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Recently many chaotic systems’ circuits are designed to generate phenomenon of chaos signals. The ability to synchronize chaotic
circuits opens a great number of ways to use them in application signals masking. In this paper, first a new nonlinear chaotic
dynamical system had be design, analyze and build circuit. Second, using GYC, partial region stability theory is applied to adaptive
control for two identical chaotic systems with uncertain parameters. The results of numerical simulation are performed to verify
examples of the proposed nonlinear controllers.

1. Introduction

Chaotic systems provide a rich mechanism for signal design
and generation, with potential applications to communi-
cations and signal processing. Because chaotic signals are
typically broadband, noise-like, and difficult to predict, they
can be used in various contexts for masking information
bearing waveforms. They can also be used as modulating
waveforms in spread spectrum systems.

This can be useful in many practical circumstances like
securing communication channels [1], masking signals [2],
spreading data sequence, or for generating random signals
[3]. Of course, chaos is an unwanted phenomenon in many
situations. The essential problem which is faced here is how
to distinguish such motion from long transient behavior. A
spectrum called Lyapunov exponents (LE) is often used as
a quantifier [4] of chaotic motion or regular motion. These
real numbers measure the average ratio of the exponential
separation of the two neighborhood trajectories. For chaos
it is necessary to have at least one positive of Lyapunov
exponents; the second one represents a direction of the flow
andmust converge to zero.The last onemust be negative with
the largest absolute value, since the flow is dissipative. Circuits

of nonlinear dynamic system provide an excellent tool for the
study of chaotic behavior. Some of these circuits treat time as
a discrete variable, employing sample-and-hold subcircuits
and analog multipliers to model iterated maps such as the
logistic map [5, 6].

In this paper, an adaptive generalized synchronization
of the four-dimensional Lorenz-Stenflo system [7–12] with
uncertain chaotic parameters strategy by GYC partial region
stability theory is proposed [13–16]. By using the GYC partial
region stability theory the Lyapunov function is a simple
linear homogeneous function of states and the structure of
controllers are simpler and have less simulation error because
they are in lower order than that of traditional controllers
design.

This paper is organized as follows. In Section 2, the
four-dimensional Lorenz-Stenflo system analyzes character-
istics of nonlinear dynamic behavior, construction realization
circuit of the four-dimensional Lorenz-Stenflo system. In
Section 3, adaptive generalized chaos synchronization with
uncertain parameters strategy by GCY partial region stability
theory is proposed. In Section 4, numerical results of adaptive
generalized synchronization of the four-dimensional Lorenz-
Stenflo system with uncertain chaotic parameters using GYC
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Figure 1: Phase portraits and Poincaré maps for (a) chaotic, (b) period-1, (c) period-2, (d) period-4, (e) period-3, (f) period-6, and (g)
period-12, respectively, of the four-dimensional Lorenz-Stenflo system.
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Figure 2: Three dimensions phase portrait of the four-dimensional Lorenz-Stenflo system and its projection.

partial region stability. Finally, some concluding remarks are
given in Section 5.

2. Chaotic Dynamic Analysis of a Four-
Dimensional Lorenz-Stenflo System

2.1. Phase Portraits and Poincaré Map. The Lorenz-Stenflo
system is described as [7, 8]
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where 𝑎 is Prandtl number, 𝑏 is rotation number, 𝑐 is Rayleigh
number, and 𝑑 is geometric parameter.

The 𝑏𝑥
4
of Lorenz-Stenflo system from first item changes

to third item, new four-dimensional Lorenz-Stenflo system.
Consider
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The Lorenz-Stenflo system has many dynamical behav-
iors that are one chaotic motion and six different periodic
motions as shown in Figure 1. To have a better understanding
of the four-dimensional Lorenz-Stenflo system, we use an
innovative technique to present the three-dimensional phase
portraits shown in Figure 2. These figures plot three dimen-
sions phase portraits and their projection simultaneously.
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Figure 3: Lyapunov exponents and bifurcation diagrams of the four-dimensional Lorenz-Stenflo system with parameters 𝑏 = 1.5, 𝑐 = 26,
and 𝑑 = 0.7.

Thus, we can comprehend the four-dimensional Lorenz-
Stenflo system much easier.

