
Research Article
Using Fuzzy Logic in Test Case Prioritization for
Regression Testing Programs with Assertions

Ali M. Alakeel

Faculty of Computing and Information Technology, University of Tabuk, P.O. Box 1458, Tabuk 71431, Saudi Arabia

Correspondence should be addressed to Ali M. Alakeel; alakeel@ut.edu.sa

Received 25 October 2013; Accepted 2 December 2013; Published 27 April 2014

Academic Editors: S. K. Bhatia and A. K. Misra

Copyright © 2014 Ali M. Alakeel.This is an open access article distributed under theCreativeCommonsAttribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Program assertions have been recognized as a supporting tool during software development, testing, and maintenance. Therefore,
software developers place assertions within their code in positions that are considered to be error prone or that have the potential to
lead to a software crash or failure. Similar to any other software, programs with assertions must be maintained. Depending on the
type of modification applied to the modified program, assertions also might have to undergo some modifications. New assertions
may also be introduced in the new version of the program, while some assertions can be kept the same. This paper presents a
novel approach for test case prioritization during regression testing of programs that have assertions using fuzzy logic. The main
objective of this approach is to prioritize the test cases according to their estimated potential in violating a given program assertion.
To develop the proposed approach, we utilize fuzzy logic techniques to estimate the effectiveness of a given test case in violating
an assertion based on the history of the test cases in previous testing operations. We have conducted a case study in which the
proposed approach is applied to various programs, and the results are promising compared to untreated and randomly ordered test
cases.

1. Introduction

Program assertions have been recognized as a supporting
tool during software development, testing, and maintenance
[1–5]. Therefore, software developers place assertions within
their code in positions that are considered to be error prone
or that have the potential to lead to a software crash or failure
[4]. An assertion specifies a constraint that applies to a state
of computation. When an assertion is evaluated to be false
during program execution (this scenario is called an assertion
violation), there is an incorrect state in the program. Many
programming languages support assertions by default, for
example, Java and Perl. For languages that do not have built-
in support, assertions can be added in the form of annotated
statements. For example, Korel and Al-Yami [2] present
assertions as commented statements that are preprocessed
and converted into Pascal code before compilation. Many
types of assertions can be easily generated automatically,
such as boundary checks, division by zero, null pointers,
and variable overflow/underflow. For this reason and to

enhance their confidence in their software, programmers can
be encouraged to write more assertions into their programs.

Recognizing the importance of program assertions, some
recent research efforts have been devoted to the development
of algorithms and methods that are specifically designed
for programs that have assertions. For example, Korel et al.
reported in [6] an algorithm for assertion revalidation during
software maintenance. In [3], an algorithm is presented for
efficient processing and analysis in which a large number
of assertions are present in the program. Additionally, a
regression testing method for programs with assertions was
proposed in [7], and an assertion placements scheme for
string-matching algorithms is presented [8].

Similar to other types of software, programs with asser-
tions must be maintained. Software maintenance usually
involves activities during which the software is modified
for different reasons. Some of the reasons for which the
software could be modified are fixing faults, introducing
new functionality, and improving the performance of some
parts of the software through the introduction of new

Hindawi Publishing Corporation
e Scientific World Journal
Volume 2014, Article ID 316014, 9 pages
http://dx.doi.org/10.1155/2014/316014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/207505188?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 The Scientific World Journal

algorithms. A study in [9] shows that there is a probability
of 50–80% of introducing faults to the modified software
during software maintenance. Therefore, regression testing
is performed during software maintenance for the purpose
of testing the modified software to ensure its correctness
after maintenance operations. There are many regression
testing methods, which could be classified as specification-
based or code-based. Specification-based regression testing
strategies, for example, [10–12], generate test cases based on
the specification of the software, while code-base regression
testing, for example, [7, 13–16] strategies depend on the
software structural elements to generate the test cases.

Regression testing is very labor intensive and could be
responsible for approximately 50% of software maintenance
costs [17]. In a systematic software development environ-
ment, all of the types of regression testing methods usually
involve the usage of an original test suite, which is used for
the purpose of testing the original program before it has
been modified. Therefore, many regression testing methods
usually utilize an existing previous test suite in some form
or another during regression testing. For example, a simple
regression testing strategy would rerun an existing testing
suite, on an as-is basis, on the modified program, while
introducing new test cases to test new features. Although this
method is simple, it is not practical for commercial software
because an existing test suite is usually very large and could
take weeks to rerun on the newmodified software.Therefore,
regression test selection techniques, for example, [18], test
suiteminimization techniques, for example, [19], and test case
prioritization techniques, for example, [20–27], are proposed
in the literature to mitigate the cost that is associated with
running the entire suite of previous, existing tests.

The main objective of regression test selection tech-
niques and test suite minimization techniques is to select
a representative subset of the original test suite by using
information about the original program, its modified version
and the original test suite. It should be noted that both
the regression test selection and test suite minimization
techniques eliminate some elements of the original test suite,
which could undermine the performance of these techniques.
Test case prioritization techniques, however, order elements
of the original test suite based on a given criterion. Fur-
thermore, test case prioritization techniques do not involve
the selection of a subset of the original test suite. In this
presentation, we will concentrate on test case prioritization
techniques; therefore, regression test selection and test suite
minimization will not be discussed any further.

With regard to programswith assertions, assertions could
also undergo some modifications during maintenance. Some
assertions could be modified, while new assertions could
also be introduced into the new version of the program.
Additionally, some assertions could be kept the same as in
the original program.

