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Continuing from the works of Li et al. (2014), Li (2007), and Kincaid et al. (2000), we present more generalizations and modifications
of iterative methods for solving large sparse symmetric and nonsymmetric indefinite systems of linear equations. We discuss a
variety of iterative methods such as GMRES, MGMRES, MINRES, LQ-MINRES, QR MINRES, MMINRES, MGRES, and others.

1. Introduction

When solving large sparse linear systems of the form
Ax =b, (1)

in which the coefficient matrix A is indefinite, there are basis
methods and a variety of generalizations and modifications
of them. For example, basic iterative methods for symmetric
indefinite linear systems are the MINRES method and the
SYMMLQ method, while a basic method for nonsymmetric
linear systems is the GMRES method. (See, e.g., Lanczos [1],
Golub and Van Loan [2], Paige and Saunders [3], Saad [4],
and Saad and Schultz [5].)

In Section 2, we review the Arnoldi process and present
background material. In Sections 3 and 4, we describe the
LQ-MINRES and the QR-MINRES methods, respectively, as
well as discussing their relationship in Section 5. In Section 6,
we take a closer look at the QR-MINRES method and the
SYMMQR method. In Sections 7 and 8, we describe the mod-
ified MINRES (MMINRES) method and the generalized QR-
MINRES method, respectively. In Section 9, we review the
GMRES method. Finally, we discuss the differences between
the modified MINRES (MMINRES) method and the modi-
fied GMRES (MGMRES) method, in Section 10.

2. Arnoldi Process

First, we assume that matrix A is symmetric. In [6, 7], we
use a short term recurrence to generate orthonormal vectors
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Example. We illustrate (6), for the case n = 3.

From (2) and (7), we have

owl = w0 = Aw© _ aoww) B ﬁ0w<—1)
o,w? = 72 = Aw? — o w? ﬁl (12)
o3w(3) =w® = Aw®? — a, w ﬁzw

Since w™V = 0, we obtain
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] = o
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So we obtain (6), withn = 3
AW, = W, T, + 0'3w e3 W,T,. (14)

3. LQ-MINRES Method

We choose u™ such that u®™ - u® e & n(r(o), A). Hence, we

have

0 =@ s W,y

(15)
PLONSS O (AW, ,) y(n)'
For the MINRES method [3], we let
FO7)= () ().
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Letting Vf (y(")) = 0, we can minimize ||[r™|| by solving this

linear system for y™

(WZ—1A2Wn—1) Y = W:_lAr(O). (18)
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First, using (6), (7), and (5), we expand the coeflicient =0, (WZ:—lAWn—l) (Wz_lw(o))
matrix on the left-hand side of linear system (18)
=0,T, e,
T 42 (20)
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. since r' = alow(o)., W, W =LandW' AW, =T,
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vector in linear system (18)
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(WZ—IA) ¥ = (WZ%A) (%W(O)) Here a Givens rotation matrix is
o -
1
1
1
C. —S:
Qi1 = s; Cil , (23)
1
1

with ¢} +s7 = L.

Here, we repeatedly apply Givens rotations to the right-
hand side of T,, (10), in order to zero out the f3;-diagonal
above the «; main diagonal and change the tridiagonal matrix
T, into a lower tridiagonal matrix L,

Then, from (22), we have

T,Q, =L, (24)
Since Q;il = QZ_I, we obtain
— —T
Tn = LHQZ—I’ T;I; = Qn—an' (25)
Since T,, is symmetric, we have
2 T
T, =T,T,=T,T,
(26)

= (inQZ—l) (Qn—li:> = EnIZ‘

Jdnxn

Thus, we find that the coefficient matrix (26) can be written
as

T? + ale,e (27)

Consequently, we are now interested in solving this linear
system

T

— T
(LnLn +are.e ) v = 0,T,e,. (28)