2.2. Equilibrium Analysis. The equilibrium points of the
system are shown as follows:
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(3)

The parameters of four-dimensional Lorenz-Stenflo system
are 𝑎 = 3.7, 𝑏 = 1.5, 𝑐 = 26, and 𝑑 = 0.7, so the equilibrium
points become

𝐸

0
(0, 0, 0, 0)

𝐸

1
(−3.98551, −3.98551, 25, 1.07716)

𝐸

2
(4.39091, 4.39091, 25, −1.18673) .

(4)

For the equilibrium point 𝐸
0
, the Jacobian matrix of the

system is

𝐽

0
=

[

[

[

[

−𝑎 𝑎 0 0

𝑐 −1 0 0

0 0 −𝑑 𝑏

−1 0 0 −𝑎

]

]

]

]

=

[

[

[

[

−3.7 3.7 0 0

26 −1 0 0

0 0 −0.7 1.5

−1 0 0 −3.7

]

]

]

]

. (5)
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Figure 4: Lyapunov exponents and bifurcation diagrams of the four-dimensional Lorenz-Stenflo system with parameters 𝑎 = 3.7, 𝑐 = 26,
and 𝑑 = 0.7.

The eigenvalues of the Jacobian matrix below are obvious:

𝜆

1
= 3.7, 𝜆

2
= −1,

𝜆

3
= −0.7, 𝜆

4
= −3.7.

(6)

Then we linearize the system about the nonzero equilib-
rium points and obtaine the Jacobian matrix:

𝐽
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=

[

[
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]

. (7)

The 𝐽
𝑛𝑧
eigenvalues are

det 


𝐽

𝑛𝑧
− 𝜆𝐼









=

[

[

[

[

−𝑎 − 𝜆 𝑎 0 0

𝑐 − 𝑥

3
−1 − 𝜆 −𝑥

1
0

𝑥

2
𝑥

1
−𝑑 − 𝜆 𝑏

−1 0 0 −𝑎 − 𝜆

]

]

]

]

= 𝜆

4
+ (2𝑎 + 𝑑 + 1) 𝜆

3

+ (𝑎 (2 + 2𝑑 + 𝑥

3
− 𝑐) + 𝑎

2
+ 𝑑 + 𝑥

2

1
) 𝜆

2

+ (𝑎

2
+ 2𝑎𝑑 − 𝑎

2
𝑐 + 𝑎

2
𝑑 − 𝑎𝑐𝑑

+2𝑎𝑥

2

1
+ 𝑎

2
𝑥

3
+ 𝑎𝑏𝑥

3
+ 𝑎𝑥

1
𝑥

2
) 𝜆

+ 𝑎

2
(𝑥

2

1
+ 𝑥

1
𝑥

2
+ 𝑑𝑥

3
) − 𝑎𝑏𝑥

1

+ 𝑎

2
𝑑 − 𝑎

2
𝑐𝑑.

(8)

By letting det |𝐽
𝑛𝑧

− 𝜆𝐼| = 0, the eigenvalues of the
matrix at each equilibrium point can be obtained as shown in
Table 1. The eigenvalues of each equilibrium point are the
same. And all the equilibrium points are unstable, since at
least one eigenvalue has positive real part for each equilib-
rium point.
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Figure 5: Lyapunov exponents and bifurcation diagrams of the four-dimensional Lorenz-Stenflo system with parameters 𝑎 = 3.7, 𝑏 = 1.5,
and 𝑑 = 0.7.

Table 1: Eigenvalues and stability of equilibrium points.

Equilibrium point Eigenvalues Stable/Unstable
𝐸

0 𝜆1 = 3.7, 𝜆2 = −1, 𝜆3 = −0.7, 𝜆4 = −3.7 Unstable
𝐸

1 𝜆1 = 2.152 − 6.27i, 𝜆2 = −12.5777, 𝜆3 = 2.152 + 6.27i, 𝜆4 = −0.826 Unstable
𝐸

2 𝜆1 = 2.1489 + 6.50198i, 𝜆2 = −12.5416, 𝜆3 = 2.1489 − 6.50198i, 𝜆4 = −0.8561 Unstable

2.3. Divergence Analysis. The divergence represents the vol-
ume density of the outward flux of a vector field. The
divergence of a system implieswhether this systemdissipative
or not. For the four-dimensional Lorenz-Stenflo system, its
divergence is

divΦ = ∇ ⋅ Φ =

𝜕Φ

𝜕𝑥

1

+

𝜕Φ

𝜕𝑥

2

+

𝜕Φ

𝜕𝑥

3

+

𝜕Φ

𝜕𝑥

4

= −𝑎 − 1 − 𝑑 − 𝑎,

(9)

where Φ = (�̇�

1
, �̇�

2
, �̇�

3
, �̇�

4
).

