1
knapsack problem with multiple strongly correlated data instances
with number of items,𝑀, being 5000 and capacity, 𝐶, being 2% of
total weight.
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Figure 25: Convergence graph of PQEA, CQEA, and FQEA on 0-1
knapsack problem with multiple strongly correlated data instances
with number of items, 𝑀, being 200 and capacity, 𝐶, being 1% of
total weight.
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Figure 26: Convergence graph of PQEA, CQEA, and FQEA on 0-1
knapsack problem with multiple strongly correlated data instances
with number of items,𝑀, being 5000 and capacity, 𝐶, being 1% of
total weight.

the other QEAs on all the problem instances as indicated
by the statistical results. CQEA has performed better than
PQEA on problems with smaller number of items but PQEA
has performed better than CQEA on problems with larger
number of items.

Figures 27, 28, 29, 30, 31, 32, 33, and 34 show relative
convergence rate of the QEAs for 0-1 knapsack problem with
profit ceiling data instances. The convergence graphs have
been plotted between the number of generations and the
objective function values of the three QEAs. The rate of
convergence of PQEA is fastest during the early part of the
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Figure 27: Convergence graph of PQEA, CQEA, and FQEA on 0-1
knapsack problem with profit ceiling data instances with number of
items,𝑀, being 200 and capacity, 𝐶, being 10% of total weight.
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Figure 28: Convergence graph of PQEA, CQEA, and FQEA on 0-1
knapsack problem with profit ceiling data instances with number of
items,𝑀, being 5000 and capacity, 𝐶, being 10% of total weight.

search process in most of the problem instances; however,
FQEA was able to overtake both the QEAs during later part
of the search process. CQEA has been the slowest of the
three QEAs in most of the instances except when capacity
of knapsack is small; that is, CQEA has performed better
than PQEA in such problem instances. PQEA has performed
better than CQEA on the other problem instances. FQEA
has been slow initially but has performed better than both
PQEA and CQEA on all the problem instances. The reason
for poor performance of FQEA initially is due to the slow
dispersion of information as compared to the other QEAs,
which enables FQEA to explore the solution space more
comprehensively before reaching near a global optimum. In
fact, slow dispersion of information helps FQEA to reach



16 Applied Computational Intelligence and Soft Computing

5015

5025

5035

5045

5055

5065

5075

1 301 601 901 1201

O
bj

. f
un

c. 
va

lu
e

PQEA
CQEA
FQEA

PQEA
CQEA
FQEA

Generation number

Figure 29: Convergence graph of PQEA, CQEA, and FQEA on 0-1
knapsack problem with profit ceiling data instances with number of
items,𝑀, being 200 and capacity, 𝐶, being 5% of total weight.
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Figure 30: Convergence graph of PQEA, CQEA, and FQEA on 0-
1 knapsack problem profit ceiling data instances with number of
items,𝑀, being 5000 and capacity, 𝐶, being 5% of total weight.

near a global optimum as it avoids getting trapped in a local
optimum. The dispersion of information is quickest in the
case of PQEA,which helps it to outperformCQEAand FQEA
in the initial part of the search process, but also causes it to get
trapped in a local optimum.The dispersion of information is
slower in CQEA as compared to PQEA but CQEA has been
able to reachnear the best solution foundbyPQEA in the later
part of the search process in some cases. Overall, FQEA has
performed better than PQEA and CQEA on all the instances
of 0-1 knapsack problem with profit ceiling data distribution.
Therefore, the slow rate of dispersion of information in the
fine-grained model had helped FQEA to perform better than
the QEAs with other population models in 0-1 knapsack
problems with profit ceiling data distribution.

2009

2014

2019

2024

2029

2034

2039

1 301 601 901 1201 1501 1801 2101 2401

O
bj

. f
un

c. 
va

lu
e

PQEA
CQEA
FQEA

Generation number

Figure 31: Convergence graph of PQEA, CQEA, and FQEA on 0-1
knapsack problem with profit ceiling data instances with number of
items,𝑀, being 200 and capacity, 𝐶, being 2% of total weight.
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Figure 32: Convergence graph of PQEA, CQEA, and FQEA on 0-1
knapsack problem with profit ceiling data instances with number of
items,𝑀, being 5000 and capacity, 𝐶, being 2% of total weight.

