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Two coupled nonlinear equations are derived describing the evolution of two broader bandwidth surface gravity wave packets
propagating in two different directions in deep water. The equations, being derived for broader bandwidth wave packets, are
applicable to more realistic ocean wave spectra in crossing sea states. The two coupled evolution equations derived here have been
used to investigate the instability of two uniform wave trains propagating in two different directions. We have shown in figures the
behaviour of the growth rate of instability of these uniform wave trains for unidirectional as well as for bidirectional perturbations.
The figures drawn here confirm the fact that modulational instability in crossing sea states with broader bandwidth wave packets
can lead to the formation of freak waves.

1. Introduction

The study of evolution of weakly nonlinear surface gravity
waves in crossing sea states has attracted considerable interest
in recent years. The reason is that the freak waves (freak
waves are extreme oceanic waves, also known as rogue waves
or giant waves or killer waves) are frequently observed in
crossing sea states, characterized by two different wave-train
systems. The extraordinarily large amplitude freak waves
generated in crossing sea states may even lead to ship
accidents (see [1, 2]). Several mechanisms (see [1, 3, 4])—
dispersion enhancement of transient wave groups, effect
of variable bathymetry, wave-current interaction, nonlin-
ear modulational instability, statistical approach with the
assumption of Gaussian wave field, and so forth—have been
suggested for the possible formation of such killer waves.
The problem of weakly nonlinear interaction between two
wave systems propagating in two different directions has been
studied by some authors ([5–7]) as a possible mechanism
resulting in freak wave generation. Onorato et al. [5] derived
two coupled nonlinear Schrödinger equations that describe
the nonlinear interaction of two weakly nonlinear, obliquely
propagating wave packets. By the use of these equations
they obtained an expression for the growth rate of instability

for unidirectional perturbation. Shukla et al. [6] extended
their result by plotting instability growth rate diagrams for
bidirectional perturbation. In both papers, stability analysis
has been performed with two coupled evolution equations,
correct up to third order in wave steepness. In Onorato et al.
[5] and also in Shukla et al. [6], it is concluded that freakwaves
can be formeddue toweakly nonlinear interaction in crossing
sea states. But it is well known that an evolution equation,
which is correct up to fourth order in wave steepness, gives
a more appropriate description of the dynamical behavior
of waves with sufficiently small wave steepness. The reason
is that, at fourth order, the wave-induced mean flow terms
appear and these terms modify considerably the growth rate
of instability ([8]).

Keeping this in view, Gramstad and Trulsen [9] have
derived two coupled modified nonlinear Schrödinger (here-
after referred to as CMNLS) equations that describe the
evolution of two two-dimensional narrow bandwave systems
with different directions of propagation. The corresponding
coupled evolution equations for broader bandwidth wave
packets in crossing sea state condition are derived in the
present paper. The importance of the assumption of broader
bandwidth wave packets lies in the fact that, in reality,
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the bandwidth of the ocean wave spectra often exceeds the
range of the narrow bandwidth condition. The evolution
equation for a single broader bandwidth wave packet was
first derived by Trulsen and Dysthe [10]. The order of the
bandwidth, for narrowbandwave packet, is taken as 𝜖, 𝜖 being
a measure of weakness of nonlinearity. Trulsen and Dysthe
[10] chose the order of bandwidth to be of𝑂(𝜖1/2) and derived
the evolution equation, correct up to 𝑂(𝜖7/2) terms. The
instability regions of a uniform Stokes wave in the perturbed
wavenumber plane obtained from this equation are found to
be in better agreement with the exact results of McLean et al.
[11]. An equation, which is one order higher than the equation
derived by Trulsen and Dysthe [10], was later derived by
Debsarma andDas [12], which is correct up to𝑂(𝜖4) terms. In
this paper, we have presented also the fourth order nonlinear
evolution equations in crossing sea states for narrow band
wave packets. These equations are in a form different from
those derived by Gramstad and Trulsen [9], in the sense that
the two equations do not involve the wave-induced mean
flow velocity potential explicitly.The two evolution equations
of Gramstad and Trulsen [9] can however be rewritten
as two equations that do not involve mean flow potential
terms explicitly by substituting mean flow potential terms
𝜙
𝑎
and 𝜙

𝑏
as given in (11) of Gramstad and Trulsen [9]. The

evolution equations of Gramstad and Trulsen [9] also have
certain advantages because of their Hamiltonian structure.
It is well known that the Hamiltonian structure provides a
systematic account of symmetries inherent to the problem
and of corresponding conservation laws (see [13]).

