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This paper discusses the state feedback 𝐻
∞

control problem for a class of bilinear stochastic systems driven by both Brownian
motion and Poisson jumps. By completing square method, we obtain the𝐻

∞
control by solutions of the corresponding Hamilton-

Jacobi equations (HJE). By the tensor power series method, we also shift such HJEs into a kind of Riccati equations, and the𝐻
∞

control is represented with the form of tensor power series.

1. Introduction

The main purpose of 𝐻
∞

control design is to find the
law to efficiently eliminate the effect of the disturbance [1,
2]. Theoretically, study of 𝐻

∞
control first starts from the

deterministic linear systems, and the derivation of the state-
space formulation of the standard 𝐻

∞
control leads to a

breakthrough, which can be found in the paper [3]. In recent
years, stochastic 𝐻

∞
control systems, such as Markovian

jump systems [4–6], 𝐻
∞

Gaussian control design [7], and
Itô differential systems [8–13], have received a great deal
of attention. However, up to now, most of the work on
stochastic 𝐻

∞
control is confined to Itô type or Markovian

jump systems. Yet, there are still many systems which contain
Poisson jumps in economics and natural science. In 1970s,
Boel and Varaiya [14] and Rishel [15] considered the optimal
control problemwith randomPoisson jumps, andmany basic
results have been made. From then on, many scholars and
economists also study the system and its applications; for
further reference, we refer to [16–20] and their references.
But those results mostly concentrate on optimal control and
its application in financial market or corresponding theories.
Of course, such model still can be disturbed by exogenous
disturbance and its robustness is also an important problem.
The objective of this paper is to develop an 𝐻

∞
-type theory

over infinite time horizon for the disturbance attenuation of

stochastic bilinear systems with Poisson jumps by dynamic
state feedback.

Generally, the key of 𝐻
∞

control design is to solve a
general Hamilton-Jacobi equation (HJE). However, up to
now, there is still no effective algorithm to solve such a general
HJE. In order to solve the HJE given in this paper, we extend
a tensor power series approach which is used in [21] and also
give the simulation of the trajectory of output 𝑧 under 𝐻

∞

control. This paper will follow along the lines of [22] to study
the stochastic 𝐻

∞
control with infinite horizons and finite

horizon for a class of nonlinear stochastic differential systems
with Poisson jumps. The paper is organized as follows.

In Section 2, we review Itô’s theories about the system
driven by Brownian motion and Poisson jumps. In Section 3,
we obtain the𝐻

∞
by solving the HJE which is proved by the

completing squaremethod. In Section 4, we discuss the prob-
lem of finite horizon 𝐻

∞
control with jumps, and using the

tensor power series approach, we discuss the approximating
𝐻
∞
control given in the paper. For convenience, we adopt the

following notation.
S
𝑛
(R) denotes the set of all real 𝑛×𝑛 symmetricmatrices;

𝐴
 is the transpose of the corresponding matrix 𝐴; 𝐴 >

0 (𝐴 ≥ 0) is the positive definite (semidefinite) matrix 𝐴; 𝐼 is
the identity matrix; E𝜉 is the expectation of random variable
𝜉; ‖𝑥‖ is the Euclidean norm of vector 𝑥 ∈ R𝑛𝑥 and 𝑛

𝑥
is the

dimension of 𝑥;L2([0, 𝑇],R𝑛𝑦) is the set of 𝑛
𝑦
-dimensional
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stochastic process𝑦 defined on interval [0, 𝑇] (𝑇 can take∞),
taking values inR𝑛𝑦 , with norm





𝑦



L2([0,𝑇],R𝑛𝑦 )

= (𝐸∫

𝑇

0





𝑦 (𝑡)






2

𝑑𝑡)

1/2

< ∞; (1)

𝐶
1,2

(R
+
,R𝑛𝑥) is the class of function 𝑉(𝑡, 𝑥) twice con-

tinuously differential with respect to 𝑥 ∈ R𝑛𝑥 and once
continuously differential with respect to 𝑡; ⟨𝑥, 𝑦⟩ is the inner
product of two vectors 𝑥, 𝑦 ∈ R𝑛.