This paper presents a novel approach for test case prioriti-
zation during regression testing of programs with assertions
using fuzzy logic. The main objective of this approach is to
prioritize test cases according to their estimated potential
to violate a given program assertion. Note that it has been
shown in [2] that violating an assertion implies revealing

a programming fault. To develop the proposed test case
prioritization approach, we utilize fuzzy logic techniques
[28, 29] to measure the effectiveness of a given test case in
violating an assertion based on the history of the test cases
in previous testing operations. The proposed method builds
on previous research in the fields of assertions-based software
testing and assertions revalidation, as reported in [6, 7].

The remainder of this paper is organized as follows.
Related work and background is discussed in Section 2. We
present our proposed fuzzy test case prioritization model in
Section 3. To evaluate our proposed approach, a case study is
presented in Section 4, and conclusions and future work are
discussed in Section 5.

2. Related Work

Previous research on using fuzzy logic for the purpose of
test case prioritization is scant. In [30], a fuzzy expert system
is reported in which the system is used during regression
testing of a telecommunication application. To build the
required knowledge base for the expert system reported in
this research, the researchers had to acquire knowledge from
different sources, such as customer profiles, past test results,
system failure rates, and the history of system architecture
changes. Although this expert system has shown promising
results with respect to the specific application that it was
designed for, it is necessary to acquire a new knowledge
base for new applications. The proposed test case selection
model in [30] treats the software under test as a black box;
therefore, it cannot be used for the purpose of regression
testing programs with assertions.

Recently, a test case prioritization concept that is based on
software agents and fuzzy logic was reported in [26]. In that
research, software agents are used to gather information from
different sources related to the environment surrounding
the software. These sources include an architectural model,
test management tool, fault management tool, and change
management tool. After analyzing data that is gathered from
various sources, this approach assigns each software module
a test importance (TI) value in the range of 1 to 10. A high
TI value indicates that this module should be tested more
than another module with a lower TI value. Additionally,
this approach assigns each test case a local priority (LP)
value based on its ability to cover a certain software module.
In the end, test cases are ordered based on global priority
(GP) values, which are estimated by combining the values of
the module TI values and test case LP values. The concept
presented in [26] is interesting; however, the amount of
data that must be gathered and analyzed by software agents
could be very large and costly for large industrial software.
Additionally, there has not been any information provided
about what type of fuzzy logic technique has been used
to estimate the TI, LP, and GP values. Furthermore, the
prioritization approach reported in [5] prioritizes test cases
based on their coverage ability on themodule level and not on
the statement level. This arrangement is a drawback because
program faults are usually caused by errors at the statement
level and not at the module level, which makes this approach



The Scientific World Journal 3

difficult to adapt and compare with most of the existing test
case prioritization methods.

2.1. Test Case Prioritization. The main goal of the prioriti-
zation techniques is to increase the probability of detecting
faults at an earlier stage of testing [20–27]. Additionally, the
test case prioritization technique objective is the utilization
of previous test cases for the purpose of future testing. As
stated in [21], there could exist several goals of test case
prioritization, such as (1) to increase the test suite fault
detection rate; (2) to minimize the time required to satisfy a
testing coverage criterion; (3) to enhance a tester’s confidence
in the reliability of the software in a shorter time period; (4)

to be able to detect risky faults as early as possible; and (5)

to increase the chances of detecting faults that are related to
software modification during regression testing.

In [21], an extensive study of nine different test case prior-
itization techniques was presented and compared according
to their ability to perform fault detection during regression
testing. During that study, a detection rate function is used to
reorder test cases according to their ability to reveal program
faults during regression testing. In [23], the Extended Finite
State Machine (EFSM) system model is proposed to be used
instead of real programs in order to apply the same technique
presented in [24] and to reduce the cost of running test
cases with real programs. Bryce et al. presented in [22] a test
prioritization model for Event-Driven software. This model
concentrates on testing those parts that are related to the
interface in GUI applications. Several experimental results
have been reported in [20], which study the cost-benefits
of applying test case prioritization techniques. Recently, a
method for test case prioritization using genetic algorithms
was presented in [27]. In that research, a genetic algorithm is
proposed to order the test cases according to their historical
data with regard to their abilities to perform fault detection.
A survey study of different test case prioritization techniques
and mythologies has been reported in [25].

2.2. Regression Testing for Programs with Assertions. This
section briefly introduces the concept of regression testing
for programs that have assertions. For more detail, the
reader is referred to [7]. Given an original program 𝑃

𝑜

and a modified version of this program 𝑃
𝑚
, let 𝐴

𝑜
=

{𝑎
𝑜1

, 𝑎
𝑜2

, 𝑎
𝑜3

, . . . , 𝑎
𝑜𝑛

} be a set of assertions found in 𝑃
𝑜
and

𝐴
𝑚

= {𝑎
𝑚1

, 𝑎
𝑚2

, 𝑎
𝑚3

, . . . , 𝑎
𝑚𝑧

} be a set of assertions found
in 𝑃
𝑚
. Let 𝑉 ⊆ 𝐴

𝑚
be a set of assertions that are

nominated for revalidation [6], using previous test suites,
during the process of regression testing the modified ver-
sion 𝑃

𝑚
. Depending on the type of modification that is

applied to the modified version 𝑃
𝑚
, some assertions might

have been kept the same; some assertions might have been
modified, and new assertions might have been introduced.
The main objective of regression testing for programs that
have assertions, as reported in [7], is to reduce the cost of
regression testing of programs that have assertions through
the utilization of previous test suites that are used during
the initial development process. Furthermore, this method
concentrates on assertions that are kept the same and those
that aremodified; new assertions are not covered because new

test cases must be generated to explore these assertions. This
method is presented in more detail in the next paragraph.

Let 𝑎
𝑚𝑖

∈ 𝐴
𝑚

be an assertion that is found in 𝑃
𝑚
.