In the next step in the SYMMLQ method [6, 7], we solve

T, 7" = oge,. (29)
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(For details on the SYMMLQ method, see [6, 7].) moommm
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()
o n
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B= L (34) L, 2 2 . s .
s Sincey,_,+0,, = y,_,, the coefficient matrix in linear equation
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—
: €1 Ot Loy LL, +o’ee =LL. (41)
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From (24) and (36)

TnQn—l = I_‘n’ L, = Lnﬁw (42)

n

we have the right-hand side vector in linear system (28)

= AT
ooT,e; = 0yL,,Q, €& 5
- (43)
= GOLnDnQn—lel'

Since L,, is nonsingular, and from (41) and (43), linear system
(28) is

(LnLZ:) Y(n) = OOLnﬁnQZ—lel’ (44)
which reduces to
(LZ) y(n) = goﬁnQZ—lel' (45)

Thus, we obtain this equation for the nth iteration of the LQ-
MINRES method

u(Ln) —u? 4 Wn_ly(n)

L (46)
=u® 4+ Wn—l(LT> (‘Toﬁan;lel) :

n

4. QR-MINRES Method

Again, as in Section 3, we consider another method for
solving linear system (18) for y

(WZ—IAZWH—I) Y(n) = Wf_lAf(0)~ (47)
Then, instead of solving linear system (47), we now solve

(n)

(Tfl + aflene:) y " =0,T,e. (48)
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First, we repeatedly apply Givens rotations to the left-
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-R,
where

Q1 = Qi1 Qa1 Qusz - Q34Q3Qu (50)

Here, we use Givens rotations applied on the left-hand side
of T,, (10), to transform a tridiagonal matrix into an upper
tridiagonal matrix fn, (21).

Then, we obtain

Q.T,=R, T,=Q_ R, (51)
Since T, is symmetric, we obtain
T =T
T,=T, =R, Q,,. (52)

Thus, the coefficient matrix in linear system (48) can be
written as

—T—
T2 +oleer = R, R, +0’eel (53)
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Consequently, we are interested in solving this linear system
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In the next step in the SYMMQR method [6, 7], we solve
this linear system
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Since
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Q1 = Q1 Q-1 Qs - Qa3Qu0 (57)

then we choose

Voo -
= =21 Yn-1 = V)}ft—l +0,. (58)

Thus, we obtainy, , = ¢,y,_;. (For details on the SYMMQR
method, see [6, 7].)

Let
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since y,_,/y,_1 = ¢,. Consequently, we obtain

—T— — — T
Rn Rn = (BT + Yn—len) (B + Yn—len)

(65)
=B'B + ?flflenez.
Using (64), we have
T 2 T _ppl =2 T
Ran ~VYuln€, = Ran ~ Yu€ny- (66)

Since ?fl_l + ai = yfl_l, the coefficient matrix in the linear
equation (54) is

— —T
R,R, +o’ee =RR. (67)
Since
—T — —
Tn = Rn Qn—l’ Rn = Dan’ (68)

we have right-hand side vector in the linear system (54)

=T
ooT,e; = 0oR,Q, 1
(69)
.
= 0oR, D, Q€.

Since R, is nonsingular, we obtain the linear system (54)

(RZRH) y(n) = UORZﬁnQn—lel’ (70)
which reduces to

Rny(n) = aoﬁnQn—l el . (71)

Thus, we obtain the equation for the nth iteration of the QR-
MINRES method

a® = u® 4w,y

2

_ 0 = 72
=u?+w, R (6,D,Q, ,¢).

5. Relation between LQ-MINRES
and QR-MINRES

Now, we show that the LQ-MINRES method and the QR-
MINRES method are essentially the same. In the LQ-
MINRES method (46), we have

-1 —
u” =u®+w, (L)) (0,DrQfe,).  (73)
In the QR-MINRES method (72), we have

u =u®+w, R’ (0D Qge; ) .- (74)



Journal of Applied Mathematics

For the LQ-MINRES method (73), we have

k:
L
6k_
L
Sk—
_L_
Yk =

L
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From the computation and by induction, we have the follow-
ing relations between the LQ-MINRES method and the QR-

MINRES method:
L ¢, ki odd,
, —¢.» k: even,
L 8, k:odd,
k v, k:even,
L [8  kiodd,
k —S,I:, k: even,
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By induction, we have
L _ <R L R L _ R
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Hence, we obtain
T
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6. A Closer Look at QR-MINRES
and SYMMQR
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In the SYMMQR method [6, 7], we have two estimated solu-

(n) (n)
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The first estimated solution is
(n) (0) (n)
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From these equations, we have
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™ = 5,DRQge,.
Thus, we have
(n) _
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where ul(:) is the solution of this least square problem

min
y™eRn

Tn+1Y(n) —00€; " .