2. Preliminaries

For a given complete probability space (Ω,F,P), let𝑊
𝑡
and

𝜇 be the Brownian motion and the Poisson randommeasure,
respectively, which are mutually independent:

(i) a 1-dimensional standard Brownian motion {𝑊
𝑡
}
𝑡≥0

;

(ii) a Poisson randommeasure 𝜇 onR
+
×𝐸, where𝐸 ⊂ R𝑙

is a nonempty open set equipped with its Borel field
B(𝐸), with the compensator 𝜇(𝑑𝑒, 𝑑𝑡) = 𝜆(𝑑𝑒)𝑑𝑡,
such that {𝜇((0, 𝑡] × 𝐴) = (𝜇 − 𝜇)((0, 𝑡] × 𝐴)}

𝑡≥0
is

a martingale for all 𝐴 ∈ B(𝐸) satisfying 𝜆(𝐴) < ∞.
Here 𝜆 is an arbitrarily given 𝜎-finite Lévy measure
on (𝐸,B(𝐸)), that is, ameasure on (𝐸,B(𝐸))with the
property that ∫

𝐸

(1 ∧ |𝑒|
2

)𝜆(𝑑𝑒) < ∞. We also let

F
𝑡
= 𝜎 [∫∫

(0,𝑠]×𝐴

𝜇 (𝑑𝑒, 𝑑𝑠) : 𝑠 ≤ 𝑡, 𝐴 ∈ B (𝐸)] ∨ 𝜎

× [𝑊
𝑠
: 𝑠 ≤ 𝑡] ∨N,

(2)

whereN denotes the totality of 𝑃-null sets.

In order to discuss the systems driven by Brownian
motion and Poisson jumps, we first review the theorem about
Itô’s formula for such stochastic processes.

Theorem 1. Let 𝑀
𝑡
be a square integral continuous martin-

gale; 𝐴
𝑡
is a continuous adapted process with finite variance.

𝛾(𝑠, 𝑒) is locally square integral due to 𝜇 and 𝑃; 𝑥(𝑡) satisfies
the following Itô type stochastic process:

𝑥 (𝑡) = 𝑥 (0) + 𝑀
𝑡
+ 𝐴
𝑡
+ ∫

𝑡

0

∫

𝐸

𝛾 (𝑠, 𝑒) 𝜇 (𝑑𝑒, 𝑑𝑠) . (3)

Then for 𝐹(𝑡, 𝑥) ∈ 𝐶1,2(R
+
,R𝑛𝑥), we have (see [23] Chapter I,

§3, Theorem 11)

𝑑𝐹 (𝑡, 𝑥
𝑡
)

= 𝐹
𝑡
(𝑡, 𝑥
𝑡
) 𝑑𝑡 + 𝐹

𝑥
(𝑡, 𝑥
𝑡
) 𝑑 (𝑀

𝑡
+ 𝐴
𝑡
)

+

1

2

𝐹
𝑥𝑥
(𝑡, 𝑥
𝑡
) 𝑑⟨𝑀⟩

𝑡
+ ∫

𝐸

[𝐹 (𝑡, 𝑥
𝑡
+ 𝛾 (𝑡, 𝑒)) − 𝐹 (𝑡, 𝑥

𝑡
)

−𝐹
𝑥
(𝑡, 𝑥
𝑡
) 𝛾 (𝑡, 𝑒) ] 𝜆 (𝑑𝑒) 𝑑𝑡

+ ∫

𝐸

[𝐹 (𝑡, 𝑥
𝑡
+ 𝛾 (𝑡, 𝑒)) − 𝐹 (𝑡, 𝑥

𝑡
)] 𝜇 (𝑑𝑒, 𝑑𝑡) ,

(4)

where ⟨𝑀⟩ denotes the predictable compensator of martingale
𝑀.

In the paper, for convenience, 𝑥
𝑡
is shorten as 𝑥. Further-

more, for 𝐹 ∈ 𝐶
1,2

(R
+
,R𝑛𝑥), if using Itô formula to 𝐹(𝑡, 𝑥

𝑡
)

and integrating from 𝑠 to 𝑡 (0 ≤ 𝑠 < 𝑡), then taking expectation
with both sides

E𝐹 (𝑡, 𝑥
𝑡
) − E𝐹 (𝑠, 𝑥

𝑠
)

= ∫

𝑡

𝑠

E𝐹
𝑡
(𝑟, 𝑥
𝑟
) 𝑑𝑟

+

1

2

∫

𝑡

𝑠

E [𝜎(𝑟, 𝑥
𝑟
)