Assume that 𝑎
𝑚𝑖

was not changed from its original form in
𝑃
𝑜
nor was it affected by the modifications introduced to

produce𝑃
𝑚
.Therefore, 𝑎

𝑚𝑖
will be nominated by the proposed

approach, to belong to the set 𝑉; that is, 𝑎
𝑚𝑖

∈ 𝑉. Suppose
that assertions-oriented testing, as reported in [2], has been
performed on the original version 𝑃

𝑜
, and a set of test cases

were generated during this process and were kept for later
usage during regression testing. In particular, let 𝑎

𝑜𝑘
∈ 𝐴
𝑜

be an assertion that was found in 𝑃
𝑜
, and let 𝑇(𝑎

𝑜𝑘
) =

{𝑡
𝑘1

, 𝑡
𝑘2

, 𝑡
𝑘3

, . . . , 𝑡
𝑘𝑟

} be the set of test cases that were generated
to explore this assertion during the application of assertion-
oriented testing [2] on the original program 𝑃

𝑜
. To ensure

that faults are not introduced during the production of the
modified version 𝑃

𝑚
, regression testing must be performed

on 𝑃
𝑚
, which has a set of assertions 𝐴

𝑚
. Given 𝑎

𝑜𝑘
∈

𝐴
𝑜
, 𝑇(𝑎
𝑜𝑘

) = {𝑡
𝑘1

, 𝑡
𝑘2

, 𝑡
𝑘3

, . . . , 𝑡
𝑘𝑟

} and 𝑎
𝑚𝑖

∈ 𝑉, it has
been shown in [7] that the old test suit, 𝑇(𝑎

𝑜𝑘
), could be

used to revalidate assertion 𝑎
𝑚𝑖

during regression testing of
the modified version 𝑃

𝑚
. Furthermore, it has been shown

that using previous test suites to revalidate assertions could
uncover faults in the modified version if these revalidated
assertions were violated. More specifically, faults for which
the assertions were originally designed to guard against in the
original version of the program could have been reintroduced
in the modified version 𝑃

𝑚
[7].

Although the regression testing method for programs
with assertions, as presented in [7], could succeed in utilizing
previous test suites and therefore reduce testing time, this
method still considers using all test cases found in the
previous test suite. Therefore, the method presented in [7]
might not performwell in the presence of a large previous test
suite with thousands of test cases. In this paper, we propose
a test case prioritizing method that uses fuzzy logic concepts
to select only a subset of the previous test cases.The proposed
method is described in Section 3.

2.3. Assertions Revalidation. To address assertions in modi-
fied programs during regression testing, an assertions revali-
dation model was proposed in [6].That approach is based on
data dependency analysis and program slicing. In particular,
that approach is based on the computation of a static slice
[31, 32] for each assertion found in both the original and the
modified program. These program slices are then compared
to decide which assertions are to be revalidated. Although
this method is very useful in identifying assertions that must
be revalidated, new test cases to revalidate the assertions are
generated from scratch for each assertion. For industrial size
programs with a possibly large number of assertions, this
approach could be very expensive.

2.4. Fuzzy Logic Background. In our daily life, we use words
and terms that are vague or fuzzy, such as:

“The server is slow,”
“The weather is hot,” or
“John is tall.”



4 The Scientific World Journal

Fuzzy Logic concepts, for example, [28, 29], give us
the ability to quantify and reason with words that have
ambiguous meanings, such as the words (slow, hot, and tall)
mentioned above. In fuzzy sets [28], an object can partially
belong to a set, as opposed to classical or “crisp” sets, in
which an object can belong to a set or not. For example, in
a universe of heights (in feet) for adult people defined as 𝜇 =

{5, 5.5, 6, 6.5, 7, 7.5, 8}, a fuzzy subset TALL can be defined as
follows:

TALL = [0/5, 0.125/5.5, 0.6/6, 0.875/6.5, 1/7, 1/7.5, 1/8] .

(1)

In this example, the degree of membership for the
members of the universe, 𝜇, with respect to the set TALL can
be interpreted as the value “6” belongs to the set TALL 60%
percent of the time, while the value 8 belongs to the set TALL
all of the time.

3. A Fuzzy Test Case Prioritization Technique

Themain objective of the proposed approach in this paper is
to prioritize test cases according to their effectiveness when
violating an assertion. More specifically, given a set of test
cases, our objective is to reorder these test cases according to
their estimated potential to violate a given program assertion.
Note that it has been shown in [2] that violating an assertion
can strongly imply uncovering program faults.

More formally, the problem investigated in this research
can be stated as follows. Given an original program 𝑃

𝑜

and a modified version of this program 𝑃
𝑚
, let 𝐴

𝑜
=

{𝑎
𝑜1

, 𝑎
𝑜2

, 𝑎
𝑜3

, . . . , 𝑎
𝑜𝑛

} be a set of assertions found in 𝑃
𝑜
, and

let 𝐴
𝑚

= {𝑎
𝑚1

, 𝑎
𝑚2

, 𝑎
𝑚3

, . . . , 𝑎
𝑚𝑧

} be a set of assertions found
in 𝑃
𝑚
. Suppose that we are performing regression testing

for the modified version 𝑃
𝑚
, while using some regression

testing method, for example, [7]. Let 𝑇
𝑜

= {𝑡
1
, 𝑡
2
, 𝑡
3
, . . . , 𝑡

𝑞
}

be a previous test suite that was used during the process
of assertion-oriented test data generation [2] of the original
version 𝑃

