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This work presents the application of the differential transform method (DTM) to the model of pollution for a system of three
lakes interconnected by channels. Three input models (periodic, exponentially decaying, and linear) are solved to show that DTM
can provide analytical solutions of pollution model in convergent series form. In addition, we present the posttreatment of the
power series solutions with the Laplace-Padé resummation method as a useful strategy to extend the domain of convergence of
the approximate solutions. The Fehlberg fourth-fifth order Runge-Kutta method with degree four interpolant (RKF45) numerical
solution of the lakes systemproblem is used as a reference to compare with the analytical approximations showing the high accuracy
of the results.Themain advantage of the proposed technique is that it is based on a few straightforward steps and does not generate
secular terms or depend of a perturbation parameter.

1. Introduction

Semianalytical methods like differential transform method
(DTM) [1–4], reduced differential transform method
(RDTM) [5–7], homotopy perturbation method (HPM)
[8–16], homotopy analysis method (HAM) [17], variational
iteration method (VIM) [18], and generalized homotopy
method [19], multivariate Padé series [20], among others,
are powerful tools to approximate linear and nonlinear
problems in physics and engineering. Analytical solutions
aid researchers to study the effect of different variables
or parameters on the function under study easily [21].
Among the above-mentioned methods, the DTM is high-
lighted by its simplicity and versatility to solve nonlinear
differential equations. This method does not rely on a
perturbation parameter or a trial function as other popular
approximative methods. In [1], the DTM was introduced to
the engineering field as a tool to find approximate solutions
of electrical circuits. DTM produces approximations based
on an iterative procedure derived from the Taylor series

expansion. This method is very effective and powerful for
solving various kinds of differential equations as nonlinear
biochemical reaction model [2], two point boundary-value
problems [22], differential-algebraic equations [23], the
KdV and mKdV equations [24], the Schrodinger equations
[25], fractional differential equations [26], and the Riccati
differential equation [27], among others.

Therefore, in this paper, we present the application of
a hybrid technique combining DTM, Laplace transform,
and Padé approximant [28] to find approximate analytical
solutions for a pollutionmodel [29–34].The aim of themodel
is to describe the pollution of a system of three lakes [35–
39] as depicted in Figure 1. Each lake is considered to be
as large compartment and the interconnecting channels as
pipes between the compartments with given flow directions.
Initially, a pollutant is introduced into the first lake at a given
rate whichmay be constant or may vary with time.Therefore,
we are interested in knowing the level of pollution in each
lake at any time. We assume the pollutant in each lake to be
uniformly distributed throughout the lake by some mixing
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Figure 1: Three lakes system with interconnecting channels.

process, and the volume of water in any of the three lakes
remains constant. Also we assume that the type of pollution
is persistent and not degrading to other forms.

We will consider three input models for the pollution
source: periodic, exponentially decaying, and linear. To the
best of the authors’ knowledge, the periodic and exponential
decaying input models are not reported in literature as
potential behaviours for the pollution source. Solutions to
this problem are first obtained in convergent series form
using the DTM. To improve the solution obtained from
DTM’s truncated series, we apply Laplace transform to it,
and then convert the transformed series into a meromorphic
function by forming its Padé approximant. Finally, we take
the inverse Laplace transform of the Padé approximant
to obtain the approximate analytical solution. This hybrid
method (LPDTM) which combines DTM with Laplace-
Padé posttreatment greatly improves DTM’s truncated series
solutions in convergence rate. In fact, the Laplace-Padé
resummation method enlarges the domain of convergence
of the truncated power series and often leads to an accurate
approximation or the exact solution. It is worth mentioning
that the constant input model is not treated here, because it
was successfully solved by the DTM in [40].

The proposed method does not generate noise terms also
known as secular terms in the solution as the homotopy
perturbation based techniques [14]. This property of DTM
greatly reduces the volume of computation and improves
the efficiency of LPDTM in comparison to the perturbation
based methods. What is more, LPDTM does not require a
perturbation parameter as the perturbation based techniques
(includingHPM). Finally, LPDTM is straightforward and can
be programmed using computer algebra packages like Maple
or Mathematica.

The rest of this paper is organized as follows. In the
next section we describe how the DTM can be applied to
solve systems of ordinary differential equations. The main
idea behind the Padé approximant is given in Section 3. In
Section 4, we give the basic concept of the Laplace-Padé
resummation method. In Section 5, we give a description of
the lakes pollution problem. In Section 6, we apply LPDTM
to solve three pollution problems. In Section 7, we give a brief
discussion. Finally, a conclusion is drawn in the last section.

2. Differential Transform Method (DTM)

Thebasic definitions and fundamental operations of differen-
tial transform are given in [1, 22–26]. For convenience of the

reader, wewill give a review of theDTM.Wewill also describe
the DTM to solve systems of ordinary differential equations.

Definition 1. If a function 𝑢(𝑡) is analytical with respect to 𝑡
in the domain of interestΩ, then

𝑈 (𝑘) =

1

𝑘!