𝐹
𝑥𝑥
(𝑟, 𝑥
𝑟
) 𝜎 (𝑟, 𝑥

𝑟
)] 𝑑𝑟

+ ∫

𝑡

𝑠

E {∫
𝐸

[𝐹 (𝑟, 𝑥
𝑟
+ 𝛾 (𝑟, 𝑥

𝑟−
, 𝑒))

− 𝐹 (𝑟, 𝑥
𝑟
) − ⟨𝐹

𝑥
(𝑟, 𝑥
𝑟
) , 𝛾 (𝑟, 𝑒)⟩]

×𝜆 (𝑑𝑒) } 𝑑𝑟,

(5)

we can see that E𝐹(𝑡, 𝑥
𝑡
) is continuous with respect to time 𝑡.

Since we mainly use the results of expectations of some well
functions on 𝑥

𝑡
and those expectations are continuous with

respect to time 𝑡, so, for briefness, in the rest of this paper the
sign 𝑥

𝑡−
under integration ∫

𝐸

is also shortened as 𝑥.

3. The 𝐻
∞

Control for Bilinear
Systems with Jumps

We consider the following bilinear system driven by Poisson
jumps:

𝑑𝑥 = (𝐴𝑥 + 𝐵𝑥𝑢 + 𝐾V) 𝑑𝑡 + 𝐶𝑥𝑑𝑊 + ∫

𝐸

𝐺 (𝑒) 𝑥𝜇 (𝑑𝑒, 𝑑𝑡) ,

𝑧 = [

𝑀𝑥

𝑢
] ,

(6)

where V ∈ L2([0, 𝑇],R𝑛𝑑) represents the exogenous distur-
bance, 𝐴, 𝐵, and 𝐶 are constant 𝑛

𝑥
× 𝑛
𝑥
matrices, 𝐾 ∈ R𝐾 ∈

R𝑛𝑥×𝑛𝑑 , and 𝐺(𝑒) ∈ R𝑛𝑥×𝑛𝑥 only depends on 𝑒. If there exists
an 𝑢
∗

𝑇
∈ L2([0, 𝑇],R𝑛𝑢) such that for any given 𝛾 > 0 and

all V ∈ L2([0, 𝑇],R𝑛𝑑), 𝑥(0) = 0, the closed-loop system
satisfies

‖𝑧‖L2([0,𝑇],R𝑛𝑧 ) ≤ 𝛾‖V‖L2([0,𝑇],R𝑛𝑑 ), (7)

we call 𝑢∗
𝑇
the𝐻

∞
control of (6).
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Theorem 2. Suppose there exists a nonnegative solution 𝑉 ∈

𝐶
1,2

([0, 𝑇],R𝑛𝑥) to the HJE

H1
𝑇
(𝑉
𝑇
(𝑡, 𝑥)) :=

𝜕𝑉
𝑇

𝜕𝑡

+

𝜕𝑉
𝑇

𝜕𝑥



𝐴𝑥 +

1

2

𝑥


𝑀


𝑀𝑥

+

1

2𝛾
2

𝜕𝑉
𝑇

𝜕𝑥



𝐾𝐾

𝜕𝑉
𝑇

𝜕𝑥

+

1

2

𝑥


𝐶

𝜕
2

𝑉
𝑇

𝜕𝑥
2
𝐶𝑥 −

1

2

𝜕𝑉
𝑇

𝜕𝑥



𝐵𝑥𝑥


𝐵

𝜕𝑉
𝑇

𝜕𝑥

+∫

𝐸

[𝑉
𝑇
(𝑡, 𝑥 + 𝐺 (𝑒) 𝑥) − 𝑉

𝑇
(𝑡, 𝑥)

−

𝜕𝑉

𝜕𝑥



𝐺 (𝑒) 𝑥] 𝜆 (𝑑𝑒) = 0,

𝑉
𝑇
(𝑇, 𝑥) = 0, 𝑉

𝑇
(𝑡, 0) = 0, ∀ (𝑡, 𝑥) ∈ [0, 𝑇] ×R

𝑛
𝑥

.

(8)

Then 𝑢∗
𝑇
= −𝑥


𝐵


(𝜕𝑉
𝑇
/𝜕𝑥) is an𝐻

∞
control for system (6).