𝑜
. Given an assertion 𝑎

𝑜𝑘
∈ 𝐴
𝑜
and a test suite

𝑇(𝑎
𝑜𝑘

) = {𝑡
𝑘1

, 𝑡
𝑘2

, 𝑡
𝑘3

, . . . , 𝑡
𝑘𝑟

}, whichwas generated to explore
assertion 𝑎

𝑜𝑘
during the application of assertion-oriented

testing [2] on the original program 𝑃
𝑜
. Our goal is to reorder

the set𝑇(𝑎
𝑜𝑘

) according to the effectiveness of a given test case
𝑡
𝑘𝑗

∈ 𝑇(𝑎
𝑜𝑘

) to violate a given program assertion 𝑎
𝑚𝑟

∈ 𝐴
𝑚

during the regression testing process of the modified version
𝑃
𝑚
. We call the following effectiveness: Assertion Violating

Potential (AVP) of a test case 𝑡
𝑘𝑗
, which is represented as

AVP(𝑡
𝑘𝑗
). To estimate AVP(𝑡

𝑘𝑗
), we analyze the performance

of each 𝑡
𝑘𝑗

in previous tests of the original program 𝑃
𝑜

together with the revalidations [6] history of assertions found
in the modified version 𝑃

𝑚
.

We propose using the model that is shown in Figure 1,
which can be described as follows. First, we analyze both 𝑃

𝑜

and 𝑃
𝑚
to classify the assertions, 𝐴

𝑚
, that were found in 𝑃

𝑚

with respect to how much the modifications placed in 𝑃
𝑚

had affected those assertions. To perform this analysis, we
use an assertions revalidations model [6] to classify the set
of assertions, 𝐴

𝑚
, which are found in 𝑃

𝑚
into three different

sets: “Affected,” “Partially Affected,” and “Not Affected.” This

Original program Modified version of

Assertions revalidation process

Affected
affected affectedassertions
Partially Not

A previous test suite Proposed fuzzy logic model for
regression testing

Assertions tagging process in Pm

with assertions Po

Pm with tagged assertions

generated for Po

Po (i.e. Pm)

Figure 1: Fuzzy Regression Testing Model for programs with
assertions.

categorization is based on how much each assertion has
been affected by changes that were made in the modified
program version 𝑃

𝑚
. Because it is very difficult to express

this categorization with normal sets that dictate drawing
crisp lines between each category, we create a fuzzy set [25]
called AFFECTED in which each assertion will only belong
to the set by a membership value in the range [0, 1]. The
assignment of membership values (grades) is based on the 𝑆-
function [33], which is shown in (4) and will be described
shortly. Note that other fuzzy clustering techniques other
than the 𝑆-function can be used for the purpose of building
up fuzzy sets and the assignment of membership functions.
In this research, our estimation of the modifications incurred
on each assertion, 𝐴, is based on the number of variables
modified in this assertion. More formally, let 𝑁

𝐴
be the

number of variables that constitute an assertion 𝐴. Based on
our empirical experiments, 𝑆-function parameters (𝛼, 𝛽, and
𝛾 ) are expressed as follows:

𝛼 = 0,

𝛽 = 0.4 ∗ 𝑁
𝐴

,

𝛾 = 0.8 ∗ 𝑁
𝐴

.

(2)

For example, if we have assertion 𝐴 with five variables,
that is, 𝑁

𝐴
= 5, then we will have the following 𝑆-

function: 𝑆
𝐴

(𝑥; 0, 2, 4). Based on the number of variables,
𝑥, modified in assertion 𝐴, we substitute this number in
𝑆
𝐴

(𝑥; 0, 2, 4) to obtain the membership value for assertion 𝐴,
𝑚
𝐴
(AFFECTED), in the fuzzy set AFFECTED. Suppose that

in this example only one variable wasmodified in assertion𝐴;
themembership of𝐴will be computed as𝑚

𝐴
(AFFECTED) =

0.125. On the other hand, if three variables were modified,
then the membership of 𝐴 will be 𝑚

𝐴
(AFFECTED) = 0.875,

and so on.
Based on the results of assertions categorization per-

formed in the first step, the next step is to categorize test cases



The Scientific World Journal 5

according to their expected effectiveness during regression
testing of the modified version of the program, that is, 𝑃

𝑚
.

Because the “effectiveness” of a test case is a fuzzy term that
is very hard to measure with a crisp value, we propose using
fuzzy logic techniques to address measuring the effectiveness
of a given test case. For this purpose, we create a fuzzy set
called EFFECTIVENESS. Test cases will belong to the fuzzy
set EFFECTIVENESS with a membership value or grade
that corresponds to their Assertion Violating Potential (AVP)
values.More specifically, let 𝑡

𝑘𝑗
∈ 𝑇(𝑎

𝑜𝑘
) be a test case that was

used to explore assertion 𝑎
𝑜𝑘

∈ 𝐴
𝑜
during the initial testing

of a program 𝑃
𝑜
. To measure the effectiveness of 𝑡

𝑘𝑗
(with

AVP(𝑡
𝑘𝑗
)) in violating the corresponding assertion 𝑎

𝑚𝑟
∈ 𝐴
𝑚

in the modified version 𝑃
𝑚
during the process of regression

testing the program 𝑃
𝑚
, we use the following formula:

AVP (𝑡
𝑘𝑗

) = 1 − ma
𝑚𝑟

(AFFECTED) , (3)

where ma
𝑚𝑟

(AFFECTED) is the membership values of asser-
tion 𝑎

𝑚𝑟
in the fuzzy set AFFECTED.

Therefore, test cases related to any assertion 𝑎
𝑜𝑘

∈ 𝐴
𝑜
,

where 𝑎
𝑜𝑘

belongs to the fuzzy set AFFECTED with a high
membership value, will have low effectiveness in exploring
the corresponding assertion in the modified version of the
program. Similarly, test cases that are related to any assertion
𝑎
𝑜𝑘

∈ 𝐴
𝑜
, where 𝑎

𝑜𝑘
belongs to the fuzzy set AFFECTED

with moderate grade values, will havemoderate effectiveness
in exploring the corresponding assertion in the modified
version of the program. By the same token, test cases related
to any assertion 𝑎

𝑜𝑘
∈ 𝐴
𝑜
, where 𝑎

𝑜𝑘
belongs to the fuzzy

set AFFECTED with low membership values, will have high
effectiveness in exploring the corresponding assertion in the
modified version of the program.

