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We present some new sharpened versions of Aczél-type inequality. Moreover, as applications, some refinements of integral type of
Aczél-type inequality are given.

1. Introduction

Let 𝑛 be a positive integer, and let 𝑎
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. (1)

Aczél’s inequality plays a very important role in the
theory of functional equations in non-Euclidean geometry.
Due to the importance of Aczél’s inequality (1), it has
received considerable attention by many authors and has
motivated a large number of research papers giving it various
generalizations, improvements, and applications (see [2–21]
and the references therein).

In 1959, Popoviciu [10] first obtained an exponential
extension of the Aczél inequality as follows.

Theorem B. Let 𝑝 ≥ 𝑞 > 1, (1/𝑝) + (1/𝑞) = 1, and let 𝑎
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Later, in 1982, Vasić and Pečarić [16] established the
following reversed version of inequality (2).

Theorem C. Let 𝑞 < 0, 𝑝 > 0, (1/𝑝) + (1/𝑞) = 1, and let 𝑎
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In another paper, Vasić and Pečarić [15] generalized
inequality (2) in the following form.
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In 2012, Tian [13] presented the reversed version of
inequality (4) as follows.
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Moreover, in [13] Tian established an integral type of
inequality (5).
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Theorem F. Let 𝛽
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Remark 1. In fact, the integral form of inequality (4) is also
valid; that is, one has the following.
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Themain purpose of this work is to give new refinements
of inequalities (4) and (5). As applications, new refinements
of inequalities (6) and (7) are also given.

2. Refinements of Aczél-Type Inequality

In order to present our main results, we need some lemmas
as follows.

Lemma 2 (see [6]). Let 𝑎
𝑖
, 𝑥
𝑖

(𝑖 = 1, 2, . . . , 𝑛) be real numbers
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Lemma 4 (see [18]). Let 0 ≤ 𝑥 < 1, 𝛼 > 0. Then
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Case (I) (let𝑚 be even). In view of (1/𝛽
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]
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1
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𝛽2

2
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𝛽2

2
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1
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1
) + 𝑥
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1/𝛽1−1/𝛽2
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...
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𝑚−1
) + 𝑥
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𝑚
]

1/𝛽𝑚

[(1 − 𝑥
𝛽𝑚

𝑚
) + 𝑥
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]

1/𝛽𝑚



Journal of Applied Mathematics 3

× [(1 − 𝑥
𝛽𝑚−1

𝑚−1
) + 𝑥
𝛽𝑚−1

𝑚−1
]

1/𝛽𝑚−1−1/𝛽𝑚

≥

𝑚/2

∏

𝑗=1

[(1 − 𝑥

𝛽2𝑗−1

2𝑗−1
)

1/𝛽2𝑗

(1 − 𝑥

𝛽2𝑗

2𝑗
)

1/𝛽2𝑗

× (1 − 𝑥

𝛽2𝑗−1

2𝑗−1
)

1/𝛽2𝑗−1−1/𝛽2𝑗

]

+

𝑚/2

∏

𝑗=1

[(𝑥

𝛽2𝑗

2𝑗
)

1/𝛽2𝑗

(𝑥

𝛽2𝑗−1

2𝑗−1
)

1/𝛽2𝑗

× (𝑥

𝛽2𝑗−1

2𝑗−1
)

1/𝛽2𝑗−1−1/𝛽2𝑗

]

=

𝑚/2

∏

𝑗=1

(1 − 𝑥

𝛽𝑗

𝑗
)

1/𝛽𝑗

+

𝑚

∏

𝑗=1

𝑥
𝑗
.

(15)

On the other hand, applying Lemma 4 and the
arithmetic-geometric means inequality we obtain

𝑚/2

∏

𝑗=1

[1 − (𝑥

𝛽2𝑗

2𝑗
− 𝑥

𝛽2𝑗−1

2𝑗−1
)

2

]

1/𝛽2𝑗

≤

𝑚/2

∏

𝑗=1

[1 −

1

max {𝛽
2𝑗

, 1}

(𝑥

𝛽2𝑗

2𝑗
− 𝑥

𝛽2𝑗−1

2𝑗−1
)

2

]

≤

{

{

{

2

𝑚

𝑚/2

∑

𝑗=1

[1 −

1

max {𝛽
2𝑗

, 1}

(𝑥

𝛽2𝑗

2𝑗
− 𝑥

𝛽2𝑗−1

2𝑗−1
)

2

]

}

}

}

𝑚/2

=

{

{

{

1 −

2

𝑚

𝑚/2

∑

𝑗=1

[

1

max {𝛽
2𝑗

, 1}

(𝑥

𝛽2𝑗

2𝑗
− 𝑥

𝛽2𝑗−1

2𝑗−1
)

2

]

}

}

}

𝑚/2

.