Using the two coupled nonlinear envelope equations
for both narrow and broader bandwidth wave packets, we
have investigated the stability of two obliquely propagating
uniform wave trains. It is observed that the growth rate of
instability in crossing sea states is much higher than that for
a single wave packet. Expectedly, it is found that the growth
rate of instability of one wave train becomes higher with
the increase of the amplitude of the second wave train. We
have also plotted figures showing a comparison between the
growth rate of instability for narrow and broader bandwidth
wave packets. It is also observed that the growth rate of
instability becomes higher when the angle of interaction
between two wave packets becomes smaller. Shrinkage is
observed in the unstable region in the perturbedwavenumber
plane when crossing sea states with broader bandwidth wave
packets is considered.

2. Derivation of Evolution Equations

Taking 𝑥𝑦-plane as the undisturbed free water surface,
we consider propagation of two wave packets centered at
wavenumbers ⃗

𝑘
𝑎
= (𝑘, 𝑙) and ⃗

𝑘
𝑏
= (𝑘, −𝑙), respectively.

Both waves have the same linear frequency 𝜔
𝑐
= √𝑔𝑘

𝑐
,

where 𝑘
𝑐
= |

⃗
𝑘
𝑎
| = |

⃗
𝑘
𝑏
| and 𝑔 is the acceleration due to

gravity. The two wave packets are meeting at an angle 2𝜃.
To derive envelope equations we have followed the standard

methodology that starts with Zakharov [14] integral equation
in the spatial dimensions as follows:

𝑖
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(1)

whereB( ⃗𝑘, 𝑡) is related to the free surface elevation 𝜁(�⃗�, 𝑡) by
the following equation:

𝜁 (�⃗�, 𝑡) =

1

2𝜋

∫

∞

−∞

[

[
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𝑘







2𝜔 (
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]

]

1/2

× [B (
⃗
𝑘, 𝑡) exp {𝑖 [ ⃗𝑘 ⋅ �⃗� − 𝜔 ( ⃗𝑘) 𝑡]}

+ 𝑐.𝑐.] 𝑑
⃗
𝑘.

(2)

Here 𝑐.𝑐. denotes complex conjugate and B∗ = 𝑐.𝑐. of
B. The kernel function 𝑇(

⃗
𝑘,

⃗
𝑘
1
,
⃗
𝑘
2
,
⃗
𝑘
3
) was first given by

Zakharov [14] and, later on, its expression that corresponds
exactly to the Hamiltonian was derived by Krasitskii [15].
Because of the presence of the factor 𝛿( ⃗𝑘 + ⃗

𝑘
1
−
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2
−
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𝑘
3
) in
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of the envelope equation of first wave packet having carrier
wavenumber vector ⃗

𝑘
𝑎
we take ⃗
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for the derivation of the second envelope equation we take
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the spectral widths | ⃗𝜒|/𝑘
𝑐
, | ⃗𝜒
𝑗
|/𝑘
𝑐
are of order𝑂(𝜖) for narrow

band wave packet and of order 𝑂(𝜖1/2) for broad band wave
packet, 𝜖 being the order of smallness of wave steepness. The
process of derivation of envelope equations adapted here is
similar to the process of derivation of evolution equations for
a surface gravity wave packet in the presence of another wave
packet described in Debsarma and Das [16].

Finally, the envelope equations are written in terms of 𝑎
1

and 𝑎
2
which are the complex amplitudes of the two wave

envelopes given by
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Hereafter, the equations are written using the following
dimensionless quantities:

𝑎
1
= 𝑘
𝑐
𝑎
1
, 𝑎

2
= 𝑘
𝑐
𝑎
2
, 𝑥 = 𝑘

𝑐
𝑥,

𝑦 = 𝑘
𝑐
𝑦, �̃� = 𝜔

𝑐
𝑡,

(5)

and finally (̃) notation has been dropped out.
The two CMNLS equations for broader bandwidth wave

packets, correct up to order𝑂(𝜖7/2) in wave steepness, are the
following:
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�⃗� −

⃗
𝜉







3
𝑓 (𝜉, 𝜂) 𝑑𝜉 𝑑𝜂.

(7)

The coefficients 𝛽
𝑖
’s, 𝜆
𝑖
’s, and 𝜇

𝑖
’s are given in Appendix A.