4.3.3. Circle Instances 𝑐𝑖𝑟𝑐𝑙𝑒(𝑑
𝑐
). These instances have the

profit of their items as function of the weights forming an arc
of a circle (actually an ellipsis).Theweights are uniformly dis-
tributed in [1, 1000] and for each weight wt

𝑖
the correspond-

ing profit is chosen to be pt
𝑖
= 𝑑
𝑐
√2000

2
− (wt
𝑖
− 2000)

2.
Experimental results have shown in [30] that difficult
instances appeared by choosing 𝑑

𝑐
= 2/3 which was chosen

for testing in this work.
The results of testing of all the three algorithms on 0-

1 knapsack problem with circle data instances have been
presented in Table 6. A total of thirty independent runs of
each algorithm were executed and the Best, Worst, Average,
and Median and standard deviation (Std) of the fitness along
with average number of function evaluations (NFE) were
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Table 6: Comparative study between PQEA, CQEA, and FQEA using statistical results on 0-1 knapsack problem with circle data instances.

% of total
weight Number of items (𝑀) Algo. Best Worst Average Median Std Average NFE

10.00%

200
PQEA 31583 30647 31180 31221 193.8 119295
CQEA 31587 30811 31265 31257 206.0 116388
FQEA 31587 31581 31586 31587 1.8 73537

5000
PQEA 708392 697953 703964 704143 2420.4 499152
CQEA 703183 692142 697451 696994 2945.7 498935
FQEA 764159 758628 761728 761963 1526.5 498415

5.00%

200
PQEA 19049 18142 18682 18747 196.2 134142
CQEA 19046 18462 18772 18774 125.7 138005
FQEA 19049 19046 19048 19049 0.7 84348

5000
PQEA 411918 405428 408012 407759 1753.3 499310
CQEA 401861 393326 398180 398439 1937.1 498628
FQEA 452412 446621 449780 449917 1296.1 498718

2.00%

200
PQEA 9613 9044 9413 9420 159.1 214528
CQEA 9621 9118 9477 9519 138.0 198957
FQEA 9621 9558 9611 9621 21.1 139205

5000
PQEA 198546 194542 196730 196844 949.3 498778
CQEA 191986 186153 188308 188099 1530.3 498763
FQEA 223217 219368 220820 220720 1080.1 498860

1.00%

200
PQEA 5802 5198 5534 5555 152.4 303258
CQEA 5802 5210 5591 5613 142.9 318865
FQEA 5802 5638 5784 5802 46.7 258733

5000
PQEA 112605 107915 110401 110440 1036.4 499048
CQEA 107044 102173 104741 104807 1248.8 498433
FQEA 129271 126639 128167 128285 736.5 499162
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Figure 33: Convergence graph of PQEA, CQEA, and FQEA on 0-
1 knapsack problem profit ceiling data instances with number of
items,𝑀, being 200 and capacity, 𝐶, being 1% of total weight.

recorded. The maximum number of generations was ten
thousand. FQEA has outperformed both PQEA and CQEA
on all the problem instances as indicated by the statistical
results. CQEA has performed better than PQEA on problems
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Figure 34: Convergence graph of PQEA, CQEA, and FQEA on 0-1
knapsack problem with profit ceiling data instances with number of
items,𝑀, being 5000 and capacity, 𝐶, being 1% of total weight.

with smaller number of items but PQEAhas performed better
than CQEA on problems with larger number of items.
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Figure 35: Convergence graph of PQEA, CQEA, and FQEA on 0-1
knapsack problem with circle data instances with number of items,
𝑀, being 200 and capacity, 𝐶, being 10% of total weight.
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Figure 36: Convergence graph of PQEA, CQEA, and FQEA on 0-1
knapsack problem with circle data instances with number of items,
𝑀, being 5000 and capacity, 𝐶, being 10% of total weight.