(16)

Applying Lemma 4 again, we get

{

{

{

1 −

2

𝑚

𝑚/2

∑

𝑗=1

[

1

max {𝛽
2𝑗

, 1}

(𝑥

𝛽2𝑗

2𝑗
− 𝑥

𝛽2𝑗−1

2𝑗−1
)

2

]

}

}

}

𝑚/2

≤ 1 −

2

𝑚

𝑚/2

∑

𝑗=1

[

1

max {𝛽
2𝑗

, 1}

(𝑥

𝛽2𝑗

2𝑗
− 𝑥

𝛽2𝑗−1

2𝑗−1
)

2

] .

(17)

Combining (15), (16), and (17) yields immediately
inequality (13).

Case (II) (let 𝑚 be odd). In view of (1/𝛽
1

− 1/𝛽
2
) + 1/𝛽

2
+

1/𝛽
2

+ (1/𝛽
3

− 1/𝛽
4
) + 1/𝛽

4
+ 1/𝛽
4

+ ⋅ ⋅ ⋅ + (1/𝛽
𝑚−2

− 1/𝛽
𝑚−1

) +

1/𝛽
𝑚−1

+ 1/𝛽
𝑚−1

+ 1/𝛽
𝑚

= 1/𝛽
1

+ 1/𝛽
2

+ ⋅ ⋅ ⋅ + 1/𝛽
𝑚

≥ 1, by
using inequality (9), we have

(𝑚−1)/2

∏

𝑗=1

[1 − (𝑥

𝛽2𝑗

2𝑗
− 𝑥

𝛽2𝑗−1

2𝑗−1
)

2

]

1/𝛽2𝑗

=

{

{

{

(𝑚−1)/2

∏

𝑗=1

[1 − (𝑥

𝛽2𝑗

2𝑗
− 𝑥

𝛽2𝑗−1

2𝑗−1
)

2

]

1/𝛽2𝑗}

}

}

× [(1 − 𝑥
𝛽𝑚

𝑚
) + 𝑥
𝛽𝑚

𝑚
]

1/𝛽𝑚

=

{

{

{

(𝑚−1)/2

∏

𝑗=1

{[(1 − 𝑥

𝛽2𝑗−1

2𝑗−1
) + 𝑥

𝛽2𝑗

2𝑗
]

1/𝛽2𝑗

× [(1 − 𝑥

𝛽2𝑗

2𝑗
) + 𝑥

𝛽2𝑗−1

2𝑗−1
]

1/𝛽2𝑗

× [(1 − 𝑥

𝛽2𝑗−1

2𝑗−1
) + 𝑥

𝛽2𝑗−1

2𝑗−1
]

1/𝛽2𝑗−1−1/𝛽2𝑗

}

}

}

}

× [(1 − 𝑥
𝛽𝑚

𝑚
) + 𝑥
𝛽𝑚

𝑚
]

1/𝛽𝑚

≥

{

{

{

(𝑚−1)/2

∏

𝑗=1

[(1 − 𝑥

𝛽2𝑗−1

2𝑗−1
)

1/𝛽2𝑗

(1 − 𝑥

𝛽2𝑗

2𝑗
)

1/𝛽2𝑗

(1 − 𝑥

𝛽2𝑗−1

2𝑗−1
)

1/𝛽2𝑗−1−1/𝛽2𝑗

]

}

}

}

(1 − 𝑥
𝛽𝑚

𝑚
)

1/𝛽𝑚

+

{

{

{

(𝑚−1)/2

∏

𝑗=1

[(𝑥

𝛽2𝑗

2𝑗
)

1/𝛽2𝑗

(𝑥

𝛽2𝑗−1

2𝑗−1
)

1/𝛽2𝑗

× (𝑥

𝛽2𝑗−1

2𝑗−1
)

1/𝛽2𝑗−1−1/𝛽2𝑗

]

}

}

}

(𝑥
𝛽𝑚

𝑚
)

1/𝛽𝑚

=

𝑚

∏

𝑗=1

(1 − 𝑥

𝛽𝑗

𝑗
)

1/𝛽𝑗

+

𝑚

∏

𝑗=1

𝑥
𝑗
.