Proof . Applying Itô’s formula to 𝑉(𝑡, 𝑥), we have

𝑉 (𝑇, 𝑥
𝑇
) − 𝑉 (0, 0)

= ∫

𝑇

0

{𝑉 (𝑡, 𝑥) + 𝑉


𝑥
(𝑡, 𝑥) (𝐴𝑥 + 𝐵𝑥𝑢 + 𝐾V)

+

1

2

𝑥


𝐶


𝑉
𝑥𝑥
𝐶𝑥

+∫

𝐸

[𝑉 (𝑡, 𝑥 + 𝐺 (𝑒) 𝑥) − 𝑉 (𝑡, 𝑥)

−𝑉
𝑥
(𝑡, 𝑥) 𝐺 (𝑒) 𝑥] 𝜆 (𝑑𝑒) } 𝑑𝑡

+ ∫

𝑇

0

𝑉


𝑥
(𝑡, 𝑥) 𝐶𝑥𝑑𝑊

𝑡

+ ∫

𝑇

0

[𝑉 (𝑡, 𝑥 + 𝐺 (𝑒) 𝑥) − 𝑉 (𝑡, 𝑥)] 𝜇 (𝑑𝑒, 𝑑𝑡) .

(9)

Taking expectation with both sides and applying𝑉(𝑇, 𝑥) = 0

and 𝑉(𝑡, 0) = 0, we obtain

0 = ∫

𝑇

0

E {𝑉 (𝑡, 𝑥) + 𝑉


𝑥
(𝑡, 𝑥) (𝐴𝑥 + 𝐵𝑥𝑢 + 𝐾V)

+

1

2

𝑥


𝐶


𝑉
𝑥𝑥
𝐶𝑥

+ ∫

𝐸

[𝑉 (𝑡, 𝑥 + 𝐺 (𝑒) 𝑥) − 𝑉 (𝑡, 𝑥)

−𝑉
𝑥
(𝑡, 𝑥) 𝐺 (𝑒) 𝑥] 𝜆 (𝑑𝑒)

+𝑥


𝑡
𝑀


𝑀𝑥 + 𝑢


𝑡
𝑢 − 𝛾
2V
𝑡
V} 𝑑𝑡

− ‖𝑧‖
2

L2([0,𝑇],R𝑛𝑧 ) + 𝛾
2

‖V‖2L2([0,𝑇],R𝑛𝑑 ).

(10)

Completing square for 𝑢 and V, respectively, we have

0 = ∫

𝑇

0

E{H
1

𝑇
(𝑉 (𝑡, 𝑥)) +





𝑢 − 𝑢
∗

𝑇






2

−

1

𝛾
2





V − V∗
𝑇






2

}𝑑𝑡

− ‖𝑧‖
2

L2([0,𝑇],R𝑛𝑧 ) + 𝛾
2

‖V‖2L2([0,𝑇],R𝑛𝑑 ),
(11)

where

𝑢
∗

𝑇
= −𝑥


𝐵

𝜕𝑉
𝑇

𝜕𝑥

, V∗
𝑇
=

1

𝛾
2
(𝐾

𝜕𝑉
𝑇

𝜕𝑥

+ 𝐾

𝜕
2

𝑉
𝑇

𝜕𝑥
2
𝐶𝑥) .

(12)

By HJE (8) and let 𝑢 = 𝑢
∗

𝑇
, we have

‖𝑧‖
2

L2([0,𝑇],R𝑛𝑧 ) − 𝛾
2

‖V‖2L2([0,𝑇],R𝑛𝑑 )

= −

1

𝛾
2
∫

𝑇

0

E {




V − V∗
𝑇






2

} 𝑑𝑡.

(13)

So, the following inequality is true:

‖𝑧‖
2

L2([0,𝑇],R𝑛𝑧 ) ≤ 𝛾
2

‖V‖2L2([0,𝑇],R𝑛𝑑 ). (14)

This proves that 𝑢∗
𝑇
is an𝐻

∞
control for system (6).