When the terms within third bracket on left-hand side of
(6) are omitted, the resulting equations become CMNLS
equations for narrow band wave packets, correct up
to fourth order in wave steepness. The coefficients
𝛽
1
, 𝛽
2
, 𝛽
3
, 𝛽
4
, 𝛽
5
, 𝜆
1
, and 𝜇

1
are in agreement with the

corresponding coefficients in Shukla et al. [6].
Setting 𝑎

2
= 0 in the envelope equation (4) we can recover

the single envelope equation for a single surface gravity wave
packet with carrier wavenumber ⃗

𝑘
𝑎
.

3. Stability Analysis

Two obliquely propagating Stokes wave trains as obtained
from envelope equations (6) are

𝑎
1
= 𝑎
10
𝑒
−𝑖(𝜆
1
𝑎
2

10
+𝜇
1
𝑎
2

20
)𝑡
≡ 𝑎
(0)

1
,

𝑎
2
= 𝑎
20
𝑒
−𝑖(𝜆
1
𝑎
2

20
+𝜇
1
𝑎
2

10
)𝑡
≡ 𝑎
(0)

2
,

(8)

where 𝑎
10
and 𝑎
20
are real constants.

In order to study the effect of fourth order nonlinearity
on the stability properties of the above two interacting wave
trains, we introduce the following infinitesimal perturbation:

𝑎
1
= 𝑎
(0)

1
(1 + 𝑎



1
) ,

𝑎
2
= 𝑎
(0)

2
(1 + 𝑎



2
) .

(9)

We now substitute (9) in the envelope equations (6) and
linearize with respect to perturbed quantities. Assuming
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Figure 1: Growth rate of instability 𝐺
𝑟
= Im(Ω) against perturbation wavenumber 𝐿 for 𝜃 = 15∘—for narrow band wave packets at fourth

order: — 𝑎
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= 0.15, - - - - - 𝑎
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20
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𝑎


1
= 𝑎


1𝑟
+ 𝑖𝑎


1𝑖
and 𝑎

2
= 𝑎


2𝑟
+ 𝑖𝑎


2𝑖
, where 𝑎

1𝑟
, 𝑎
1𝑖
, 𝑎
2𝑟
, and

𝑎


2𝑖
are real, and then separating into real and imaginary parts

we get four coupled equations in 𝑎
1𝑟
, 𝑎
1𝑖
, 𝑎
2𝑟
, and 𝑎

2𝑖
. Then

taking Fourier transform of these four equations with respect
to space variables 𝑥 and 𝑦 defined according to

̂
𝑓 =

1

2𝜋

∫∫

∞

−∞

𝑓 (𝑥, 𝑦) 𝑒
−𝑖(𝐿𝑥+𝑀𝑦)

𝑑𝑥 𝑑𝑦 (10)

and assuming time dependence of the perturbed quantities
𝑎
1𝑟
, 𝑎
1𝑖
, 𝑎
2𝑟
, and 𝑎

2𝑖
to be of the form exp(−𝑖Ω𝑡), we obtain

finally the following system of four equations:

− (𝐴
+
+ 𝐵
+
) 𝑎


1𝑟
+ 𝑖 (Ω −𝑊

+
− 𝐶
+
) 𝑎


1𝑖
− 𝐷𝑎
2

20
𝑎


2𝑟

+ 𝑖 (𝐸
−
− 𝐹
−
) 𝑎
2

20
𝑎


2𝑖
= 0,

(11)

(Ω −𝑊
+
+ 𝐶
+
) 𝑎


1𝑟
− 𝑖𝐵
+
𝑎


1𝑖
+ (𝐸
+
+ 𝐹
+
) 𝑎
2

20
𝑎


2𝑟
= 0, (12)

− 𝐷𝑎
2

10
𝑎


1𝑟
+ 𝑖 (𝐸

−
+ 𝐹
−
) 𝑎
2

10
𝑎


1𝑖
− (𝐴
−
+ 𝐵
−
) 𝑎


2𝑟

+ 𝑖 (Ω −𝑊
−
− 𝐶
−
) 𝑎


2𝑖
= 0,

(13)

(𝐸
+
− 𝐹
+
) 𝑎
2

10
𝑎


1𝑟
+ (Ω −𝑊

−
+ 𝐶
−
) 𝑎


2𝑟
− 𝑖𝐵
−
𝑎


2𝑖
= 0. (14)

The condition of nontrivial solution of the above system
gives the following biquadratic dispersion relation:

[(Ω −𝑊
+
)
2

− 𝑆
+
] [(Ω −𝑊

−
)
2

− 𝑆
−
]

= 𝑃 (Ω −𝑊
+
) (Ω −𝑊

−
) − 𝑄
+
(Ω −𝑊

+
)

− 𝑄
−
(Ω −𝑊

−
) + 𝑅.