(18)

On the other hand, applying Lemma 4 and the arithmetic-
geometric means inequality we obtain

(𝑚−1)/2

∏

𝑗=1

[1 − (𝑥

𝛽2𝑗

2𝑗
− 𝑥

𝛽2𝑗−1

2𝑗−1
)

2

]

1/𝛽2𝑗

≤

(𝑚−1)/2

∏

𝑗=1

[1 −

1

max {𝛽
2𝑗

, 1}

(𝑥

𝛽2𝑗

2𝑗
− 𝑥

𝛽2𝑗−1

2𝑗−1
)

2

]
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≤

{

{

{

2

𝑚 − 1

(𝑚−1)/2

∑

𝑗=1

[1 −

1

max {𝛽
2𝑗

, 1}

× (𝑥

𝛽2𝑗

2𝑗
− 𝑥

𝛽2𝑗−1

2𝑗−1
)

2

]

}

}

}

(𝑚−1)/2

=

{

{

{

1 −

2

𝑚 − 1

(𝑚−1)/2

∑

𝑗=1

[

1

max {𝛽
2𝑗

, 1}

× (𝑥

𝛽2𝑗

2𝑗
− 𝑥

𝛽2𝑗−1

2𝑗−1
)

2

]

}

}

}

(𝑚−1)/2

.

(19)

Applying Lemma 4 again, we have

{

{

{

1 −

2

𝑚 − 1

(𝑚−1)/2

∑

𝑗=1

[

1

max {𝛽
2𝑗

, 1}

(𝑥

𝛽2𝑗

2𝑗
− 𝑥

𝛽2𝑗−1

2𝑗−1
)

2

]

}

}

}

(𝑚−1)/2

≤ 1 −

2

𝑚 − 1

(𝑚−1)/2

∑

𝑗=1

[

1

max {𝛽
2𝑗

, 1}

(𝑥

𝛽2𝑗

2𝑗
− 𝑥

𝛽2𝑗−1

2𝑗−1
)

2

] .

(20)

Hence, combining (18), (19), and (20) yields immediately
inequality (13).

Similar to the proof of Lemma 5 but using Lemma 2
in place of Lemma 4, we immediately obtain the following
result.

Lemma 6. Let 𝛽
1

> 0, 0 > 𝛽
2

≥ 𝛽
3

≥ ⋅ ⋅ ⋅ ≥ 𝛽
𝑚
, ∑
𝑚

𝑗=1
(1/𝛽
𝑗
) ≤

1, 𝑚 ≥ 2, let 0 < 𝑥
1

< 1, 𝑥
𝑗

> 1 (𝑗 = 2, 3, . . . , 𝑚), and let
𝜉(𝑚) = {

𝑚/2 if 𝑚 even
(𝑚−1)/2 if 𝑚 odd .

Then

𝑚

∏

𝑗=1

(1 − 𝑥

𝛽𝑗

𝑗
)

1/𝛽𝑗

+

𝑚

∏

𝑗=1

𝑥
𝑗

≥ 1 −

𝜉(𝑚)

∑

𝑗=1

(𝑥

𝛽2𝑗

2𝑗
− 𝑥

𝛽2𝑗−1

2𝑗−1
)

2

𝛽
2𝑗

.
(21)

Using the same methods as in Lemma 6, we get the
following Lemma.

Lemma 7. Let 0 > 𝛽
1

≥ 𝛽
2

≥ ⋅ ⋅ ⋅ ≥ 𝛽
𝑚
, 𝑚 ≥ 2, let 𝑥

𝑗
> 1 (𝑗 =

1, 2, . . . , 𝑚), and let 𝜉(𝑚) = {
𝑚/2 if 𝑚 even
(𝑚−1)/2 if 𝑚 odd .

Then

𝑚

∏

𝑗=1

(1 − 𝑥

𝛽𝑗

𝑗
)

1/𝛽𝑗

+

𝑚

∏

𝑗=1

𝑥
𝑗

≥ 1 −

𝜉(𝑚)

∑

𝑗=1

(𝑥

𝛽2𝑗

2𝑗
− 𝑥

𝛽2𝑗−1

2𝑗−1
)

2

𝛽
2𝑗

.
(22)

Now, we present some new refinements of inequalities (4)
and (5).