3.1. The 𝑆-Function. 𝑆-functions can be described as follows
[33]:

(i) A mathematical function that is used in fuzzy sets as
a membership function.

(ii) A simple but valuable tool in defining fuzzy functions,
such as the word “tall”.

(iii) The objects 𝑥 are elements of some universe 𝑋. In
this research, 𝑥 represents the set of test cases that we
are addressing during our prioritization mechanism,
where these test cases are elements of the universe of
possible program input data.

(iv) 𝛼, 𝛽, and 𝛾 are parameters that can be adjusted to
fit the desired membership data. The parameter 𝛼

represents the minimum boundary, and 𝛾 represents
the maximum boundary. The parameter 𝛽 is the
middle point between 𝛼 and 𝛾 and is computed as
(𝛼 + 𝛾)/2.

The 𝑆-function

𝑆 (𝑥; 𝛼, 𝛽, 𝛾) =

{{{{{{{{

{{{{{{{{

{

0 for𝑥 ≤ 𝛼

2(
𝑥 − 𝛼

𝛾 − 𝛼
)

2

for𝛼 ≤ 𝑥 ≤ 𝛽

1 − 2(
𝑥 − 𝛼

𝛾 − 𝛼
)

2

for𝛽 ≤ 𝑥 ≤ 𝛾

1 for𝑥 ≥ 𝛾.

(4)

Depending on the application, a membership function
can be controlled from different sources [28]. For exam-
ple, in an expert system, the membership function will be
constructed based on the experts’ opinion modeled by the
system. In this research, values of the parameters 𝛼 and
𝛾 are determined after experimentation with the proposed
approach.

For illustration, consider the program shown in Program
1 to be the original version 𝑃

𝑜
, and its modified version,

𝑃
𝑚
, is the program represented in Program 2. The function

of 𝑃
𝑜
is to compute the minimum and maximum of an

array of integers. Suppose that 𝑃
𝑜
is modified to introduce

a new functionality, which is to compute the sum of the
array elements. This modification is shown in Program 2.
Furthermore, suppose that during this modification, a fault
is introduced in which statement number 12 of the modified
version is “incorrectly” misplaced in an incorrect position.
This seeded fault will cause the program of (4) to compute
the maximum element incorrectly for certain combinations
of the array’s elements. Note that the seeded fault could be
uncovered through the violation of assertion #2, which is
shown in statement number 13 of Program 2.

Using our notation above, let the identifiers “𝑎
𝑜2
” and

“𝑎
𝑚2
” be used to represent assertion number 2 of Program

1 and assertion number 2 of Program 2, respectively. Note
that the text of these assertions is identical in both versions
of the program. Suppose that during the original application
of assertion-oriented test data generation [2] on the original
version of Program 1, a test suite, 𝐴(𝑎

𝑜2
), is produced during

the exploration of assertion 𝑎
𝑜2

of Program 1. Suppose that
𝐴(𝑎
𝑜2

) is composed of five test cases, as follows:

𝑡
21

= (10, [17, 645, −900, 3, 88, 24, 190, −10, 1003, 115]) ,

𝑡
22

= (10, [600, 200, 10000, 7, 99, 88, 42, −2000, −100, 28]) ,

𝑡
23

= (10, [101, 5202, 700, 1, 32, 11, 270, −10, −575, 9]) ,

𝑡
24

= (10, [−765, 33, 2009, −16, −20, 113, 800, 19, −1, −99]) ,

𝑡
25

= (10, [−301, 2045, 760, 10, 609, 24, 21, −6, −14, 912]) .

(5)

Note that assertions-oriented testing [5] is originally
proposed to be used after other forms of traditional software
testing, such as black box (e.g., boundary value analysis) and
white box (e.g., branch coverage), to increase the confidence
in the software under consideration. Therefore, the test cases
used in this example are only for the purpose of assertion-
oriented testing [5]; hence, invalid test cases (e.g., boundary
value analysis) are not included in the test suite presented
above in this example.



6 The Scientific World Journal

(1) public int computeMinMax O(int elements, int Data[]){
int inData[] = new int[50]; int 𝑖, 𝑗, min = 0, max = 0;
// Assuming a PreCondition of: “0 < elemetns <= 10”

(2), (3) for (𝑗 = 0; 𝑗 < Data.length; 𝑗++) inData[𝑗] = Data[𝑗];
(4) if (elements > 0 && elements <= 10){

(5) min = inData[0];
(6) max = inData[0];
(7) 𝑖 = 1;
(8) while (𝑖 < Data.length){

(9) assert (i >= 0 && i < Data.length) // assertion #1
(10), (11) if (min > inData[𝑖]) min = inData[𝑖];
(12) assert (i >= 0 && i < Data.length) // assertion #2
(13), (14) if (max < inData[𝑖]) max = inData[𝑖];
(15) 𝑖++;

}

(16) System.err.println(“\𝑛Min is:” + min + “ Max is:” + max);
(17) System.err.println
(18) return 1;}
(19) else{
(20) if (elements == 0)

(21) System.err.println(“Empty array provided!”);
(22) else System.err.println(“Violation of precondition... Out of
range array!!! Elements:” + elements);
(23) return −1;}
} // ComuteMinMax O

program 1: A sample Java program with assertions.