[

𝑑
𝑘
𝑢 (𝑡)

𝑑𝑡
𝑘
]

𝑡=0

, (1)

is the transformed function of 𝑢(𝑡).

Definition 2. The differential inverse transforms of the set
{𝑈(𝑘)}

𝑛

𝑘=0
is defined by

𝑢 (𝑡) =

∞

∑

𝑘=0

𝑈 (𝑘) 𝑡
𝑘
. (2)

Substituting (1) into (2), one deduces that

𝑢 (𝑡) =

∞

∑

𝑘=0

1

𝑘!

[

𝑑
𝑘
𝑢 (𝑡)

𝑑𝑡
𝑘
]

𝑡=0

𝑡
𝑘
. (3)

From Definitions 1 and 2, it is easy to see that the concept
of the DTM is obtained from the power series expansion.
To illustrate the application of the proposed DTM to solve
systems of ordinary differential equations, one considers the
nonlinear system

𝑑𝑢 (𝑡)

𝑑𝑡

= 𝑓 (𝑢 (𝑡) , 𝑡) , 𝑡 ≥ 0, (4)

where 𝑓(𝑢(𝑡), 𝑡) is a nonlinear smooth function.

System (4) is supplied with some initial conditions

𝑢 (0) = 𝑢0. (5)

DTM establishes that the solution of (4) can be written as

𝑢 (𝑡) =

∞

∑

𝑘=0

𝑈 (𝑘) 𝑡
𝑘
, (6)

where 𝑈(0), 𝑈(1), 𝑈(2), . . . are unknowns to be determined
by DTM.

Applying the DTM to the initial conditions (5) and
system (4), respectively, one obtains the transformed initial
conditions

𝑈 (0) = 𝑢0, (7)

and the recursion system

(1 + 𝑘)𝑈 (𝑘 + 1) = 𝐹 (𝑈 (0) , . . . , 𝑈 (𝑘) , 𝑘) ,

𝑘 = 0, 1, 2, . . . ,

(8)

where 𝐹(𝑈(0), . . . , 𝑈(𝑘), 𝑘) is the differential transforms of
𝑓(𝑢(𝑡), 𝑡).

Using (7) and (8), we determine the unknowns𝑈(𝑘), 𝑘 =
0, 1, 2, . . .Then, the differential inverse transformation of the
set of values {𝑈(𝑘)}𝑛

𝑘=0
gives the approximate solution

𝑢∗ (𝑡) =

𝑛

∑

𝑘=0

𝑈 (𝑘) 𝑡
𝑘
, (9)
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Table 1: Main operations of DTM.

Function Differential transform
𝛼𝑢(𝑡) ± 𝛽𝑣(𝑡) 𝛼𝑈(𝑘) ± 𝛽𝑉(𝑘)

𝑢(𝑡)𝑣(𝑡)

𝑘

∑

𝑟=0

𝑈(𝑘)𝑉(𝑘 − 𝑟)

𝑑

𝑑𝑡

[𝑢(𝑡)] (𝑘 + 1)𝑈(𝑘 + 1)

𝑡
𝑛

𝛿 (𝑘 − 𝑛) =

{

{

{

1, 𝑘 = 𝑛

0, 𝑘 ̸= 𝑛

𝑡
𝑛
𝑢(𝑡) 𝑈(𝑘 − 𝑛)

𝑒
𝜆𝑡 𝜆

𝑘

𝑘!

sin (𝜔𝑡 + 𝛼) 𝜔
𝑘

𝑘!

sin(𝜋𝑘
2

+ 𝛼)

cos (𝜔𝑡 + 𝛼) 𝜔
𝑘

𝑘!

cos(𝜋𝑘
2

+ 𝛼)

where 𝑛 is the approximation order of the solution.The exact
solution of problem (4)-(5) is then given by

𝑢 (𝑡) =

∞

∑

𝑘=0

𝑈 (𝑘) 𝑡
𝑘
. (10)

If 𝑈(𝑘) and 𝑉(𝑘) are the differential transforms of 𝑢(𝑡) and
V(𝑡), respectively, then the main operations of DTM are
shown in Table 1.

The process of DTM can be described as follows.
(1) Apply the differential transform to the initial condi-

tions (5).
(2) Apply the differential transform to the differential

system (4) to obtain a recursion system for the
unknowns 𝑈(0), 𝑈(1), 𝑈(2), . . .

(3) Use the transformed initial conditions (7) and the
recursion system (8) to determine the unknowns
𝑈(0), 𝑈(1), 𝑈(2), . . .

(4) Use the differential inverse transform formula (9) to
obtain an approximate solution for the initial value
problem (4)-(5).

The solutions series obtained from DTM may have
limited regions of convergence, even if we take a large number
of terms. Therefore, we propose to apply the Laplace-Padé
resummationmethod to DTM truncated series to enlarge the
convergence region as depicted in the next sections.