Theorem 8. Let 𝑎
𝑟𝑗

> 0, 𝑟 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚, 𝑚 ≥

2, 𝑛 ≥ 2, let 0 < 𝛽
1

≤ 𝛽
2

≤ ⋅ ⋅ ⋅ ≤ 𝛽
𝑚
, ∑
𝑚

𝑗=1
(1/𝛽
𝑗
) ≥ 1,

𝑎

𝛽𝑗

1𝑗
− ∑
𝑛

𝑟=2
𝑎

𝛽𝑗

𝑟𝑗
> 0, and let 𝜉(𝑚) = {

𝑚/2 if 𝑚 even
(𝑚−1)/2 if 𝑚 odd .

Then
𝑚

∏

𝑗=1

(𝑎

𝛽𝑗

1𝑗
−

𝑛

∑

𝑟=2

𝑎

𝛽𝑗

𝑟𝑗
)

1/𝛽𝑗

≤

𝑚

∏

𝑗=1

𝑎
1𝑗

−

𝑛

∑

𝑟=2

𝑚

∏

𝑗=1

𝑎
𝑟𝑗

−

𝑎
11

𝑎
12

. . . 𝑎
1𝑚

𝜉 (𝑚)

×

𝜉(𝑚)

∑

𝑗=1

{
{
{

{
{
{

{

1

max {𝛽
2𝑗

, 1}

×
[

[

[

𝑛

∑

𝑟=2

(

𝑎

𝛽2𝑗

𝑟(2𝑗)

𝑎

𝛽2𝑗

1(2𝑗)

−

𝑎

𝛽2𝑗−1

𝑟(2𝑗−1)

𝑎

𝛽2𝑗−1

1(2𝑗−1)

)
]

]

]

2

}
}
}

}
}
}

}

.

(23)

Proof. From the assumptions we find that

0 <

(𝑎

𝛽𝑗

1𝑗
− ∑
𝑛

𝑟=2
𝑎

𝛽𝑗

𝑟𝑗
)

1/𝛽𝑗

(𝑎

𝛽𝑗

1𝑗
)

1/𝛽𝑗
< 1 (𝑗 = 1, 2, . . . , 𝑚) . (24)

Thus, by using Lemma 5with a substitution 𝑥
𝑗

→ ((𝑎

𝛽𝑗

1𝑗
−

∑
𝑛

𝑟=2
𝑎

𝛽𝑗

𝑟𝑗
)/𝑎

𝛽𝑗

1𝑗
)
1/𝛽𝑗

(𝑗 = 1, 2, . . . , 𝑚) in (13), we obtain

𝑚

∏

𝑗=1

(

∑
𝑛

𝑟=2
𝑎

𝛽𝑗

𝑟𝑗

𝑎

𝛽𝑗

1𝑗

)

1/𝛽𝑗

+

𝑚

∏

𝑗=1

(

𝑎

𝛽𝑗

1𝑗
− ∑
𝑛

𝑟=2
𝑎

𝛽𝑗

𝑟𝑗

𝑎

𝛽𝑗

1𝑗

)

1/𝛽𝑗

≤ 1 −

1

𝜉 (𝑚)

𝜉(𝑚)

∑

𝑗=1

{
{
{
{

{
{
{
{

{

1

max {𝛽
2𝑗

, 1}

×
[

[

[

(1 −

∑
𝑛

𝑟=2
𝑎

𝛽2𝑗

𝑟(2𝑗)

𝑎

𝛽2𝑗

1(2𝑗)

)

− (1 −

∑
𝑛

𝑟=2
𝑎

𝛽2𝑗−1

𝑟(2𝑗−1)

𝑎

𝛽2𝑗−1

1(2𝑗−1)

)
]

]

]

2

}
}
}

}
}
}

}

= 1 −

1

𝜉 (𝑚)

𝜉(𝑚)

∑

𝑗=1

{
{
{

{
{
{

{

1

max {𝛽
2𝑗

, 1}

×
[

[

[

𝑛

∑

𝑟=2

(

𝑎

𝛽2𝑗

𝑟(2𝑗)

𝑎

𝛽2𝑗

1(2𝑗)

−

𝑎

𝛽2𝑗−1

𝑟(2𝑗−1)

𝑎

𝛽2𝑗−1

1(2𝑗−1)

)
]

]

]