The second estimated solution is
(m _ (0 (n)
Ugy =W " + W”—lyGal’
where y, is the solution of this linear system
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7. Modified MINRES (MMINRES) Method

Next, we assume that matrix A is nonsymmetric. In [6, 7], we

use a long term recurrence to generate orthonormal vectors

WO, W w? w3 w2 (=D o6 follows:

u@ = arbitrary,

' =b- Au?,

(92)

where b;; = <Aw(i_1),w(j)>,
7, = (WD, w0,
Wi — (i) &
0;
end for.

Consequently, we obtain the following matrix equations:

AW, =W, H, +o,w"e’

=W,H,,,, (93)
WZ—lwn—l =1
where
W, , = [W(O),w(l)’w@)’“_)w(n—3))w(n—2))w(n—l)]nxn,

ez; = [0)0,0,...,0)0) 0’ 1]1><n’

bl,O bz,o bs,o e bn—Z,O bn—l,O bn,O
o, by by, o by by by
0, by, 0 b,y by, by
Hn = . . . . . >
Un—3 bn—2,n—3 bn—l,n—S bn,n—3
Gn—Z bn—l,n—Z bn,n—2
L O0y-1 bn,n—l duxn
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s

n+l
—bl,O bz,o b3,o bn—Z,O bn—l,O bn,O )
0 bz,l b3,1 bn—2,1 bn—l,l bn,l
0, by, o by, bn—l,Z b.»

On—S bn—Z,n—3 bn—l,n—S bn,n—S

0n—2 bn— 1,n-2 bn,n—Z

o b

n-1 n,n—1

- Oy (n+1)xn

(94)

Since the matrix H,, is a full upper Hessenberg matrix, the
LQ-MINRES method is not a practical procedure. Hence, we
discuss only a generalization of the QR-MINRES method.

8. Generalized QR-MINRES Method

Since the matrix A is nonsymmetric, to minimize an expres-
sion such as this

mn f67) =6 67) e

YW eRn
we choose y™ to satisfy
(Wi ATAW, )y = W] ATrO. (96)
First, from the Arnoldi process and from the left-hand side of

linear system (96), we can write the coefficient matrix of this
linear system as

WZ— 1 ATAWn—l
= (Awn— 1 )TAWn— 1

(97)

= (W,HHn + anw(”)eZ)T (W,HHH + onw(”)eZ)

_yT 2, T
=H H, +o,e.

n-nn*

Second, from the right-hand side vector of the linear system
(96), we have

(W, AT) (¥

= (AW, )TUOW(O)

T
(Wn—lHn + anw(")eZ) aow'” (98)

~ (HW,) oy

n—-1 ) O\W
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Consequently, instead of solving (96), we solve this linear
system

(HIH, + oe,el ) y" = o He,. (99)

First, we repeatedly apply Givens rotations to the left-
hand side of H,,

Q14 Q2 1Qu 302 Q34Q3Q  H,, = ﬁn (100)
By defining
Q1 = Q1 Qa1 Qs Q34 Q3Q s (101)
we obtain
Q. H,=R, (102)
H,=Ql R, (103)
so that
H, =R,Q,. (104)

Thus, the coefficient matrix in linear system (99) has the
following form by using (103) and (104):

T 2, T _ply 2, T
H H, +o0,e.e, =R R, +0,¢e.e,
(105)

=R Rn+aee

Moreover, by using (102) and (104), the right-hand side vector
in linear system (99) is