3. Padé Approximant

Given an analytical function 𝑢(𝑡) with Maclaurin’s expansion

𝑢 (𝑡) =

∞

∑

𝑛=0

𝑢𝑛𝑡
𝑛
, 0 ≤ 𝑡 ≤ 𝑇. (11)

The Padé approximant to 𝑢(𝑡) of order [𝐿,𝑀] which we
denote by [𝐿/𝑀]𝑢(𝑡) is defined by [28]

[

𝐿

𝑀

]

𝑢

(𝑡) =

𝑝0 + 𝑝1𝑡 + ⋅ ⋅ ⋅ + 𝑝𝐿𝑡
𝐿

1 + 𝑞1𝑡 + ⋅ ⋅ ⋅ + 𝑞𝑀𝑡
𝑀
, (12)

where we considered 𝑞0 = 1, and the numerator and
denominator have no common factors.

The numerator and the denominator in (12) are con-
structed so that𝑢(𝑡) and [𝐿/𝑀]𝑢(𝑡) and their derivatives agree
at 𝑡 = 0 up to 𝐿 +𝑀. That is,

𝑢 (𝑡) − [

𝐿

𝑀

]

𝑢

(𝑡) = 𝑂 (𝑡
𝐿+𝑀+1

) . (13)

From (13), we have

𝑢 (𝑡)

𝑀

∑

𝑛=0

𝑞𝑛𝑡
𝑛
−

𝐿

∑

𝑛=0

𝑝𝑛𝑡
𝑛
= 𝑂 (𝑡

𝐿+𝑀+1
) . (14)

From (14), we get the following algebraic linear systems:

𝑢𝐿𝑞1 + ⋅ ⋅ ⋅ + 𝑢𝐿−𝑀+1𝑞𝑀 = −𝑢𝐿+1

𝑢𝐿+1𝑞1 + ⋅ ⋅ ⋅ + 𝑢𝐿−𝑀+2𝑞𝑀 = −𝑢𝐿+2

...

𝑢𝐿+𝑀−1𝑞1 + ⋅ ⋅ ⋅ + 𝑢𝐿𝑞𝑀 = −𝑢𝐿+𝑀,

(15)

𝑝0 = 𝑢0

𝑝1 = 𝑢1 + 𝑢0𝑞1

...

𝑝𝐿 = 𝑢𝐿 + 𝑢𝐿−1𝑞1 + ⋅ ⋅ ⋅ + 𝑢0𝑞𝐿.

(16)

From (15), we calculate first all the coefficients 𝑞𝑛, 1 ≤ 𝑛 ≤ 𝑀.
Then, we determine the coefficients 𝑝𝑛, 0 ≤ 𝑛 ≤ 𝐿 from (16).

Note that for a fixed value of𝐿+𝑀+1, error (13) is smallest
when the numerator and denominator of (12) have the same
degree or when the numerator has degree one higher than the
denominator.

4. Laplace-Padé Resummation Method

Several approximate methods provide power series solutions
(polynomial). Nevertheless, sometimes, this type of solutions
lacks of large domains of convergence. Therefore, Laplace-
Padé [29–34] resummation method is used in literature to
enlarge the domain of convergence of solutions or inclusive
to find the exact solutions.

The Laplace-Padé method can be summarized as follows.

(1) First, Laplace transformation is applied to power
series (9).

(2) Next, 𝑠 is substituted by 1/𝑡 in the resulting equation.
(3) After that, we convert the transformed series into a

meromorphic function by forming its Padé approx-
imant of order [𝑁/𝑀]. 𝑁 and 𝑀 are arbitrarily
chosen, but they should be smaller than the order of
the power series. In this step, the Padé approximant
extends the domain of the truncated series solution
to obtain a better accuracy and convergence.
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(4) Then, 𝑡 is substituted by 1/𝑠.
(5) Finally, by using the inverse Laplace 𝑠 transformation,

we obtain the exact or approximate solution.

5. Description of Pollution Problem

A system of lakes is a set of lakes interconnected by channels.
These lakes are modelled by large compartments intercon-
nected by pipes [36]. Figure 1 shows a system of three lakes.
At 𝑡 = 0, a pollutant is introduced, for example, from a
factory into one of the lakes (here lake 1) at rate 𝑝(𝑡).Then the
pollutedwater flows into the other lakes through the channels
or pipes as indicated by the arrows [41]. We also assume that
the volume of water in each lake does not change and that
the pollutant is persistent and uniformly distributed in each
lake. With these assumptions, we want to predict the level of
pollution in each lake for 𝑡 ≥ 0.

To model the dynamic behavior of the system of lakes,
let 𝑉𝑖 and 𝑥𝑖(𝑡), 𝑖 = 1, 2, 3 denote the volume of water
and the amount of pollutant in lake 𝑖, respectively. Then the
concentration of the pollutant in lake 𝑖 at time 𝑡 ≥ 0 is given
by

𝑐𝑖 (𝑡) =

𝑥𝑖 (𝑡)

𝑉𝑖

. (17)

If we assume further that the flow rate 𝐹𝑗𝑖 from lake 𝑖 to lake
𝑗 is constant, then the flux 𝑟𝑗𝑖(𝑡) of the pollutant flowing from
lake 𝑖 into lake 𝑗 for 𝑡 ≥ 0 is given by

𝑟𝑗𝑖 (𝑡) = 𝐹𝑗𝑖𝑐𝑖 (𝑡) =

𝐹𝑗𝑖𝑥𝑖 (𝑡)

𝑉𝑖

. (18)

Thus, 𝑟𝑗𝑖(𝑡) measures the rate at which the concentration of
the pollutant in lake 𝑖 flows into lake 𝑗 at time 𝑡.