(15)

The coefficients 𝐴
±
, 𝐵
±
, 𝐶
±
, 𝐷, 𝐸

±
, 𝐹
±
, 𝑃, 𝑄

±
, 𝑅, 𝑆
±
, and𝑊

±

are given in Appendix B. The subscripts (±) are used just for
convenience of writing the coefficients.

We have plotted growth rate of instability 𝐺
𝑟
= Im(Ω)

both for unidirectional and bidirectional perturbations. In
Figures 1–4, growth rate of instability 𝐺

𝑟
is plotted against

𝐿, 𝐿 being perturbation wavenumber along 𝑥-direction. In
Figure 1, it is observed that the growth rate of instability for
two obliquely interacting wave packets is much higher than
that for a single wave packet. This is true at third order and
also at fourth order. Figure 2 shows that there is an increase
in the growth rate of instability of one wave packet when
the amplitude of the other wave packet increases. Figure 3
shows a comparison between the growth rate of instability
for narrow band wave packets and that of broader bandwidth
wave packets. From Figure 3 it is revealed that the growth
rate of instability in crossing sea states is much higher than
that for a single wave packet having broader bandwidth. In
Figure 4 we can observe the variation in 𝐺

𝑟
with respect to

𝜃 for broader bandwidth wave packets when 𝑎
10
= 0.18 and

𝑎
20
= 0.15.The figure shows that the growth rate of instability

is higher when the angle of interaction between the two wave
packets is smaller.

Solving the dispersion relation (15) numerically, we
have plotted instability growth rate curves in perturbed
wavenumber plane. In Figures 5, 6, 7, and 8, we have shown
contour plots for instability growth rate for bidirectional
perturbations. In Figures 5–7, amplitudes of the two uniform
wave trains are considered equal, while in Figure 8, the
amplitudes are different. It is known from the investigations
of Trulsen and Dysthe [10] and Debsarma and Das [12, 17]
that the stability analysis made from higher order evolution
equation for broader bandwidth wave packets gives more
accurate results. Comparing the upper row figures with the
corresponding lower row figures in Figures 5–8, we see that
there is little shrinkage in the instability region for broader
bandwidth wave packets.

4. Conclusion

Keeping in view the importance of higher order evolution
equations valid for broad band wave packets, we have derived
here two coupled nonlinear evolution equations for broader
bandwidth surface gravity wave packets under the crossing
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sea states assumption. The evolution equations derived here
in crossing sea states can be considered as an extension
of the evolution equation for a single broader bandwidth
wave packet derived by Trulsen and Dysthe [10]. Using
the evolution equations derived here we have also carried
out stability analysis of two obliquely interacting uniform
wave trains. Results obtained here are in agreement with
the corresponding results of Shukla et al. [6] at third order
with narrow band wave assumption. Modifications in the
instability growth rates with the assumption of broader
bandwidth wave packets are shown graphically in this paper.
It is found that the growth rate of instability in a situation
of crossing sea states is much higher than that for a single
wave packet even for broader bandwidth wave packets. So,
generation of freak waves due to nonlinear interaction of
broader bandwidth wave packets in crossing sea states is
confirmed. It is also found that the growth rate of instability
is higher when the angle of interaction between the two wave
packets is smaller. Comparing the stable-unstable regions
for broader bandwidth wave packets with those for narrow
bandwidth wave packets, we see that there is little shrinkage
in the instability region for broader bandwidth wave packets.