Note that assertions-oriented testing [5] is originally
proposed to be used after other forms of traditional software
testing, such as black box (e.g., boundary value analysis) and
white box (e.g., branch coverage), to increase the confidence
in the software under consideration.Therefore, test cases used
in this example are only for the purpose of assertion-oriented
testing [5]; hence, invalid test cases (e.g., boundary value
analysis) are not included in the test suite presented above in
this example.

Because assertion 𝑎
𝑚2

in the program of Program 2 is
identical to assertion 𝑎

𝑜2
of the original version of Program

1, and because 𝑎
𝑚2

is not affected by the modifications [6]
introduced to 𝑃

𝑚
in Program 2, the test suite generated to

explore assertion 𝑎
𝑜2
, that is, 𝐴(𝑎

𝑜2
), could be used to explore

assertion 𝑎
𝑚2

during the regression testing of𝑃
𝑚
. Note that, in

this example, only two test cases, 𝑡
23
and 𝑡
25
, in𝐴(𝑎

𝑜2
)have the

potential of violating assertion number 2 of Program 2, which
results in uncovering the fault in 𝑃

𝑚
. It should be noted that

assertion 𝑎
𝑚2

can only be violated by test cases that place the
maximum element in the second position of the input array.
As a result of these test cases, the program in Program 2 will
compute the maximum element of the array incorrectly.

Applying our proposed test case prioritization approach
to this example, assertion 𝑎

𝑚2
will be added to the set “Not

Affected,” and the two test cases (𝑡
23

and 𝑡
25
) will be added

to the fuzzy set “High Effectiveness.” Therefore, the proposed
approach will reorder the five test cases in the test suite
𝐴(𝑎
𝑜2

), as follows: (𝑡
23

, 𝑡
25

, 𝑡
22

, 𝑡
21

, 𝑡
24

). This rearrangement
means that 𝑡

23
and 𝑡
25
will be considered first, and then, the

remaining test cases are considered in random order.

4. Case Study

To evaluate the effectiveness of our proposed approach for
test case prioritization during regression testing of programs
with assertions, we have conducted an experiment in which a
set of nine programs with assertions were used. These sets of
programs are borrowed and are considered to be our original
versions. As reported in [2], prior to assertion-oriented
testing, these programs have been thoroughly tested using
traditional black box testing (e.g., boundary value analysis)
and white box testing (e.g., branch coverage). Additionally,
from these original programs, a total of 40 new versions
are created, as will be described later. Detailed information
on programs used in this case study is reported in Table 1,
as follows. The first and second columns show the name of
the original program and the number of lines of code of
this version, respectively. The number of assertions in the
original program is shown in the third column, and the fourth
column shows the number of modified versions created from
the original program. The fifth column represents the total
number of assertions in all of the versions of the same
program. In the first phase of this case study, for each program
from this set, we have designated a single version that we
considered to be the original. For each original version, we
conduct assertion-oriented test data generation as described
in [2], up to a designated search time threshold of 2 minutes.
During this process, we build test suites for assertions in each
original program as follows.

For each assertion, we save each test case that succeeds
in reaching this assertion [2, 3]. For the purpose of this



The Scientific World Journal 7

(1) public int computeMinMax M(int elements, int Data[]){
int inData[] = new int[50]; int 𝑖, 𝑗, min = 0, max = 0; int sum;
// Assuming a PreCondition of: “0 < elements <= 10”

(2), (3) for (𝑗 = 0; 𝑗 < Data.length;𝑗++) inData[𝑗] = Data[𝑗];
(4) if (elements > 0 && elements <= 10){

(5) min = inData[0];
(6) max = inData[0];
(7) 𝑖 = 1;
(8) while (𝑖 < Data.length){

(9) assert (i >= 0 && i < Data.length) // assertion #1
(10), (11) if (min > inData[𝑖]) min = inData[𝑖];
(12) 𝑖++; // this fault will cause the program to produce

an incorrect maximum number
(13) assert (i >= 0 && i < Data.length) // assertion #2
(14), (15) if (max < inData[𝑖]) max = inData[𝑖];

}

(16) System.err.println(“ \ 𝑛Min is:” + min + “ Max is:” + max);
(17) System.err.println(“ \ 𝑛Input data:”);

// report the sum of the input data
(18) sum = 0;
(19) for (𝑖 = 0; 𝑖 < Data.length; 𝑖++){

(20) assert (i <= 0 && i < Data.length) // assertion #3
(21) sum + = inData[𝑖]; }

(22) System.err.println(“ \ 𝑛Sum is:” + sum);
(23) return 1;}
(24) else{
(25) if (elements == 0) System.err.println(“Empty array

provided!”);
(26) else System.err.println(“Violation of precondition... Out of range
(27) array!!! Elements:” + elements);
(28) return −1;

}

} // ComuteMinMax M

program 2: Modified version of the program in Program 1.

Table 1: Programs used in the case study.

Program name Lines of
code

Number of
assertions

Number of
versions

Total number
of assertions

Concatenation 19 4 4 20
Average 54 7 3 21
RestrictedAverage 50 6 4 30
FunnyAverage 30 5 3 15
RealNumberFormat 39 5 5 30
Bank 336 15 9 140
MinMax 23 3 6 18
Total 52 8 3 27
RestrictedSubstitute 29 3 3 10

experiment, the assertion’s exploration process does not
stop by violating an assertion—as in the original assertion-
oriented testing [2]. Instead, the process of test data gen-
eration continues to produce more test cases up to a given
number of violations, for example, two violations in this
experiment or the exhaustion of a designated search time.The
outcome of this process is a test suite for each assertion in

each original program.At the end of this phase, we investigate
the cause of each assertion’s violation and correct faults in
the original program to the best of our knowledge. In the
second phase of this case study, from each original program,
we create a set of modified versions. Modified versions
are created by introducing three types of changes: keeping
assertions the same while modifying the functionality of



8 The Scientific World Journal

the new version; modifying some assertions while keeping
the same functionality of the original program; and modify-
ing some assertions and modifying the functionality of the
new version. Note that new assertions could be introduced at
any point in these modifications.