Applying the principle

rate of change of pollutant = Input rate − output rate,
(19)

to each lake, we obtain the following system of first order
ordinary differential equations:

𝑑𝑥1

𝑑𝑡

=

𝐹13

𝑉3

𝑥3 (𝑡) −

𝐹31

𝑉1

𝑥1 (𝑡) −

𝐹21

𝑉1

𝑥1 (𝑡) + 𝑝 (𝑡) ,

𝑑𝑥2

𝑑𝑡

=

𝐹21

𝑉1

𝑥1 (𝑡) −

𝐹32

𝑉2

𝑥2 (𝑡) ,

𝑑𝑥3

𝑑𝑡

=

𝐹31

𝑉1

𝑥1 (𝑡) +

𝐹32

𝑉2

𝑥2 (𝑡) −

𝐹13

𝑉3

𝑥3 (𝑡) .

(20)

If we assume that the lakes are initially free from pollutant,
then the initial conditions for (20) are

𝑥1 (0) = 0, 𝑥2 (0) = 0, 𝑥3 (0) = 0. (21)

Since the volume of water in each lake is constant for 𝑡 ≥ 0,
then the rate of incoming flow is equal to the rate of outgoing

flow for each lake. This leads to the following conditions on
flow rates:

Lake 1:𝐹13 = 𝐹21 + 𝐹31,

Lake 2:𝐹21 = 𝐹32,

Lake 3:𝐹31 + 𝐹32 = 𝐹13.

(22)

For results comparison, we consider throughout this
paper the following values of the parameters (20) [35]:

𝑉1 = 2900mi.3, 𝑉2 = 850mi.3, 𝑉3 = 1180mi.3,

𝐹21 = 18mi.3/year, 𝐹32 = 18mi.3/year,

𝐹31 = 20mi.3/year, 𝐹13 = 38mi.3/year.
(23)

6. Numerical Simulation

In this section we will apply the LPDTM described in the
previous sections to find approximate analytical solutions
for three pollution models to illustrate the accuracy and
effectiveness of the method. To simulate the pollution in the
lakes we coded the LPDTM in Maple17.

6.1. Periodic Input Model. This input model is used when
the pollutant is introduced into the lake 1 periodically. As an
example we take 𝑝(𝑡) = 𝑐 + 𝑎 sin𝜔𝑡, where 𝑐 is the average
input of concentration of pollutant, 𝑎 is the amplitude of
fluctuations, and is 𝜔 the frequency of fluctuations. Taking
𝑎 = 𝑐 = 𝜔 = 1 and the parameters values given in (23), then
system (20) becomes

𝑑𝑥1

𝑑𝑡

=

38

1180

𝑥3 (𝑡) −

38

2900

𝑥1 (𝑡) + 1 + sin 𝑡,

𝑑𝑥2

𝑑𝑡

=

18

2900

𝑥1 (𝑡) −

18

850

𝑥2 (𝑡) ,

𝑑𝑥3

𝑑𝑡

=

20

2900

𝑥1 (𝑡) +

18

850

𝑥2 (𝑡) −

38

1180

𝑥3 (𝑡) ,

(24)

with the initial conditions

𝑥1 (0) = 0, 𝑥2 (0) = 0, 𝑥3 (0) = 0. (25)

For the solution procedure with LPDTM, we take the differ-
ential transform of (25) and system (24), respectively, to get

𝑋1 (0) = 0, 𝑋2 (0) = 0, 𝑋3 (0) = 0, (26)
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and the recursion system

(𝑘 + 1)𝑋1 (𝑘 + 1) =

38

1180

𝑋3 (𝑘) −

38

2900

𝑋1 (𝑘)

+ 𝛿 (𝑘) +

1

𝑘!

sin(𝑘𝜋
2

) ,

(𝑘 + 1)𝑋2 (𝑘 + 1) =

18

2900

𝑋1 (𝑘) −

18

850

𝑋2 (𝑘) ,

(𝑘 + 1)𝑋3 (𝑘 + 1) =

20

2900

𝑋1 (𝑘) +

18

850

𝑋2 (𝑘)

−

38

1180

𝑋3 (𝑘) , for 𝑘 = 0, 1, 2, . . . .
(27)

Using (26) and recursion system (27), we compute the first
few terms

𝑋1 (1) = 1, 𝑋2 (1) = 0, 𝑋3 (1) = 0,

𝑋1 (2) = 0.4934482759,

𝑋2 (2) = 0.003103448276,

𝑋3 (2) = 0.003448275862,

𝑋1 (3) = −0.002118275929,

𝑋2 (3) = 0.0009990207736,

𝑋3 (3) = 0.001119255156,

𝑋1 (4) = −0.04165071653,

𝑋2 (4) = −0.000008575913397,

𝑋3 (4) = −0.000007374218895,

𝑋1 (5) = 0.000109106107,

𝑋2 (5) = −0.00005166801625,

𝑋3 (5) = −0.00005743809073,

𝑋1 (6) = 0.001388342328,

𝑋2 (6) = 2.952260910 × 10
−7
,

𝑋3 (6) = 2.513351518 × 10
−7
,

𝑋1 (7) = −0.000002597711148,

𝑋2 (7) = 0.000001230149337,

𝑋3 (7) = 0.000001367561811,

𝑋2 (8) = −5.271743203 × 10
−9
,

𝑋3 (8) = −4.488144269 × 10
−9
.