T —T
ooH, e, =0,R, Q,_;¢
(106)
T
= GORnDnQn—lel’
where
[V % % 1
yox X
Y, X X
R, = R (107)
yn—S X
Yn—Z
L Yn—l duxn
o -
1
D, = . , (108)
1
[

wherec, =y, ,/y,_;andy, | =

Vpo1 = €iYn1- Then, we have
R,=D,R,.
Let
[y X x X %X X X]
N
B= Y2

Then, we have

and we obtain

R

‘We have

R

Yn-3 . X

VYn-2 X _

(n—1)xn

Rn =B+ Yn—len’

R _(B t V- 1€, )(B+Yr1 le)

T 2 T
=B B+y, ee,.

ﬁn:j‘jan
:B+CnYn—len
=B+y, e,
R,=(B"+7,.¢,)(B+7,e)

Tp  —=2.T
=B B+ yzenen.

)731_1 + 02. Thus, we obtain

(109)

(110)

(111)

(112)

(113)

(114)

Using ?fl_l + aﬁ = yi, (112), and (114) we find that the
coefficient matrix in linear system (104) is

ol 2, T T
R, R, +0,e.e, =R R

">

and the right-hand side vector is

Since R,, is nonsingular, we obtain this linear system

T —T
GOHn € = GORn Qn—l €

T=
= OORn DnQn—lel

(RIR,)y"™ = 0,R.D,Q, e,

which reduces to this linear system

Rny(n) = OOﬁnQn—lel .

(115)

(116)

(117)

(118)
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Thus, we obtain the nth iteration of the generalized QR-
MINRES method

o = u® 4w, y®

(119)
=u” +wW, R (6,D,Q, 1¢,).
9. GMRES Method
In the GMRES method, we let
u(") — u(O) + Wn—ly(n)' (120)
Multiplying by A, we have
Au® = Ad? + (AW,_,)y™,
(121)
b-Au” =b-Au? - (AW, |)y".
Then
£ = O _ (Awn—l) Y(n). (122)
For minimizing (£, we need to solve
ig[;l{,} IA'in+1Y —00€; " > (123)

by using Givens rotation, which is the GMRES method.

In Saad’s book [4], there is a relation between the FOM
method and the GMRES method. For the FOM method, we
impose the Galerkin condition r™ 1 W, , and we solve this
linear system fory

H,y = 0,e,. (124)

For the (n + 1)st iteration, we solve this linear system for y
H, .y = gpe;. (125)

Between the nth iteration and the (n + 1)st iteration of the
FOM method, we obtain the solution of the this least squares
problem

min
yER”

ﬁn+ly —0p€; " > (126)

which is the same as in the GMRES method.

10. Differences between
MMINRES and MGMRES

In this section, we assume that matrices E and EA are nonsin-
gular symmetric matrices (but not necessarily positive def-
inite). In [6, 7], we use a short term recurrence to generate

Journal of Applied Mathematics

orthonormal vectors {w@, w, w?, . w3 w2 ey
as follows:
u® = arbitrary,
' =b- Ad?,
0 = (O
127)
oy = \(EWwO, wO),

1
WO _ <_ ) &0
)

(i-1) [, (i~1)
_<EAw S W >

o = (Ew(i‘l),w(i‘1)> >
(128)
(EAW, w2
ﬂi—l = <Ew—(i—2)’w(i_2)> >
w = AW — g W B w2, (129)
0; = |<Ew(i)’w(i)>|)
Wi _ <l> - (130)
i
end for.
We obtain these properties, for (0 <4, j <n—1),
(Bw?, wy =0, ifi#j,
(131)
Bi =0,
T
(Ewn—l) Wn—l
'y .
d
d,
= (132)
dn—3
dn—z
L d"ﬂ dnxn
=D,

n
where

o L if (Ew9, %) >0,
d; = (Ew?,w?) = o (133)
-1, if (EBw?,w?) <o.
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Consequently, we obtain these matrix equations Assume that x™ — x® € W, _; then we have