Figures 35, 36, 37, 38, 39, 40, 41, and 42 show relative
convergence rate of the QEAs for 0-1 knapsack problem with
circle data distribution instances. The convergence graphs
have been plotted between the number of generations and
the objective function values of the three QEAs. The rate
of convergence of PQEA is fastest during the early part
of the search process in some problem instances; however,
FQEA was able to overtake both the QEAs during later
part of the search process. CQEA has been the slowest of
the three QEAs in most of the problem instances. CQEA
has performed better than PQEA on most of the problem
instances. FQEA has been slow initially but has performed
better than both PQEA and CQEA on all the problem
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Figure 37: Convergence graph of PQEA, CQEA, and FQEA on 0-1
knapsack problem with circle data instances with number of items,
𝑀, being 200 and capacity, 𝐶, being 5% of total weight.
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Figure 38: Convergence graph of PQEA, CQEA, and FQEA on 0-
1 knapsack problem circle data instances with number of items,𝑀,
being 5000 and capacity, 𝐶, being 5% of total weight.

instances.The reason for poor performance of FQEA initially
is due to the slow dispersion of information as compared
to the other QEAs, which enables it to explore the solution
space more comprehensively before reaching near a global
optimum. In fact, slow dispersion of information helps it to
reach near the global optimum as it avoids getting trapped in
a local optimum.The dispersion of information is quickest in
case of PQEA,which helps it to outperformCQEAand FQEA
in initial part of the search process, but also causes it to get
trapped in a local optimum.The dispersion of information is
slower in CQEA as compared to PQEA but it has been able to
reach near the best solution found by PQEA in the later part
of the search in some cases. CQEA has also outperformed
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Figure 39: Convergence graph of PQEA, CQEA, and FQEA on 0-1
knapsack problem with circle data instances with number of items,
𝑀, being 200 and capacity, 𝐶, being 2% of total weight.
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Figure 40: Convergence graph of PQEA, CQEA, and FQEA on 0-1
knapsack problem with circle data instances with number of items,
𝑀, being 5000 and capacity, 𝐶, being 2% of total weight.

PQEA in some cases. Overall, FQEA has performed better
than PQEA and CQEA on all the instances of 0-1 knapsack
problemwith circle data distribution.Therefore, the slow rate
of dispersion of information in the fine-grained model had
helped FQEA to perform better than the QEAs with other
population models in 0-1 knapsack problem with circle data
distribution.

4.4. Comparative Study. A comparative study has been per-
formed between FQEA and recently proposed “state-of-the-
art” algorithm known as “hybrid cuckoo search algorithm
with improved shuffled frog leaping algorithm” (CSISFLA)
[31]. It was shown in [31] that CSISFLA has performed better
than genetic algorithm [3], Differential Evolution Algorithm
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Figure 41: Convergence graph of PQEA, CQEA, and FQEA on 0-1
knapsack problem circle data instances with number of items, 𝑀,
being 200 and capacity, 𝐶, being 1% of total weight.
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Figure 42: Convergence graph of PQEA, CQEA, and FQEA on 0-1
knapsack problem with circle data instances with number of items,
𝑀, being 5000 and capacity, 𝐶, being 1% of total weight.

[32, 33], and Cuckoo Search [34] on some 0-1 knapsack
problem instances. The size of the knapsack is very large as
it is 75% of the total weight of all the items taken together.
Table 7 empirically compares the performance of FQEA and
CSISFLA on KP-1, KP-2, KP-3, and KP-7, which are 0-1
knapsack problem instances with uncorrelated weight and
profit instances given in [31]. The duration of execution of
FQEA (compiled with Visual Studio 6) was five seconds
for KP-1, KP-2, and KP-3 and eight seconds on a computer
with AMD Athlon 7750 Dual-Core, 2.71 GHz, 1.75GB RAM
running under Windows XP, which was a similar machine to
that used for running CSISFLA in [31]. The target capacity,
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Table 7: Comparative study between CSISFLA and FQEA on 0-1
knapsack problem with uncorrelated distribution.

Instance Algorithm Best Worst Mean Median Std

KP-1 CSISFLA 7475 7467 7473 7474 1.6
FQEA 7498 7473 7494 7497 7.7

KP-2 CSISFLA 9865 9837 9856 9858 7.2
FQEA 10040 10039 10040 10040 0.5

KP-3 CSISFLA 15327 15248 15297 15302 18.5
FQEA 15378 15370 15375 15376 2.5

KP-7 CSISFLA 60779 60264 60443 60420 130.6
FQEA 59596 59338 59427 59409 76.9

total capacity, and total value of the items in each problem
are the same as those given in [31].