(28)

Using (9) and (28), we obtain the seventh and eight order
solution approximations

𝑥1 (𝑡) ≅

7

∑

𝑘=0

𝑋1 (𝑘) 𝑡
𝑘

= 𝑡 + 0.4934482759𝑡
2

− 0.002118275929𝑡
3
− 0.04165071653𝑡

4

+ 0.000109106107𝑡
5
+ 0.001388342328𝑡

6

− 0.2597711148 × 10
−5
𝑡
7
,

𝑥2 (𝑡) ≅

8

∑

𝑘=0

𝑋2 (𝑘) 𝑡
𝑘

= 0.003103448276𝑡
2

+ 0.0009990207736𝑡
3
− 0.8575913397 × 10

−5
𝑡
4

− 0.5166801625 × 10
−4
𝑡
5
+ 2.952260910 × 10

−7
𝑡
6

+ 0.000001230149337𝑡
7
− 5.271743203 × 10

−9
𝑡
8
,

𝑥3 (𝑡) ≅

8

∑

𝑘=0

𝑋3 (𝑘) 𝑡
𝑘

= 0.003448275862𝑡
2

+ 0.001119255156𝑡
3
− 0.7374218895 × 10

−5
𝑡
4

− 0.00005743809073𝑡
5
+ 2.513351518 × 10

−7
𝑡
6

+ 0.000001367561811𝑡
7
− 4.488144269 × 10

−9
𝑡
8
.

(29)

The solutions series obtained from the DTM may have
limited regions of convergence, even if we take more terms.
We can increase accuracy by applying the Laplace-Padé
posttreatment described in the previous sections. First, we
apply 𝑡-Laplace transforms to (29). Then, we substitute 𝑠
by 1/𝑡 and apply 𝑡-Padé approximants to the transformed
series. Finally, we substitute 𝑡 by 1/𝑠 and apply the inverse
Laplace 𝑠-transforms to the resulting expressions to obtain
the approximate solution.

Applying Laplace transform to (29) yields

L [𝑥1 (𝑡)] =

1

𝑠
2
+

0.9868965520

𝑠
3

−

0.01270965558

𝑠
4

−

0.9996171968

𝑠
5

+

0.01309273284

𝑠
6

+

0.9996064760

𝑠
7

−

0.01309246418

𝑠
8

,
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L [𝑥2 (𝑡)] =

0.006206896552

𝑠
3

+

0.005994124642

𝑠
4

−

0.0002058219215

𝑠
5

−

0.006200161950

𝑠
6

+

0.0002125627855

𝑠
7

+

0.006199952658

𝑠
8

−

0.0002125566860

𝑠
9

,

L [𝑥3 (𝑡)] =

0.006896551724

𝑠
3

+

0.006715530936

𝑠
4

−

0.0001769812534

𝑠
5

−

0.006892570888

𝑠
6

+

0.0001809613093

𝑠
7

+

0.006892511527

𝑠
8

−

0.0001809619769

𝑠
9

.

(30)

For the sake of simplicity we let 𝑠 = 1/𝑡 in (30) to obtain

L [𝑥1 (𝑡)] = 𝑡
2
+ 0.9868965520𝑡

3
− 0.01270965558𝑡

4

− 0.9996171968𝑡
5
+ 0.01309273284𝑡

6

+ 0.9996064760𝑡
7
− 0.01309246418𝑡

8
,

L [𝑥2 (𝑡)] = 0.006206896552𝑡
3
+ 0.005994124642𝑡

4

− 0.0002058219215𝑡
5
− 0.006200161950𝑡

6

+ 0.0002125627855𝑡
7
+ 0.006199952658𝑡

8

− 0.0002125566860𝑡
9
,

L [𝑥3 (𝑡)] = 0.006896551724𝑡
3
+ 0.006715530936𝑡

4

− 0.0001769812534𝑡
5
− 0.006892570888𝑡

6

+ 0.0001809613093𝑡
7
+ 0.006892511527𝑡

8

− 0.0001809619769𝑡
9
.