AW, =W, T, +o,w"e’

) (134) X =xP 1w, y"
=W, T, ., (140)
S £ = O~ (aw, )y
e .
Wn—l = [W(O), W(l), W(Z), e W(n_3)) w(n—Z)) w(n_l)]nxn’ (135)
e;Fl = [0,0,0,...,0,0,0, 1], (136)  From the Galerkin condition Er™ 1 W, |, wehave
[y By ] T
o, a B, (Er(n)) W, =0 (141)
o, o P From (141) and since E is symmetric, we obtain
T, = R . , (137)
T T
0y-3 &3 ﬁn—Z 0= (El‘(n)) anl = (r(")) ETWn,l
Opn—2 Gp ﬁn—l (142)
T
L On-1 %1 dnxn = (r(n)) Ewn—l = (Ewnfl)Tr(n)'
TVH—I
Then by (142), we have
[ By 1
0, «
v b (EW, )"t = 0. (143)

0, & P
= Ops 0y Pus : From (139), (140), and (143), we obtain this linear system
Op2 % Puoi
n Gn (Xn o - o
n—1 n—1 (DnTn) y = (Ewnfl) (Awnfl) y

L Op (n+1)xn

(138) = (EW,_)" (r¥ 1)

From (134) and (132), we obtain

(Ewn—l )Tr(O)
T (144)
(Ewn—l ) (Awn—l) 0_0 (EW . )Tw(())

= (Ewn—l)T (wnflTn + an(n)eZ) o <EW,H,W(0)>

T T
= (Ewn—l) anlTn + (Ewnfl) Unw(n)ez (139) = 0p€,,

T
= (EW,_,) W, T, +0, <EWn_l,w(")> el

using (127), where o, = dy V| (Er®, r©@)| and g,w'® = r©.
=D,T,+0=D,T,. By (132) and (137), we have

[ doxo dofy
dio, diy dif,

dyo, dya, dyp;
D,T, . (145)

dn—Son—3 dn—3on—3 dn—3:Bn—2
dn—zan—z dn—Z‘xn—Z dn—Zﬂn—l

dn—lan—l dn—l X1 .

nxn
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Notice that D, T, is symmetric since

d;_4 (EAW®?, w1y
(Ewl D, wi D)

di—lﬁi =

di_y (W, EAwW V)
T (Ew0 D, wl D)y

diy (WO, E (0w + i wé D + B w0D))
(Ew(i—D), w(i-D)

= (di—l [0i(EW(i),w(i)) o <EW(i),W(i_l)>
+ /31,71 <Ew(i))w(i72)>]>

()

d;_,0; <Ew(i), w(i)>
(Ew(-D, wiD)

_ d;_y0,d; _

d;o;.
dl;l lal

(146)

Here we use (128), EA is symmetric, (129), (130), E is symmet-
ric, (131), and (133).

Let ig'y?n be the estimated solution corresponding to the
Galerkin condition. Then

X0 =x+w, 77, (147)
where " satisfies this linear system
(D,T,)7" = ape,. (148)

Let xf;’i)n be the estimated solution corresponding to the

least squares problem. Then

xizi)n =x2+w, y", (149)
where y satisfies this expression
- ~ ) _
min (D1 Tt ) Y™ = G - (150)

We call xg'i)n the nth iteration of the MMINRES method.
Notice that if to matrix D,,,; T,,,; we add this bottom row

[0,0,0,...0,0,0,d,0,],.., (151)
and add this far-right column
0,0,0,...0,0,0,d,,_, B, d,a, )1, ;> (152)
see (132) and (138), then we obtain the matrix D,,,, T, , .
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We define these Given rotation matrices
Q1 =Qu 1, Q2 1Qus 2 Q34Q3Q1 05 (153)

where Q;;,, is given by (23). Multiplying matrix Q,_, times
both sides of linear system (148), we obtain this linear system