Results in Table 7 show that FQEA outperforms CSISFLA
on KP-1, KP-2, and KP-3, but CSISFLA performs better than
FQEA on KP-7. This shows that FQEA is performing better
on small dimension problems compared to CSISFLA but
CSISFLA is performing better than FQEAon large dimension
problems. In order to find the reason for poor performance
of FQEA on large dimension problems, an investigation
was made on the conditions of comparative study. It was
found that KP-1 has 150 items, KP-2 has 200 items, KP-3
has 300 items, and KP-7 has 1200 items. Thus, by keeping
total running time of five seconds for KP-1 to KP-3 shows
that it is either more for KP-1 or less for KP-3, because
the problem size in KP-3 is double that of KP-1. So let us
assume that if 5 seconds of run time was adequate for KP-
3, then, it is considerably more for KP-1. However, even when
CSISFLA has evolved for more time in case of KP-1, it has
produced inferior result as compared to FQEA, showing that
CSISFLA has a tendency of getting trapped in suboptimal
region. The search process of FQEA is slow initially as it
explores the search space in a more comprehensive way
due to slow dissemination information in its population
structure as compared to other algorithms. In case of KP-7,
the problem size is eight times that of KP-1. Thus, if FQEA is
evolved for forty seconds instead of eight seconds, it should
produce better results than CSISFLA. It can be argued that
CSISFLA may produce better result if it evolved for forty
seconds, but, as we have seen in KP-1, evolving for more
duration is not necessarily helping CSISFLA. Table 8 shows
the results of FQEA with forty seconds of execution time on
KP-7, KP-14, KP-19, KP-24, KP-29, and KP-34 along with the
results of CSISFLA given in [31]. Table 8 shows that FQEA
is able to produce better results when evolved for longer
duration. However, CSISFLA produces better result in large
dimension problem instances than FQEA, when evolved for
eight seconds only.

5. Conclusions

Quantum-inspired evolutionary algorithm are a type of
evolutionary algorithms, which have been designed by
integrating probabilistic bit representation, superposition,
and measurement principles in evolutionary framework for

Table 8: Comparative study between CSISFLA and FQEA on 0-1
knapsack problems with the number of items being 1200.

Instance Algorithm Best Worst Mean Median Std

KP-7 CSISFLA 60779 60264 60443 60420 130.6
FQEA 61831 61811 61820 61820 6.1

KP-14 CSISFLA 52403 52077 52267 52264 86.2
FQEA 52538 52518 52526 52526 5.8

KP-19 CSISFLA 60562 60539 60549 60550 5.7
FQEA 60570 60550 60560 60560 6.0

KP-24 CSISFLA 72151 72070 72112 72111 21.2
FQEA 72232 72192 72202 72192 13.7

KP-29 CSISFLA 51399 51390 51396 51396 3.1
FQEA 51405 51390 51398 51399 4.2

KP-34 CSISFLA 84244 84099 84175 84181 38.4
FQEA 85090 85016 85041 85035 25.7

computationally solving difficult optimization problems.The
QEA in [7] has been developed on coarse-grained population
model, which has been subsequentlymodified into panmictic
model, vQEA, and is shown to be better than QEA in solving
some problems [8]. This motivated further investigations
of the effect of fine-grained population structure on the
performance of QEA [35]. The experimental testing has
shown that fine-grained model improves the performance of
QEA in comparison to the other models on COUNTSAT
problem instances, 𝑃-PEAKS problem instances, and three
difficult knapsack problem instances. Thus, the contribution
of this work is twofold; namely, the first is the critical
examination of the population structures employed in QEA
and the implementation of QEA on the two-dimensional
toroidal grid for fair comparison of the effect of all the three
population models on QEA. A comparative study was also
performed with the “state-of-the-art” hybrid cuckoo search
algorithm [31], which showed that FQEA is slow but produces
better solutions. Future endeavors will be made to further
improve the speed of convergence in FQEA for solving
benchmark as well as real world search and optimization
problems.
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