Additionally, and most importantly, in each modified
version, we have seeded a fault that should be uncovered
by an assertion’s violation. In the third phase of this case
study,we have identified assertions for revalidation using data
dependency techniques reported in [3, 6]. In the fourth and
last phase of this case study, we have conducted regression
testing on all of the modified versions of each original
program. During the fourth phase, previous test suites,
generated during the first phase of this experiment, are used
to revalidate assertions in the modified version that were
identified for revalidation [6] during the third phase, and the
results of this step are recorded. If a given previous test suite
succeeds in reaching any assertions in the modified version,
it is considered to be a success of this test suite. By reaching
an assertion, we mean directing the program control flow to
execute the assertion [2, 3]. If the assertion is violated, then
the test suite has succeeded in uncovering the fault that was
seeded in the modified version.

In this experiment, we compare the performance of the
proposed “Fuzzy” test case prioritization approach to that
of “Untreated” and “Random” prioritization techniques. The
“Untreated” is not genuinely a technique; instead, it is used
as a control. For the purpose of the untreated approach, we
use the original test suites that were used for assertion-based
testing of the nine original programs [7]. For all of the 40
versions of modified programs, we applied the random and
fuzzy techniques to each of the 150 test suites that we created
for this experiment. For the untreated, we kept the original
150 test suites because there is not any prioritization.

For each test with a prioritized test suite, using our pro-
posed fuzzy model, we estimated its effectiveness in violating
assertions found in modified versions. More specifically, for
each test suite, we measured the weighted average of the
percentage of Violated assertions (WAPVA) relative to the set
of assertions provided with those modified programs during
the execution of a given test suite.The result of this case study
is depicted in Figure 2. As shown in the box plot, a noticeable
improvement in the rate of assertion violations is achieved by
the proposed fuzzy prioritization approach compared to the
randomanduntreated techniques.The randomapproach also
produced some improvements compared to the untreated
approach. Note that the maximum average percentage rate
of assertion violations is approximately 25%. This finding is
expected because assertion-based testing is applied only after
traditional white-box and black-box testing techniques have
been applied to the programs [2]. Therefore, the number of
assertions that are expected to be violated would not be large
because most program faults should have been detected by
applying white-box and black-box testing techniques.

Although the result of this evaluation study is encourag-
ing, it cannot be generalized for all types of programs with
assertions. Good performance could be biased by the type of
faults seeded in the programs and by the relationships among
assertions found in these programs. This result, however,

Av
er

ag
e o

f t
he

 p
er

ce
nt

ag
e o

f v
io

la
te

d
as

se
rt

io
ns

 (A
PV

A
)

All programs

Untreated Random Fuzzy

25

20

15

10

5

0

Prioritization methods

Figure 2: Average percentage of assertion violations achieved by
each prioritization method.

indicates that the proposed approach for test case prioriti-
zation enhances the effectiveness of previous test suites in
violating assertions during regression testing of modified
programs.

5. Conclusions and Future Work

In this paper, we presented a test case prioritization approach
for programs that have assertions. The proposed technique
employs fuzzy logic concepts to measure the effectiveness
of a given test case in violating program assertions during
the regression testing of modified programs. Our proposed
method builds upon the concepts of previous research in
the fields of assertions-based software testing and assertions
revalidation. We have conducted an experimental study to
evaluate the proposed approach, and the results are encour-
aging. Nevertheless, further investigation is still required to
evaluate this approach for commercial-size software.

Conflict of Interests

As the author of the paper, the author hereby declares that the
support of this research by the University of Tabuk absolutely
has no effect on the scientific process or the validity of this
research and also has no conflict of interests with any other
party.

Acknowledgments

The author would like to acknowledge financial support for
this work form the Deanship of Scientific Research (DSR),
University of Tabuk, Saudi Arabia, under Grant no. S-1434-
0002. An earlier version of this paper was presented at the
Sixth Int. Conference on Advanced Engineering Computing
and Applications in Sciences, Barcelona, Spain, September
2012.



The Scientific World Journal 9

References

[1] D. S. Rosenblum, “Towards a method of programming with
assertions,” in Proceedings of the International Conference on
Software Engineering, pp. 92–104, May 1992.

[2] B. Korel and A. M. Al-Yami, “Assertion-oriented automated
test data generation,” in Proceedings of the 18th International
Conference on Software Engineering, pp. 71–80, Berlin, Germany,
March 1996.

[3] A. M. Alakeel, “An algorithm for efficient assertions-based test
data generation,” Journal of Software, vol. 5, no. 6, pp. 644–653,
2010.

[4] A. M. Alakeel and M. Mahashi, “Using assertion-based testing
in string search algorithms,” in Proceedings of the 3rd Interna-
tional Conference on Advances in System Testing and Validation
Lifecycle, pp. 1–5, Barcelona, Spain, 2011.

[5] A. M. Alakeel, “A framework for concurrent assertion-based
automated test data generation,” European Journal of Scientific
Research, vol. 46, no. 3, pp. 352–362, 2010.

[6] B. Korel, Q. Zhang, and L. Tao, “Assertion-based validation
of modified programs,” in Proceedings of the 2nd International
Conference on Software Testing, Verification, and Validation
(ICST ’09), pp. 426–435, Denver, Colo, USA, April 2009.

[7] A. M. Alakeel, “Regression testing method for programs with
assertions,” American Journal of Scientific Research, no. 11, pp.
111–122, 2010.