2

}
}
}

}
}
}

}

,

(25)
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which implies

𝑚

∏

𝑗=1

(𝑎

𝛽𝑗

1𝑗
−

𝑛

∑

𝑟=2

𝑎

𝛽𝑗

𝑟𝑗
)

1/𝛽𝑗

≤

𝑚

∏

𝑗=1

𝑎
1𝑗

−

𝑚

∏

𝑗=1

(

𝑛

∑

𝑟=2

𝑎

𝛽𝑗

𝑟𝑗
)

1/𝛽𝑗

−

𝑎
11

𝑎
12

. . . 𝑎
1𝑚

𝜉 (𝑚)

×

𝜉(𝑚)

∑

𝑗=1

{
{
{

{
{
{

{

1

max {𝛽
2𝑗

, 1}

×
[

[

[

𝑛

∑

𝑟=2

(

𝑎

𝛽2𝑗

𝑟(2𝑗)

𝑎

𝛽2𝑗

1(2𝑗)

−

𝑎

𝛽2𝑗−1

𝑟(2𝑗−1)

𝑎

𝛽2𝑗−1

1(2𝑗−1)

)
]

]

]

2

}
}
}

}
}
}

}

.

(26)

On the other hand, we get from Lemma 3 that

𝑚

∏

𝑗=1

(

𝑛

∑

𝑟=2

𝑎

𝛽𝑗

𝑟𝑗
)

1/𝛽𝑗

≥

𝑛

∑

𝑟=2

𝑚

∏

𝑗=1

𝑎
𝑟𝑗

. (27)

Combining (26) and (27) yields immediately the desired
inequality (23).

Theorem 9. Let 𝑎
𝑟𝑗

> 0, 0 > 𝛽
1

≥ 𝛽
2

≥ ⋅ ⋅ ⋅ ≥ 𝛽
𝑚
, 𝑎

𝛽𝑗

1𝑗
−

∑
𝑛

𝑟=2
𝑎

𝛽𝑗

𝑟𝑗
> 0, 𝑟 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑚, let 𝑚 ≥ 2, 𝑛 ≥ 2,

and let 𝜉(𝑚) = {
𝑚/2 if 𝑚 even
(𝑚−1)/2 if 𝑚 odd .

Then

𝑚

∏

𝑗=1

(𝑎

𝛽𝑗

1𝑗
−

𝑛

∑

𝑟=2

𝑎

𝛽𝑗

𝑟𝑗
)

1/𝛽𝑗

≥

𝑚

∏

𝑗=1

𝑎
1𝑗

−

𝑛

∑

𝑟=2

𝑚

∏

𝑗=1

𝑎
𝑟𝑗

− 𝑎
11

𝑎
12

, . . . , 𝑎
1𝑚

×

𝜉(𝑚)

∑

𝑗=1

{
{
{

{
{
{

{

1

𝛽
2𝑗

[

[

[

𝑛

∑

𝑟=2

(

𝑎

𝛽2𝑗

𝑟(2𝑗)

𝑎

𝛽2𝑗

1(2𝑗)

−

𝑎

𝛽2𝑗−1

𝑟(2𝑗−1)

𝑎

𝛽2𝑗−1

1(2𝑗−1)

)
]

]

]

2

}
}
}

}
}
}

}

.

(28)

Inequality (28) is also valid for𝛽
1

> 0, 0 > 𝛽
2

≥ 𝛽
3

≥ ⋅ ⋅ ⋅ ≥ 𝛽
𝑚
,

∑
𝑚

𝑗=1
(1/𝛽
𝑗
) ≤ 1.

Proof. The proof of Theorem 9 is similar to the one of
Theorem 8, and we omit it.

3. Applications

In this section, we show two applications of the inequalities
newly obtained in Section 2.

Firstly, we present a new refinement of inequality (6) by
usingTheorem 9.

Theorem 10. Let 𝑡
𝑗

> 0 (𝑗 = 1, 2, . . . , 𝑚), 𝛽
1

> 0, 0 >

𝛽
2

≥ 𝛽
3

≥ ⋅ ⋅ ⋅ ≥ 𝛽
𝑚
, ∑
𝑚

𝑗=1
(1/𝛽
𝑗
) = 1, let 𝑓

𝑗
(𝑥) (𝑗 =

1, 2, . . . , 𝑚) be positive integrable functions defined on [𝑎, 𝑏]

with 𝑡

𝛽𝑗

𝑗
− ∫

𝑏

𝑎
𝑓

𝛽𝑗

𝑗
(𝑥)d𝑥 > 0, and let 𝜉(𝑚) = {

𝑚/2 if 𝑚 even
(𝑚−1)/2 if 𝑚 odd .