Remark 3. From the proof ofTheorems 2 and (13), we can see
that (𝑢∗

𝑇
, V∗
𝑇
) given by (12) is a saddle point for the following

stochastic game problem:

min
𝑢∈L2([0,𝑇],R𝑛𝑢 )

max
𝑑∈L2([0,𝑇],R𝑛𝑑 )

E∫
𝑇

0

(‖𝑧‖
2

− 𝛾
2

‖𝑑‖
2

) 𝑑𝑡. (15)

4. The Tensor Power Series Representation of
𝐻
∞

Control

Generally speaking, it is very hard to solve HJE (8). Now we
use an approximation algorithmwhich is called tensor power
series approach to solve a special case of HJE (8). In what
follows, suppose𝑉

𝑇
(𝑡, 𝑥) satisfying (8) has the following form:

𝑉
𝑇
(𝑡, 𝑥) =

∞

∑

𝑖=1

⟨⊗
𝑖
𝑥, 𝑃
𝑖
(𝑡) ⊗
𝑖
𝑥⟩ , (16)

where𝑃
𝑖
(𝑡), 𝑖 ≥ 1, are symmetrically and continuously differ-

ential matrix-valued functions on [0, 𝑇], ⊗ is the Kronecker
product of matrix (or vectors), and ⊗

𝑖
𝑥 = 𝑥⊗ ⋅ ⋅ ⋅ ⊗𝑥 is 𝑖 times

Kronecker product of 𝑥.
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Figure 1: Tracking performance of Example 10.

Theorem4. For given 𝛾 > 0, suppose𝑃
𝑖
(𝑡) (𝑖 = 1, 2, . . .) satisfy

the following Riccati equations:

�̇�
1
+ 𝐴
(1)

𝑃
1
+ 𝑃
1
𝐴
(1)


+

1

2

𝑀


𝑀+

2

𝛾
2
(𝑄
(1)

𝑃
1
) ⊗ (𝑃

1
𝑄
(1)


)

+ 𝑅
(1)

(𝑃
1
) + ∫

𝐸

[(𝐼
𝑛
𝑥

+ 𝐺 (𝑒))



𝑃
1
(𝐼
𝑛
𝑥

+ 𝐺 (𝑒)) − 𝑃
1

−𝐺
(1)

(𝑒) 𝑃
1
− 𝑃
1
𝐺
(1)


(𝑒)] 𝜆 (𝑑𝑒) = 0,

�̇�
𝑖
+ 𝐴
(𝑖)

𝑃
𝑖
+ 𝑃
𝑖
𝐴
(𝑖)


+

2

𝛾
2

∑

𝑟+𝑗=𝑖+1

(𝐾
(𝑟)

𝑃
𝑟
) ⊗ (𝑃

𝑗
𝐾
(𝑗)


)

+ 𝑅
(𝑖)

(𝑃
𝑖
) − 2 ∑

𝑟+𝑗=𝑖

(𝐵
(𝑟)

𝑃
𝑟
) ⊗ (𝑃

𝑗
𝐵
(𝑗)


)

+ ∫

𝐸

[(⊗
𝑖
(𝐼
𝑛
𝑥

+ 𝐺 (𝑒)))



𝑃
𝑖
(⊗
𝑖
(𝐼
𝑛
𝑥

+ 𝐺 (𝑒)))

−𝑃
𝑖
− 𝐺
(𝑖)

(𝑒) 𝑃
𝑖
− 𝑃
𝑖
𝐺
(𝑖)


(𝑒) ] 𝜆 (𝑑𝑒) = 0,

𝑃
𝑖
(𝑇) = 0, 𝑖 = 1, 2, . . . . (17)

Then the𝐻
∞

control 𝑢∗
𝑇
for system (6) can be given by

𝑢
∗

𝑇
= −2

∞

∑

𝑖=1

⟨⊗
𝑖
𝑥, (𝐵
(𝑖)

𝑃
𝑖
) ⊗
𝑖
𝑥⟩ , (18)

where 𝐵(𝑖) = ∑
𝑛
𝑥

𝑗=1
𝐵


𝑗
⊗ 𝐷
(𝑖,𝑗) and 𝐷

(𝑖,𝑗) is given by following
Lemma 6.

In order to proveTheorem 4, we need the following lemmas,
and Lemmas 5–8 are given without proofs.