[8] A. M. Alakeel, “Intelligent assertions placement scheme for
string search algorithms,” in Proceedings of the 2nd International
Conference on Intelligent Systems and Applications, pp. 122–128,
Venice, Italy, April 2013.

[9] W.Hetzel and B.Hetzel,TheComplete Guide to Software Testing,
John Wiley & Sons, New York, NY, USA, 1991.

[10] S. Beydeda and V. Gruhn, “An integrated testing technique for
component-based software,” in Proceedings of the ACS/IEEE
International Conference onComputer Systems andApplications,
pp. 328–334, 2001.

[11] W.-T. Tsai, X. Bai, R. Paul, and L. Yu, “Scenario-based func-
tional regression testing,” in Proceedings of the 25th Annual
International Computer Software and Applications Conference
(COMPSAC ’01), pp. 496–501, October 2001.

[12] B. Korel, L. H. Tahat, and B. Vaysburg, “Model based regression
test reduction using dependence analysis,” in Proceedings of the
IEEE International Conference on Software Maintenance, pp.
214–223, October 2002.

[13] Y.-F. Chen, D. S. Rosenblum, and K.-P. Vo, “Test tube: a
system for selective regression testing,” in Proceedings of the 16th
International Conference on Software Engineering, pp. 211–220,
May 1994.

[14] R. Gupta, M. Harrold, andM. Soffa, “An approach to regression
testing using slices,” in Proceedings of the IEEE International
Conference on Software Maintenance, pp. 299–308, 1992.

[15] B. Korel and A. Al-Yami, “Automated regression test genera-
tion,” in Proceedings of the ACM International Symposium on
Software Testing and Analysis, pp. 143–152, 1998.

[16] G. Rothermel andM. J. Harrold, “A safe, efficient regression test
selection technique,” ACM Transactions on Software Engineer-
ing and Methodology, vol. 6, no. 2, pp. 173–210, 1997.

[17] B. Beizer, Software System Testing and Quality Assurance,
Thomson Computer Press, 1996.

[18] G. Rothermel and M. J. Harrold, “Safe, efficient algorithm for
regression test selection,” in Proceedings of the IEEE Interna-
tional Conference on Software Maintenance, pp. 358–367, 1994.

[19] W. Masri, A. Podgurski, and D. Leon, “An empirical study of
test case filtering techniques based on exercising information
flows,” IEEE Transactions on Software Engineering, vol. 33, no. 7,
pp. 454–477, 2007.

[20] H. Do, S. Mirarab, L. Tahvildari, and G. Rothermel, “The
effects of time constraints on test case prioritization: a series
of controlled experiments,” IEEE Transactions on Software
Engineering, vol. 36, pp. 593–617, 2010.

[21] G. Rothermel, R. H. Untcn, C. Chu, and M. J. Harrold,
“Prioritizing test cases for regression testing,” IEEETransactions
on Software Engineering, vol. 27, no. 10, pp. 929–948, 2001.

[22] R. C. Bryce, S. Sampath, and A. M. Memon, “Developing a
single model and test prioritization strategies for event-driven
software,” IEEE Transactions on Software Engineering, vol. 37,
no. 1, pp. 48–64, 2011.

[23] B. Korel, G. Koutsogiannakis, and L. H. Tahat, “Application of
system models in regression test suite prioritization,” in Pro-
ceedings of the 24th IEEE International Conference on Software
Maintenance (ICSM ’08), pp. 247–256, October 2008.

[24] B. Korel, L. H. Tahat, andM. Harman, “Test prioritization using
system models,” in Proceedings of the 21st IEEE International
Conference on Software Maintenance (ICSM ’05), pp. 559–568,
September 2005.

[25] C. Cagatay andD.Mishra, “Test case prioritization: a systematic
mapping study,” Software Quality Journal, vol. 21, no. 3, pp. 445–
478, 2013.

[26] C. Malz, N. Jazdi, and P. Gohner, “Prioritization of test cases
using software agents and fuzzy logic,” in Proceedings of the 5th
IEEE International Conference on Software Testing, Verification
and Validation (ICST ’12), pp. 483–486, April 2012.

[27] Y.-C. Huang, K.-L. Peng, and C.-Y. Huang, “A history-based
cost-cognizant test case prioritization technique in regression
testing,” Journal of Systems and Software, vol. 85, no. 3, pp. 626–
637, 2012.

[28] L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, no. 3,
pp. 338–353, 1965.

[29] B. Kosko, Neural Networks and Fuzzy Systems: A Dynamical
Systems Approach to Machine Intelligence, Prentice-Hall, Engle-
wood Cliffs, NJ, USA, 1992.

[30] Z. Xu, K. Gao, and T. M. Khoshgoftaar, “Application of fuzzy
expert system in test case selection for system regression test,” in
Proceedings of the IEEE International Conference on Information
Reuse and Integration (IRI ’05), pp. 120–125, August 2005.

[31] S. Horwitz, T. Reps, and D. Binkley, “Interprocedural slicing
using dependence graphs,” ACM Transactions on Programming
Languages and Systems, vol. 12, no. 1, pp. 26–60, 1990.

[32] M. Weiser, “Program slicing,” IEEE Transactions on Software
Engineering, vol. 10, no. 4, pp. 352–357, 1984.

[33] J. Giarratano and G. Riely, Expert Systems: Principles and
Programming, PWS-KENT, Boston, Mass, USA, 1989.



Submit your manuscripts at
http://www.hindawi.com

Computer Games 
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed 
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied 
Computational 
Intelligence and Soft 
Computing

 Advances in 

Artificial 
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Journal of

Computer Networks 
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in 

Multimedia

 International Journal of 

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational 
Intelligence and 
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