(31)

From (31) we compute the 𝑡-Padé approximants [4/4], [5/4],
and [5/4] of L[𝑥1(𝑡)], L[𝑥2(𝑡)] and L[𝑥3(𝑡)], respectively,
to get

[

4

4

]

𝑥
1

= (𝑡
2
+ 1.000002956𝑡

3
+ 1.000002911𝑡

4
)

× (1 + 0.01310640362𝑡 + 0.9997779025𝑡
2

+ 0.01310640980𝑡
3
− 0.0002191842356𝑡

4
)

−1

,

[

5

4

]

𝑥
2

= (0.006206896550𝑡
3
+ 0.006206885100𝑡

4

+ 0.006206885852𝑡
5
)

× (1 + 0.03427807412𝑡 + 1.000055450𝑡
2

+ 0.03427801814𝑡
3
+ 0.00005372195134𝑡

4
)

−1

,

[

5

4

]

𝑥
3

= (0.006896551727𝑡
3
+ 0.006896522309𝑡

4

+ 0.006896524233𝑡
5
)

× (1 + 0.02624374889𝑡 + 1.000103392𝑡
2

+ 0.02624358904𝑡
3
+ 0.00009939866951𝑡

4
)

−1

.

(32)

Now since 𝑡 = 1/𝑠, we obtain [4/4]𝑥
1

, [5/4]𝑥
2

, and [5/4]𝑥
3

in
terms of 𝑠 as follows:

[

4

4

]

𝑥
1

= (1.000002911 + 1.000002956𝑠 + 𝑠
2
)

× ( − 0.0002191842356 + 0.01310640980𝑠

+ 0.9997779025𝑠
2
+ 0.01310640362𝑠

3
+ 𝑠
4
)

−1

,

[

5

4

]

𝑥
2

= (0.006206885852 + 0.006206885100𝑠

+ 0.006206896550𝑠
2
)

× (0.00005372195134𝑠 + 0.03427801814𝑠
2

+ 1.000055450𝑠
3
+ 0.03427807412𝑠

4
+ 𝑠
5
)

−1

,

[

5

4

]

𝑥
3

= (0.006896524233 + 0.006896522309𝑠

+ 0.006896551727𝑠
2
)

× (0.00009939866951𝑠 + 0.02624358904𝑠
2

+ 1.000103392𝑠
3
+ 0.02624374889𝑠

4
+ 𝑠
5
)

−1

.

(33)

Finally, applying the inverse 𝑠-Laplace transforms to the
Padé approximants (33), we obtain the following approximate
solutions for pollution problem (24)-(25):

𝑥1 (𝑡) = −30.18062393𝑒
−0.02274364146𝑡

+ 31.18023915𝑒
0.009637193508𝑡

− 0.9996152114𝑒
2.216776938×10

−8
𝑡

× cos (0.9999985440𝑡)
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+ 0.01309275313𝑒
2.216776938×10

−8
𝑡

× sin (0.9999985440𝑡) ,

𝑥2 (𝑡) = 115.5372375 + 5.938616269𝑒
−0.03263164746𝑡

− 121.4756412𝑒
−0.001646311568𝑡

− 0.0002125524060𝑒
−5.754576854×10

−8
𝑡

× cos (1.000000862𝑡)

− 0.006199915020𝑒
−5.754576854×10

−8
𝑡

× sin (1.000000862𝑡) ,

𝑥3 (𝑡) = 69.38246022 + 18.26278393𝑒
−0.02165296983𝑡

− 87.64506322𝑒
−0.004590514558𝑡

− 0.0001809518001𝑒
−1.322517142×10

−7
𝑡

× cos (1.000001993𝑡)

− 0.006892414902𝑒
−1.322517142×10

−7
𝑡

× sin (1.000001993𝑡) .
(34)

6.2. Exponentially Decaying Input Model. In this example, we
assume the pollutant input to have the form𝑝(𝑡) = 𝑎𝑒

−𝑏𝑡.This
corresponds to a heavy dumping of the pollutant. If we take
𝑎 = 200, 𝑏 = 10, and the parameters values given in (23), then
system (20) becomes

𝑑𝑥1

𝑑𝑡

=

38

1180

𝑥3 (𝑡) −

38

2900

𝑥1 (𝑡) + 200𝑒
−10𝑡

,

𝑑𝑥2

𝑑𝑡

=

18

2900

𝑥1 (𝑡) −

18

850

𝑥2 (𝑡) ,

𝑑𝑥3

𝑑𝑡

=

20

2900

𝑥1 (𝑡) +

18

850

𝑥2 (𝑡) −

38

1180

𝑥3 (𝑡) ,

(35)

with the initial conditions

𝑥1 (0) = 0, 𝑥2 (0) = 0, 𝑥3 (0) = 0. (36)

For the solution procedure with LPDTM, we take the differ-
ential transform of (36) and system (35), respectively, to get

𝑋1 (0) = 0, 𝑋2 (0) = 0, 𝑋3 (0) = 0, (37)

and the recursion system

(𝑘 + 1)𝑋1 (𝑘 + 1) =

38

1180

𝑋3 (𝑘) −

38

2900

𝑋1 (𝑘)

+

200(−1)
𝑘

𝑘!