Lemma 5. For any 𝑥 ∈ R𝑛𝑥 , 𝑦 ∈ R𝑛𝑦 , 𝑢 ∈ R𝑛𝑢 , V ∈ R𝑛V ,
𝑃 ∈ R𝑛𝑥×𝑛𝑦 , and 𝑄 ∈ R𝑛𝑢×𝑛V we have

⟨𝑥, 𝑃𝑦⟩ ⟨𝑢, 𝑄V⟩ = ⟨𝑥 ⊗ 𝑢, (𝑃 ⊗ 𝑄) (𝑦 ⊗ V)⟩ . (19)
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Lemma 6. For any matrix 𝑃 ∈ S
𝑛
𝑖

𝑥

(R),𝐾 ∈ R𝑛𝑘 , and integer
𝑖, we have

𝜕⟨⊗
𝑖
𝑥, 𝑃⊗
𝑖
𝑥⟩


𝜕𝑥

𝐾 = 2 ⟨⊗
𝑖−1
𝑥, (𝐾
(𝑖)

𝑃)⊗
𝑖
𝑥⟩ ,

(20)

where 𝐾(𝑖) = ∑
𝑛
𝑥

𝑗=1
𝑘
𝑗
𝐷
(𝑖,𝑗), 𝐷(𝑖,𝑗) = ∑

𝑖

𝑙=1
𝐷
(𝑖,𝑗)

𝑙
, and 𝐷

(𝑖,𝑗)

𝑙
=

𝐼
𝑛
𝑙−1

𝑥

⊗ 𝑒


𝑗
⊗ 𝐼
𝑛
𝑖−𝑙

𝑥

.

Lemma 7. Let 𝑉
𝑇
(𝑡, 𝑥) = ∑

∞

𝑖=1
⟨⊗
𝑖
𝑥, 𝑃
𝑖
(𝑡)⊗
𝑖
𝑥⟩ exist. We have

𝜕𝑉
𝑇

𝜕𝑥



𝐾𝐾

𝜕𝑉
𝑇

𝜕𝑥

= 4

∞

∑

𝑚=1

⟨⊗
𝑚
𝑥, ∑

𝑖+𝑗=𝑚+1

(𝐾
(𝑖)

𝑃
𝑖
) ⊗ (𝑃

𝑗
𝐾
(𝑗)


) ⊗
𝑚
𝑥⟩ .

(21)

Lemma 8. For any matrix 𝑃 ∈ S
𝑛
𝑖

𝑥

(R), 𝑥 ∈ R𝑛𝑥 , and integer
𝑖, we have

𝜕 ⟨⊗
𝑖
𝑥, 𝑃⊗
𝑖
𝑥⟩

𝜕𝑥



𝐴𝑥 = 2 ⟨⊗
𝑖
𝑥, (𝐴
(𝑖)

𝑃)⊗
𝑖
𝑥⟩ ,

(22)

where 𝐴(𝑖) = ∑
𝑛
𝑥

𝑗=1
𝐴


𝑗
⊗ 𝐷
(𝑖,𝑗), and 𝐴

𝑗
is the 𝑗th row vector of

matrix 𝐴.

Lemma 9. For any matrix 𝑃 ∈ S
𝑛
𝑖

𝑥

(R) and integer 𝑖, we have

𝑥


𝐶

𝜕
2

⟨⊗
𝑖
𝑥, 𝑃⊗
𝑖
𝑥⟩

𝜕𝑥
2

𝐶𝑥 = 2 ⟨⊗
𝑖
𝑥, 𝑅
(𝑖)

(𝑃) ⊗
𝑖
𝑥⟩ , (23)

where 𝑅(𝑖)(𝑃) = 𝐶
(𝑖)

𝑃𝐶
(𝑖)


+ 𝑄
(𝑖)

𝑃, 𝑄(𝑖) = ∑
𝑛
𝑥

𝑠=1
∑
𝑛
𝑥

𝑡=1
𝐶


𝑠
⊗ 𝐶


𝑡
⊗

(𝐷
(𝑖−1,𝑠)

𝐷
(𝑖,𝑡)

), 𝐶
𝑠
is the 𝑠th row vector of matrix C, and 𝐶(𝑖) is

determined as 𝐴(𝑖) in Lemma 8.

Proof. Let 𝐾 = 𝐶𝑥 = (𝑘
1
, 𝑘
2
, . . . , 𝑘

𝑛
𝑥

)
; then we have

𝑥


𝐶

𝜕
2

⟨⊗
𝑖
𝑥, 𝑃⊗
𝑖
𝑥⟩

𝜕𝑥
2

𝐶𝑥

=

𝑛
𝑥

∑

𝑠=1

𝑛
𝑥

∑

𝑡=1

𝜕
2

⟨⊗
𝑖
𝑥, 𝑃⊗
𝑖
𝑥⟩

𝜕𝑥
𝑠
𝜕𝑥
𝑡

𝑘
𝑠
𝑘
𝑡

= 2

𝑛
𝑥

∑

𝑠=1

𝑛
𝑥

∑

𝑡=1

𝑘
𝑠
𝑘
𝑡

𝜕

𝜕𝑥
𝑠

⟨⊗
𝑖−1
𝑥,

𝑖

∑

𝑙=1

𝐷
(𝑖,𝑡)