Then

𝑚

∏

𝑗=1

(𝑡

𝛽𝑗

𝑗
− ∫

𝑏

𝑎

𝑓

𝛽𝑗

𝑗
(𝑥) 𝑑𝑥)

1/𝛽𝑗

≥

𝑚

∏

𝑗=1

𝑡
𝑗

− ∫

𝑏

𝑎

𝑚

∏

𝑗=1

𝑓
𝑗 (

𝑥) 𝑑𝑥

− 𝑡
1
𝑡
2
, . . . , 𝑡

𝑚

×

𝜉(𝑚)

∑

𝑗=1

[

[

1

𝛽
2𝑗

∫

𝑏

𝑎

(

𝑓

𝛽2𝑗

2𝑗
(𝑥)

𝑡

𝛽2𝑗

2𝑗

−

𝑓

𝛽2𝑗−1

2𝑗−1
(𝑥)

𝑡

𝛽2𝑗−1

2𝑗−1

) 𝑑𝑥
]

]

2

.

(29)

Proof. For any positive integer 𝑛, we choose an equidistant
partition of [𝑎, 𝑏] as

𝑎 < 𝑎 +

𝑏 − 𝑎

𝑛

< ⋅ ⋅ ⋅ < 𝑎 +

𝑏 − 𝑎

𝑛

𝑘

< ⋅ ⋅ ⋅ < 𝑎 +

𝑏 − 𝑎

𝑛

(𝑛 − 1) < 𝑏,

𝑥
𝑖

= 𝑎 +

𝑏 − 𝑎

𝑛

𝑖, 𝑖 = 0, 1, . . . , 𝑛,

(30)

Δ𝑥
𝑘

=

𝑏 − 𝑎

𝑛

, 𝑘 = 1, 2, . . . , 𝑛. (31)

Since 𝑡

𝛽𝑗

𝑗
− ∫

𝑏

𝑎
𝑓

𝛽𝑗

𝑗
(𝑥)𝑑𝑥 > 0 (𝑗 = 1, 2, . . . , 𝑚), it follows

that

𝑡

𝛽𝑗

𝑗
− lim
𝑛→∞

𝑛

∑

𝑘=1

𝑓

𝛽𝑗

𝑗
(𝑎 +

𝑘 (𝑏 − 𝑎)

𝑛

)

𝑏 − 𝑎

𝑛

> 0

(𝑗 = 1, 2, . . . , 𝑚) .

(32)

Therefore, there exists a positive integer 𝑁 such that

𝑡

𝛽𝑗

𝑗
−

𝑛

∑

𝑘=1

𝑓

𝛽𝑗

𝑗
(𝑎 +

𝑘 (𝑏 − 𝑎)

𝑛

)

𝑏 − 𝑎

𝑛

> 0, (33)

for all 𝑛 > 𝑁 and 𝑗 = 1, 2, . . . , 𝑚.
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Moreover, for any 𝑛 > 𝑁, it follows fromTheorem 9 that

𝑚

∏

𝑗=1

[𝑡

𝛽𝑗

𝑗
−

𝑛

∑

𝑘=1

𝑓

𝛽𝑗

𝑗
(𝑎 +

𝑘 (𝑏 − 𝑎)

𝑛

)

𝑏 − 𝑎

𝑛

]

1/𝛽𝑗

≥

𝑚

∏

𝑗=1

𝑡

𝛽𝑗

𝑗
−

𝑛

∑

𝑘=1

(

𝑚

∏

𝑗=1

𝑓
𝑗

(𝑎 +

𝑘 (𝑏 − 𝑎)

𝑛

))

× (

𝑏 − 𝑎

𝑛

)

1/𝛽1+1/𝛽2+⋅⋅⋅+1/𝛽𝑚

− 𝑡
1
𝑡
2
, . . . , 𝑡

𝑚

𝜉(𝑚)

∑

𝑗=1

1

𝛽
2𝑗

×
[

[

𝑛

∑

𝑘=1

(

1

𝑡

𝛽2𝑗

2𝑗

𝑓

𝛽2𝑗

2𝑗
(𝑎 +

𝑘 (𝑏 − 𝑎)

𝑛

)

𝑏 − 𝑎

𝑛

−

1

𝑡

𝛽2𝑗−1

2𝑗−1

𝑓

𝛽2𝑗−1

2𝑗−1
(𝑎 +

𝑘 (𝑏 − 𝑎)

𝑛

)

𝑏 − 𝑎

𝑛

)
]

]

2

.