,

(𝑘 + 1)𝑋2 (𝑘 + 1) =

18

2900

𝑋1 (𝑘) −

18

850

𝑋2 (𝑘) ,

(𝑘 + 1)𝑋3 (𝑘 + 1) =

20

2900

𝑋1 (𝑘) +

18

850

𝑋2 (𝑘)

−

38

1180

𝑋3 (𝑘) , for 𝑘 = 0, 1, 2, . . . .
(38)

Computing𝑋𝑖(𝑘), 𝑖 = 1, 2, 3 for 𝑘 = 1, . . . , 7, and using (9) we
obtain the seventh and fourth order solution approximations

𝑥1 (𝑡) ≅

7

∑

𝑘=0

𝑋1 (𝑘) 𝑡
𝑘

= 200𝑡 − 1001.310345𝑡
2

+ 3337.714276𝑡
3
− 8344.285781𝑡

4

+ 16688.57156𝑡
5
− 27814.28594𝑡

6
+ 39734.69420𝑡

7
,

𝑥2 (𝑡) ≅

4

∑

𝑘=0

𝑋2 (𝑘) 𝑡
𝑘

= 0.620689652𝑡
2
− 2.076057914𝑡

3
+ 5.190202702𝑡

4
,

𝑥3 (𝑡) ≅

4

∑

𝑘=0

𝑋3 (𝑘) 𝑡
𝑘

= 0.6896551724𝑡
2
− 2.304884601𝑡

3
+ 5.762245165𝑡

4
.

(39)

Applying 𝑡-Laplace transforms to (39). Then, substituting
𝑠 by 1/𝑡 and taking the 𝑡-Padé approximants [4/4], [3/2],
and [3/2] of L[𝑥1(𝑡)],L[𝑥2(𝑡)] and L[𝑥3(𝑡)], respectively.
Finally, substituting 𝑡 by 1/𝑠 and applying the inverse Laplace
𝑠-transforms to the resulting expressions, we obtain the
following approximate solution for the pollution (35)-(36):

𝑥1 (𝑡) = −20.02628589𝑒
−10𝑡

+ 15.99875583𝑒
−0.02214820368𝑡

+ 4.027530053𝑒
0.01107410184𝑡 cos (0.01918090704𝑡)

+ 2.444283357𝑒
0.01107410184𝑡 sin (0.01918090704𝑡) ,

𝑥2 (𝑡) = 3.620716188 − 3.645629217𝑒
−5.017139965𝑡

× sinh (4.982854483𝑡)

− 3.620716188𝑒
−5.017139965𝑡 cosh (4.982854483𝑡) ,
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Figure 2: Periodic input signal and absolute error (A.E.) of approximations. The time 𝑡 is expressed in years.

𝑥3 (𝑡) = 5.252847334 − 5.280506224𝑒
−5.013124005𝑡

× sinh (4.986865641𝑡)

− 5.252847333𝑒
−5.013124005𝑡 cosh (4.986865641𝑡) .

(40)

6.3. Linear Input Model. This input model is used when
the pollutant is introduced into the first lake with a linear
concentration; that is 𝑝(𝑡) = 𝑐𝑡, where 𝑐 is a positive constant.
If we take 𝑐 = 100 and the parameters values given in (23),
then system (20) becomes

𝑑𝑥1

𝑑𝑡

=

38

1180

𝑥3 (𝑡) −

38

2900

𝑥1 (𝑡) + 100𝑡,

𝑑𝑥2

𝑑𝑡

=

18

2900

𝑥1 (𝑡) −

18

850

𝑥2 (𝑡) ,

𝑑𝑥3

𝑑𝑡

=

20

2900

𝑥1 (𝑡) +

18

850

𝑥2 (𝑡) −

38

1180

𝑥3 (𝑡) ,

(41)

with the initial conditions

𝑥1 (0) = 0, 𝑥2 (0) = 0, 𝑥3 (0) = 0. (42)

For the solution procedure with LPDTM, we take the differ-
ential transform of (42) and system (41), respectively, to get

𝑋1 (0) = 0, 𝑋2 (0) = 0, 𝑋3 (0) = 0, (43)

and the recursion system

(𝑘 + 1)𝑋1 (𝑘 + 1) =

38

1180

𝑋3 (𝑘) −

38

2900

𝑋1 (𝑘)

+ 100𝛿 (𝑘 − 2) ,

(𝑘 + 1)𝑋2 (𝑘 + 1) =

18

2900

𝑋1 (𝑘) −

18

850

𝑋2 (𝑘) ,

(𝑘 + 1)𝑋3 (𝑘 + 1) =

20

2900

𝑋1 (𝑘) +

18

850

𝑋2 (𝑘)

−

38

1180

𝑋3 (𝑘) , for 𝑘 = 0, 1, 2, . . . .
(44)

Computing𝑋𝑖(𝑘), 𝑖 = 1, 2, 3 for 𝑘 = 1, . . . , 6, and using (9) we
obtain the sixth order solution approximation

𝑥1 (𝑡) ≅

6

∑

𝑘=0

𝑋1 (𝑘) 𝑡
𝑘

= 50𝑡
2
− 0.2183908046𝑡

3

+ 0.001640802918𝑡
4
− 0.9157937796 × 10

−5
𝑡
5

+ 3.806770170 × 10
−8
𝑡
6
,
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Figure 3: Exponential input signal and absolute error (A.E.) of approximations. The time 𝑡 is expressed in years.