𝑙
𝑃⟩

= 2

𝑛
𝑥

∑

𝑠=1

𝑛
𝑥

∑

𝑡=1

𝑘
𝑠
𝑘
𝑡
[

𝑖−1

∑

𝑚=1

⟨⊗
𝑚−1

𝑥 ⊗ 𝑒
𝑠
⊗ ⊗
𝑖−𝑚−1

𝑥,

𝑖

∑

𝑙=1

𝐷
(𝑖,𝑡)

𝑙
𝑃⊗
𝑖
𝑥⟩

+

𝑖

∑

𝑚=1

⟨⊗
𝑖−1
𝑥,

𝑖

∑

𝑙=1

𝐷
(𝑖,𝑡)

𝑙
𝑃⊗
𝑚−1

𝑥 ⊗ 𝑒
𝑠
⊗ ⊗
𝑖−𝑚

𝑥⟩]

= 2

𝑛
𝑥

∑

𝑠=1

𝑛
𝑥

∑

𝑡=1

𝑘
𝑠
𝑘
𝑡
[⟨⊗
𝑖−2
𝑥,

𝑖−1

∑

𝑚=1

𝐷
𝑖−1,𝑠

𝑚

𝑖

∑

𝑙=1

𝐷
(𝑖,𝑡)

𝑙
𝑃⊗
𝑖
𝑥⟩

+⟨⊗
𝑖−1
𝑥,

𝑖

∑

𝑚=1

𝑖

∑

𝑙=1

𝐷
(𝑖,𝑡)

𝑙
𝑃𝐷
(𝑖,𝑡)


𝑚
⊗
𝑖−1
⟩]

= 2

𝑛
𝑥

∑

𝑠=1

𝑛
𝑥

∑

𝑡=1

[⟨𝑥, 𝐶


𝑠
⟩ ⟨𝑥, 𝐶



𝑡
⟩

×⟨⊗
𝑖−2
𝑥,

𝑖−1

∑

𝑚=1

𝐷
𝑖−1,𝑠

𝑚

𝑖

∑

𝑙=1

𝐷
(𝑖,𝑡)

𝑙
𝑃⊗
𝑖
𝑥⟩

+⟨𝑥, 𝐶


𝑠
⟩⟨⊗

𝑖−1
𝑥,

𝑖

∑

𝑚=1

𝑖

∑

𝑙=1

𝐷
(𝑖,𝑡)

𝑙
𝑃𝐷
(𝑖,𝑡)


𝑚
⊗
𝑖−1
⟩

×⟨𝐶


𝑡
, 𝑥⟩] .

(24)
By Lemma 5,

𝑥


𝐶

𝜕
2

⟨⊗
𝑖
𝑥, 𝑃⊗
𝑖
𝑥⟩

𝜕𝑥
2

𝐶𝑥

= 2

𝑛
𝑥

∑

𝑠=1

𝑛
𝑥

∑

𝑡=1

[⟨⊗
𝑖
𝑥, 𝐶


𝑠
⊗ 𝐶


𝑡
⊗

𝑖−1

∑

𝑚=1

𝐷
𝑖−1,𝑠

𝑚

×

𝑖

∑

𝑙=1

𝐷
(𝑖,𝑡)

𝑙
𝑃⊗
𝑖
𝑥⟩

+⟨⊗
𝑖
𝑥,(𝐶



𝑠
⊗

𝑖

∑

𝑚=1

𝑖

∑

𝑙=1

𝐷
(𝑖,𝑡)

𝑙
𝑃𝐷
(𝑖,𝑡)


𝑚

⊗ 𝐶
𝑡
)⊗
𝑖
𝑥⟩] .

(25)

So we can obtain (23).