Appendices

A. Coefficients of the Evolution Equations
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𝛽
1
=

𝑘

2𝑘
𝑐

, 𝛽
2
=

𝑙

2𝑘
𝑐

, 𝛽
3
=

2𝑙
2
− 𝑘
2

8𝑘
2

𝑐

,

𝛽
4
= −

3𝑘𝑙

4𝑘
2

𝑐

, 𝛽
5
=

2𝑘
2
− 𝑙
2

8𝑘
2

𝑐

,

𝛽
6
=

6𝑘𝑙
2
− 𝑘
3

16𝑘
3

𝑐

, 𝛽
7
=

6𝑙
3
− 15𝑘

2
𝑙

16𝑘
3

𝑐

,

𝛽
8
=

6𝑘
3
− 15𝑘𝑙

2

16𝑘
3

𝑐

, 𝛽
9
=

6𝑘
2
𝑙 − 𝑙
3

16𝑘
3

𝑐

,

𝛽
10
=

5𝑘
4
− 60𝑘

2
𝑙
2
+ 12𝑙
4

128𝑘
4

𝑐

, 𝛽
11
=

35𝑘
3
𝑙 − 42𝑘𝑙

3

32𝑘
4

𝑐

,

𝛽
12
=

−30𝑘
4
+ 171𝑘

2
𝑙
2
− 30𝑙
4

64𝑘
4

𝑐

, 𝛽
13
=

−42𝑘
3
𝑙 + 35𝑘𝑙

3

32𝑘
4

𝑐

,

𝛽
14
=

12𝑘
4
− 60𝑘

2
𝑙
2
+ 5𝑙
4

128𝑘
4

𝑐

,

𝛽
15
=

7𝑘
5
− 140𝑘

3
𝑙
2
+ 84𝑘𝑙

4

256𝑘
5

𝑐

,

𝛽
16
=

315𝑘
4
𝑙 − 756𝑘

2
𝑙
3
+ 84𝑙
5

256𝑘
5

𝑐

,

𝛽
17
=

−70𝑘
5
+ 707𝑘

3
𝑙
2
− 378𝑘𝑙

4

128𝑘
5

𝑐

,

𝛽
18
=

−70𝑙
5
+ 707𝑘

2
𝑙
3
− 378𝑘

4
𝑙

128𝑘
5

𝑐

,

𝛽
19
=

84𝑘
5
− 756𝑘

3
𝑙
2
+ 315𝑘𝑙

4

256𝑘
5

𝑐

,

𝛽
20
=

7𝑙
5
− 140𝑘

2
𝑙
3
+ 84𝑘

4
𝑙

256𝑘
5

𝑐

,

𝜆
1
=

1

2

, 𝜆
2
= −

3𝑘

2𝑘
𝑐

, 𝜆
3
= −

3𝑙

2𝑘
𝑐

,

𝜆
4
= −

𝑘

4𝑘
𝑐

, 𝜆
5
= −

𝑙

4𝑘
𝑐

𝜆
6
=

1

2

(1 +

𝑘
2

𝑘
2

𝑐

) , 𝜆
7
=

1

2

(1 +

𝑙
2

𝑘
2

𝑐

) , 𝜆
8
=

𝑘𝑙

𝑘
2

𝑐

,

𝜇
1
=

1

𝑘
4

𝑐
(𝑘 − 2𝑘

𝑐
)

[𝑘
5
− 𝑘
3
𝑙
2
− 3𝑘𝑙
4
− 2𝑘
𝑐
(𝑘
4
− 𝑘
2
𝑙
2
− 𝑙
4
)] ,

𝜇
2
= −

1

4𝑘
5

𝑐
(𝑘 − 2𝑘

𝑐
)
2
[30𝑘
7
+ 54𝑘

5
𝑙
2
+ 18𝑘

3
𝑙
4
− 8𝑘𝑙
6

− 8𝑘
𝑐
(3𝑘
6
+ 3𝑘
4
𝑙
2
− 𝑙
6
)] ,

𝜇
3
= −

𝑘

2𝑘
5

𝑐
(𝑘 − 2𝑘

𝑐
)

[𝑘
5
− 𝑘
3
𝑙
2
− 3𝑘𝑙
4

− 2𝑘
𝑐
(𝑘
4
− 𝑘
2
𝑙
2
− 𝑙
4
)] ,

𝜇
4
=

1

2𝑘
5

𝑐
(𝑘 − 2𝑘

𝑐
)
2
[(15𝑘

6
𝑙 + 45𝑘

4
𝑙
3
+ 41𝑘

2
𝑙
5
+ 12𝑙
7
)

− 4𝑘
𝑐
(3𝑘
5
𝑙 + 9𝑘

3
𝑙
3
+ 5𝑘𝑙
5
)] ,

𝜇
5
=

1

2𝑘
5

𝑐
(𝑘 − 2𝑘

𝑐
)

[2𝑘
5
𝑙 + 10𝑘

3
𝑙
3
+ 7𝑘𝑙
5

− 𝑘
𝑐
(4𝑘
4
𝑙 + 10𝑘

2
𝑙
3
+ 6𝑙
5
)] ,

𝜇
6
= −

1

2𝑘
5

𝑐
(𝑘 − 2𝑘

𝑐
)
2
[10𝑘
6
𝑙 + 6𝑘

4
𝑙
3
− 9𝑘
2
𝑙
5
− 4𝑙
7

− 2𝑘
𝑐
(4𝑘
5
𝑙 + 𝑘
3
𝑙
3
− 4𝑘𝑙
5
)] ,

𝜇
7
=

𝑘
2

2𝑘
2

𝑐

, 𝜇
8
= −

𝑙
2

2𝑘
2

𝑐

.

(A.1)
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