(Qn—anTn) ?(") = Qn—laoen’ (154)
where, from (137), the coefficient matrix is
Qn—anTn
[ v 8 & |
n 6 &
Y, 05 &
= (155)
Yn-3 67172 €n-1
YH—Z n—1
L _nfl Jdnxn
-R,
and the right-hand side vector is
- 4T
Q,-100¢, = [CO’CD(ZV'-)cn—3’cn—2’6n—1]lxn
(156)

()

z

Note that y, | is not always nonzero, so that R, might be

singular, but here, we assume that R, is nonsingular. Then we
define this matrix factorization

W,,=PR, (157)

where

0 1 2 -3 -2) —(n-1
P, =[pp"p?,..p" Y p" Y] (158)

Moreover, we define the right-hand side vector in (156) as

" =R,y". (159)
From (147), we have, using (157) and (159),
ig?n =x¥+w, .y
=x?94+P Ry (160)
= x© 3,70,

. —=(n+1)
For the next iterate X, ",

system

we need to solve this linear

=(n+1
(Dn+1Tn+1) Y(n+ ) = 00€u11> (161)
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where, by (132) and (137), the coefficient matrix is

[ doay dofy 1
dioy dyay df5,
dyo, dya,  dyf3s

D, T, = ) (162)
ml T dn—30n—3 dn—3(xn—3 dn—3/3n—2
dn—Z Gn—Z dn—2 an—Z dn—Z ﬁn—l
dn—lan—l dn—l(xn—l dn—lﬁn
- dna" d"(x” = (n+1)x(n+1)
Multiplying Q,,_, times both sides of linear system (161), we
obtain this coeflicient matrix
[V 61 & ]
N 6 &
Y, 0 &
anl (Dn+1Tn+1) = (163)

Yn—3 871—2 En-1

Yn—2 8n—1 €n
?n—l 1//
L d,o,|d,«

n < (n+1)x(n+1)

The last columns in matrices (162) and (163) are related as To eliminate d,,0,,, we compute the nth Givens rotation matrix

n-n’
follows: Q,..;1 with
—2 2 ? — d 0,
Yn-1 = Vi1 + (dnan) > Cn = yn_l’ Sn = _%'

T -1 -1

Q,1,4[0,0,0,...0,0,0,0,d,,_1 B dyy] 11 " ”(165)
(164)
B dall Recall, by (23), that ¢/ + 57 = 1. Next, we multiply matrix
=[0,0,0,...0,0,0,¢,,y, ”(x"](nﬂ)xl' Q.1 times the coefficient matrix Q,,_,(D,,,;T,,), in (163),
[ % 0 & 1
N 6 &
Y2 0 &

Qn,n+1Qn—l (Dn+1Tn+1) = = I_{n+1' (166)

V-3 671—2 En-1
Yn-2 871—1 En

Yn-1 n

L Yn d(ne1)x(ns1)

Then multiplying matrix Q,,,,,, times the right-hand side =~ Looking at the last columns in (163) and (166), we see that
vector Q,,_,0,e,,,,, we obtain

— T
Qn,n+1 (Qn—laoen+l) = [CO’CI’ CZ’ e (”—Z’Zn_l’cn](wrl)xl Qn,n+1 [0, 0,0,...0,0,0, En Vs dn(xn](n+1)><1
(168)
=Z,1. =[0,0,0,...,0,0,0,¢,,8,,7,]".
(167) 0,0,-,0,0,0,€,, 0 Vol ueysr>
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where
(n—l = Cncn—l’ Cn = Sn(‘n—l'

Recall, by (23), ¢> +s> = L.
Before forming the iterate X
square problem (150)

(n+1)
sym

: T (n)
(Igelgn (Dn+1Tn+1) Y~ 008 ” .
y

‘We have

||Qn,n+1Qn—l (Dn+1Tn+ly(n) - ern+1)“

[ G ]
¢
G
_ R, y(ﬂ) | :
0,0,0,...,0,0,0] .\ '
(nfz
Cn—l
o Cﬂ = (n+1)x1
where
[ Y 61 & ]
1 6 &
Y, 05 &
R =
n Vin-a 871—3 €2
Yn-3 871—2 €n-1
Yn—2 8n—1
i VYn-1 < nxn
Next define