(34)

Noting that
𝑚

∑

𝑗=1

1

𝛽
𝑗

= 1, (35)

we get

𝑚

∏

𝑗=1

[𝑡

𝛽𝑗

𝑗
−

𝑛

∑

𝑘=1

𝑓

𝛽𝑗

𝑗
(𝑎 +

𝑘 (𝑏 − 𝑎)

𝑛

)

𝑏 − 𝑎

𝑛

]

1/𝛽𝑗

≥

𝑚

∏

𝑗=1

𝑡

𝛽𝑗

𝑗
−

𝑛

∑

𝑘=1

(

𝑚

∏

𝑗=1

𝑓
𝑗

(𝑎 +

𝑘 (𝑏 − 𝑎)

𝑛

)) (

𝑏 − 𝑎

𝑛

)

− 𝑡
1
𝑡
2
, . . . , 𝑡

𝑚

𝜉(𝑚)

∑

𝑗=1

1

𝛽
2𝑗

×
[

[

𝑛

∑

𝑘=1

(

1

𝑡

𝛽2𝑗

2𝑗

𝑓

𝛽2𝑗

2𝑗
(𝑎 +

𝑘 (𝑏 − 𝑎)

𝑛

)

𝑏 − 𝑎

𝑛

−

1

𝑡

𝛽2𝑗−1

2𝑗−1

𝑓

𝛽2𝑗−1

2𝑗−1
(𝑎 +

𝑘 (𝑏 − 𝑎)

𝑛

)

𝑏 − 𝑎

𝑛

)
]

]

2

.

(36)

In view of the assumption that 𝑓
𝑗
(𝑥) (𝑗 = 1, 2, . . . , 𝑚) are

positive Riemann integrable functions on [𝑎, 𝑏], we find that
∏
𝑚

𝑗=1
𝑓
𝑗
(𝑥) and 𝑓

𝜆𝑗

𝑗
(𝑥) are also integrable on [𝑎, 𝑏]. Letting

𝑛 → ∞ on both sides of inequality (36), we get the desired
inequality (29).

Next, we give a new refinement of inequality (7) by using
Theorem 8.

Theorem 11. Let 𝑡
𝑗

> 0 (𝑗 = 1, 2, . . . , 𝑚), 0 < 𝛽
1

≤ 𝛽
2

≤

⋅ ⋅ ⋅ ≤ 𝛽
𝑚
, ∑
𝑚

𝑗=1
(1/𝛽
𝑗
) = 1, 𝑚 ≥ 2, and let 𝑓

𝑗
(𝑥) (𝑗 =

1, 2, . . . , 𝑚) be positive integrable functions defined on [𝑎, 𝑏]

with 𝑡

𝛽𝑗

𝑗
− ∫

𝑏

𝑎
𝑓

𝛽𝑗

𝑗
(𝑥)𝑑𝑥 > 0, and let 𝜉(𝑚) = {

𝑚/2 if 𝑚 even
(𝑚−1)/2 if 𝑚 odd .

Then

𝑚

∏

𝑗=1

(𝑡

𝛽𝑗

𝑗
− ∫

𝑏

𝑎

𝑓

𝛽𝑗

𝑗
(𝑥) 𝑑𝑥)

1/𝛽𝑗

≤

𝑚

∏

𝑗=1

𝑡
𝑗

− ∫

𝑏

𝑎

𝑚

∏

𝑗=1

𝑓
𝑗 (

𝑥) 𝑑𝑥

−

𝑡
1
𝑡
2
, . . . , 𝑡

𝑚

𝜉 (𝑚)

×

𝜉(𝑚)

∑

𝑗=1

{
{

{
{

{

1

𝛽
2𝑗

×
[

[

∫

𝑏

𝑎

(

𝑓

𝛽2𝑗

2𝑗
(𝑥)

𝑡

𝛽2𝑗

2𝑗

−

𝑓

𝛽2𝑗−1

2𝑗−1
(𝑥)

𝑡

𝛽2𝑗−1

2𝑗−1

) 𝑑𝑥
]

]

2

}
}

}
}

}

.

(37)

Proof. The proof of Theorem 11 is similar to the one of
Theorem 10, and we omit it.
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