𝑥2 (𝑡) ≅

6

∑

𝑘=0

𝑋2 (𝑘) 𝑡
𝑘

= 0.1034482759𝑡
3
− 0.0008865496258𝑡

4

+ 5.79165721 × 10
−6
𝑡
5
− 2.991487185 × 10

−8
𝑡
6
,

𝑥3 (𝑡) ≅

6

∑

𝑘=0

𝑋3 (𝑘) 𝑡
𝑘

= 0.1149425287𝑡
3
− 0.0007542532924𝑡

4

+ 0.000003366280585𝑡
5
− 8.152829849 × 10

−9
𝑡
6
.

(45)

Applying 𝑡-Laplace transforms to (45).Then, substituting 𝑠 by
1/𝑡 and applying [4/3] Padé approximants to the transformed
series, and finally, substituting 𝑡 by 1/𝑠 and applying the
inverse Laplace 𝑠-transforms to the resulting expressions, we
obtain the approximate solution for (41)-(42)

𝑥1 (𝑡) = 57948.15101 + 87006.32225𝑒
−0.02613521303𝑡

− 1.449544732 × 10
5
𝑒
0.005766486114𝑡

× cos (0.008106252553𝑡)

+ 3.836306238 × 10
5
𝑒
0.005766486114𝑡

× sin (0.008106252553𝑡) ,

𝑥2 (𝑡) = −3.479544489 × 10
5
− 26672.44416𝑒

−0.03055667255𝑡

+ 1.947909618 × 10
5
𝑒
−0.009725668941𝑡

+ 1.798359312 × 10
5
𝑒
0.006002422637𝑡

,

𝑥3 (𝑡) = −1.660496808 × 10
5
+ 84380.83420𝑒

0.009438349421𝑡

+ 81668.84654𝑒
−0.01784318200𝑡

× cos (0.01103026188𝑡)

+ 59909.39308𝑒
−0.01784318200𝑡

× sin (0.01103026188𝑡) .
(46)

7. Discussion

In this work, we presented the differential transform method
(DTM) as a useful analytical tool to solve a pollution
model for a system of three lakes. Three input models were
successfully solved. For each of the three cases solved here,
the DTM transformed the dynamic model into a recursion
system for the coefficients of the power series solution. To
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Figure 4: Linear input signal and absolute error (A.E.) of approximations. The time 𝑡 is expressed in years.

improve the convergence of the DTM solution, a Laplace-
Padé posttreatment is applied to the DTM’s truncated series
leading to the approximate solution. Additionally, the solu-
tion procedure does not involve unnecessary computation
like that related to noise terms [14].This property of the DTM
greatly reduces the volume of computation and improves the
efficiency of the proposed method. It should be noticed that
these problems were effectively handled by LPDTM method
due to the malleability of DTM and resummation capability
of Laplace-Padé.

For comparison purposes, the Fehlberg fourth-fifth order
Runge-Kutta method with degree four interpolant (RKF45)
[42, 43] build-in in Maple CAS software was used to obtain
the exact solution of the pollution problems.The routine was
configured to use an absolute error (A.E.) of 10−12. Figures
2, 3, and 4 show the comparison among exact solutions and
the LPDTM approximations for the input models: periodic,
exponential, and linear. In general terms, the absolute error
is low for all approximations. If required, the error can be
reduced by increasing the order of the DTM approximations
in combination with a posttreatment of Laplace-Padé resum-
mation method of higher order.

On the one hand, semianalytical methods like HPM,
HAM, and VIM, among others, require an initial approxima-
tion for the solutions sought and the computation of one or
several adjustment parameters. If the initial approximation is
properly chosen, the results can be highly accurate. Nonethe-
less, no general methods are available to choose such initial

approximation. This issue motivates the use of adjustment
parameters obtained by minimizing the least-squares error
with respect to the numerical solution.

On the other hand, DTM or LPDTM methods do not
require any trial equation as a requisite for starting the
method. Moreover, DTM obtains its coefficients using an
easily computable straightforward procedure that can be
implemented into programs like Maple or Mathematica.

8. Conclusion

This work presents LPDTM as a combination of DTM and a
resummation method based on the Laplace transforms and
Padé approximant. Firstly, the solutions of a pollution model
of a system of three lakes are obtained in convergent series
forms using DTM. Next, in order to enlarge the domain
of convergence of the truncated power series, a posttreat-
ment combining Laplace transform and Padé approximant is
applied.This technique greatly improves theDTM’s truncated
series solutions in convergence rate. Additionally, DTM is
an attractive tool, because it does not require a perturbation
parameter to work and it does not generate secular terms
(noise terms) as other semianalytical methods like HPM,
HAM, or VIM. The proposed method (LPDTM) is based on
a straightforward procedure, suitable for engineers. Finally,
further research should be performed to solve other highly
nonlinear dynamic models.
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