Proof of Theorem 4. Applying Lemmas 6–9, we have

𝑉
𝑇
(𝑡, 𝑥 + 𝐺 (𝑒) 𝑥) =

∞

∑

𝑖=1

⟨⊗
𝑖
𝑥, (⊗
𝑖
(𝐼
𝑛
𝑥

+ 𝐺 (𝑒)))



𝑃
𝑖
(𝑡)

× (⊗
𝑖
(𝐼
𝑛
𝑥

+ 𝐺 (𝑒))) ⊗
𝑖
𝑥⟩ ,

(26)

𝜕𝑉
𝑇

𝜕𝑡

=

∞

∑

𝑖=1

⟨⊗
𝑖
𝑥, �̇�
𝑖
⊗
𝑖
𝑥⟩ , (27)
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𝜕𝑉
𝑇

𝜕𝑥



𝐴𝑥 =

∞

∑

𝑖=1

⟨⊗
𝑖
𝑥, (𝐴
(𝑖)

𝑃
𝑖
) ⊗
𝑖
𝑥⟩

+

∞

∑

𝑖=1

⟨⊗
𝑖
𝑥, (𝑃
𝑖
𝐴
(𝑖)


) ⊗
𝑖
𝑥⟩ ,

(28)

𝜕𝑉

𝜕𝑥



𝐺 (𝑒) 𝑥 =

∞

∑

𝑖=1

⟨⊗
𝑖
𝑥, (𝐷
(𝑖)

(𝑒) 𝑃
𝑖
) ⊗
𝑖
𝑥⟩

+

∞

∑

𝑖=1

⟨⊗
𝑖
𝑥, (𝑃
𝑖
𝐷
(𝑖)


) ⊗
𝑖
𝑥⟩ ,

(29)

𝜕𝑉
𝑇

𝜕𝑥



𝐵𝑥𝑥


𝐵

𝜕𝑉
𝑇

𝜕𝑥

= 4

∞

∑

𝑚=2

⟨⊗
𝑚
𝑥, ∑

𝑖+𝑗=𝑚

(𝐵
(𝑖)

𝑃
𝑖
) ⊗ (𝑃

𝑗
𝐵
(𝑗)


) ⊗
𝑚
𝑥⟩ ,

(30)

𝑥


𝐶

𝜕
2

𝑉
𝑇

𝜕𝑥
2
𝐶𝑥 = 2

∞

∑

𝑖=1

⟨⊗
𝑖
𝑥, 𝑅
(𝑖)

(𝑃
𝑖
) ⊗
𝑖
𝑥⟩ . (31)

Substituting (26)–(31) and (21) into (8) with terminal con-
ditions 𝑃

𝑖
(𝑇) = 0 (𝑖 = 1, 2, . . .), we can prove that 𝑉

𝑇
(𝑡, 𝑥)

satisfies HJE (8). By Theorem 2, the 𝐻
∞

control for system
(6) can be given as

𝑢
∗

𝑇
= −𝑥


𝐵

𝜕𝑉
𝑇

𝜕𝑥

. (32)

Similar to (29), we prove that the 𝐻
∞

control 𝑢∗
𝑇
can be

represented with the form of (18).

By Theorem 4, we can obtain the approximation of 𝐻
∞

control for system (6).
Now we apply the result of tensor power approach to an

example.

Example 10. Consider the system (6) with coefficients

𝐴 = [

0.04 0.02

0.02 0.04
] , 𝐵 = [

0.02 0.02

0.02 0.02
] ,

𝐾 = [

0.02

0.02
] , 𝐶 = [

−0.02 0.04

0.02 0.02
] ,

𝐺 = [

0.02 −0.02

0.02 0.02
] , 𝑀 = [−0.04 0.02] .

(33)

𝑁(𝑡) is Poisson measure with parameter 𝜆 = 2; 𝑊(𝑡)

is 1-dimensional Brownian motion and 𝛾 = 1. Here the
approximation of 𝑢∗

𝑇
is given by

𝑢
∗

= −2

6

∑

𝑖=1

⟨⊗
𝑖
𝑥, (𝐵
(𝑖)

𝑃
𝑖
) ⊗
𝑖
𝑥⟩ , (34)

and Figure 1 is the simulation of𝑚(𝑥) = 𝑀𝑥 and𝐻
∞
control

𝑢
∗, where 𝑢∗ is the approximation of 𝑢∗

𝑇
of system (6). For the

theories of simulation, we will discuss them in another paper.
Here we only give the results of simulation.

5. Concluding Remarks

Wehave discussed the state feedback𝐻
∞
control for a class of

bilinear stochastic system where both Brownian motion and
Poisson process are present. In order to solve theHJE given in
the paper, we also discuss the method of tensor power series
approach.
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