2" = [<0’C1’(2"'"Cn—3’cn—2’Cn—l]T><n'

Hence, y™ is the solution of this linear system
Rny(n) _ Z(n)’

which minimizes the expression

: T ()
min (DTt ) ¥ = g0
Yy

and then

Zn = ”(DnHTrﬁ—l)y(H) - aOe'H'l“ :

(169)

we consider this least

(170)

(171)

(172)

(173)

(174)

(175)

(176)
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If o, # 0, then y, # 0 and R, is nonsingular, and we can

solve linear system (174) for y™. We discuss the case o, = 0
later.

By (149), let

X = x© LWy

min

177)
=x¥+(w,,R;")z",
using (174). Here
W, =PR, (178)
0 (1) 2 -3 -2 -1
P, =[pp"p%,. . p" P p" P p" ] 179)
From (177) and (179), we have
(n) _ (0) ()
x =x +Pz"
(180)
-1 -1
= Xfrrllin) + nflp(n )’
where, by (172),
_ 1 _ _ _
P = (—) (WO =8,p" — e, 0" s
Yn—l
From (147), we obtain, by (159), (157), and (180),
R0 50 4w, g
=x”+w,(R;},z2"")
O (W) 2
(182)

- x® 13,7

=x94p,_ 2"+ 75"
= X + 80"

min

We note that ig;’zn is the estimated solution satisfying the

Galerkin condition, while

X =X+ W, 1y, (183)
where y(”) minimizes this expression
: T\ _
min, (D1 Tt ) ¥ = G| - (184)

Proposition 1. If o, = 0 and W™ = 0, then iﬁ;‘fn is the exact
() _ &)

solution of Au = b. Moreover, one obtains X;, = X,
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Proof. We consider the residual vector ¥

the iterate x(”) Then, by (147), we have

corresponding to

sym
=b-A(x"+w, 77)
(185)
= (b - Ax”) - (aw, ) 7"
(Awn 1)—(”
Here ?(”) satisfies (148) and we have
(D,T,)7" = ge, (186)
Tn?(n) = D;IGOen' (187)

Hence, starting from (185) and by using (134) and (187), we
have

= 1O _ (aw,_)§"

=% - (W,HT,, + onw(”)eZ) 7

(n) T—(n)

=f9-w,_, (Tn?(")) o,w ey

(n) [, T—(n)

o,w e,y (188)

=0 - W, (D;laoe )

(0) (0)

— oW (n) ,T—(n)

= 0yW -o,w'ey

= 0-o,w"e "

_ = (M
=—0,N,W

(0)

sincer'” = o,w'®. Here7, is the nth component of the vector

7(") X
Ifo, = 0, then ¥ = 0. Thus, we obtain xg;)n, which is the

exact solution. It follows from (165) that if o,, = 0, then

_ ?n—l _ {1’ )_/n—l > 0’
¢, = = = —
lyn—ll -1 Yn-1 <0, (189)
s, = 0.
Since
Xom =X+ W37, Ry =27,
(190)

X =X+ Wy Ry =27,
the only difference between R, and R,, is the (k, k)-entries,
whicharey, ; and y,_,, respectively. Let the nth components
of 7 and y™ be 7, and #,, respectively. It follows that both
matrices R, and R, are triangular, where 7, = {,_,/y,_, and
1, = G/, By (169), we have
ann—l Zn—l

o= k= el o (19)
h’n—ll Yn—l

15
Hence, we have
Y=y X =%, (192)
O
11. Final Notes
In the MGMRES method, we solve this linear system
1
(Tn+1Dn+1Tn+1)Y(HJr )= 00€1> (193)

while in the MMINRES method, we solve this linear system

1
(T Tn+1)}’(n+ )= D, 00€;.

n+l

(194)

Clearly, the MMINRES method and the MGMRES
method are the same when the diagonal matrix D,,,; is the
identity matrix I, .

See also Kincaid et al. [8].
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