The parameters are taken as 𝑎 = 3.7, 𝑏 = 1.5, 𝑐 = 26, and
𝑑 = 0.7; hence, the divergence of the system becomes

divΦ = 3.7 − 1 + 0.7 − 3.7 = −9.1. (10)

So, (2) is dissipative, with an exponential contraction rate:

𝑑Φ

𝑑𝑡

= 𝑒

−(2𝑎+𝑑+1)
.

(11)

So, a volume element Π

0
is contracted by the flow

into a volume element Φ

0
𝑒

−(2𝑎+𝑑+1) in time. All orbits of
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Figure 6: Lyapunov exponents and bifurcation diagrams of the four-dimensional Lorenz-Stenflo system with parameters 𝑎 = 3.7, 𝑏 = 1.5,
and 𝑐 = 26.

(2) are ultimately confined to a set having zero volume
and asymptotic motion settles onto an attractor. The four-
dimensional Lorenz-Stenflo system has bund system.

2.4. Bifurcation Diagram. For numerical analysis, all of the
initial conditions are 𝑥

1
(0) = 20, 𝑥

2
(0) = 20, 𝑥

3
(0) = 20,

and 𝑥

4
(0) = 20, in this and next sections. The bifurcation

diagrams of the four-dimensional Lorenz-Stenflo system are
plotted in Figure 3(a) to Figure 6(a). The parameters 𝑎, 𝑏,
𝑐, and 𝑑 in (2) will be varied, respectively, for plotting the
bifurcation diagrams. From the bifurcation diagrams, we
can learn more about the behaviors of the four-dimensional
Lorenz-Stenflo system.

2.5. Lyapunov Exponent and Lyapunov Dimension. The Lya-
punov exponent may be used tomeasure the sensitive depen-
dence on initial conditions. Once the Lyapunov exponent is
greater than zero at specific value of parameters, it is said to be

chaos, otherwise, periodic solution.The Lyapunov exponents
diagrams of the four-dimensional Lorenz-Stenflo system are
shown in Figure 3(b) to Figure 6(b). In order to verify the
chaotic behavior of the system, Lyapunov exponents dia-
grams and bifurcation diagrams can be compared together.

The Lyapunov dimension has been proposed by Freder-
ickson et al. [17] to measure the complexity of the attractor.
The relation between Lyapunov dimension and Lyapunov
exponent is

𝑑

𝐿
= 𝑗 +

∑

𝑗

𝑖=1
𝜆

𝑖











𝜆

𝑗+1











, (12)

where 𝜆
𝑖
is the largest Lyapunov exponent and 𝑗 is defined by

the condition as
𝑗

∑

𝑖=1

𝜆

𝑖
≥ 0,

𝑗+1

∑

𝑖=1

𝜆

𝑖
< 0.

(13)

The Lyapunov dimension diagrams are plotted in Figure 7.
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Figure 7: Lyapunov dimension diagrams of the four-dimensional Lorenz-Stenflo system.

2.6. Electronic Circuit Implementation. The four-dimensional
Lorenz-Stenflo system can be modeled by an electronic
circuit [18–21]. The main electronic components in the
circuit are integrated amplifiers and inverting amplifiers. In
this circuit simulation, we use electronic circuit simulation
software named Multisim. All the parameters and initial
conditions are the same as numerical simulation. But here
we modify the value of capacitors to decrease the output
voltage within a range from −12.0 to 12.0, and all the state
values reduced tenfold in circuit simulation. The chaotic
circuit configuration diagram is shown in Figure 8, and the
governing integral equation of the circuit can be written as

�̇�

1
=

1

𝑅

1
𝐶

1

𝑥

2
−

1

𝑅

2
𝐶

1
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1
,

�̇�

2
=

1

𝑅

3
𝐶

2

𝑥

1
−
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𝑅

4
𝐶

2

𝑥

1
𝑥

3
−

1

𝑅

5
𝐶

2

𝑥

2
,

�̇�

3
=

1

𝑅

7
𝐶

3

𝑥

1
𝑥

2
+

1

𝑅

6
𝐶

3

𝑥

4
−

1

𝑅

8
𝐶

3

𝑥

3
,

�̇�

4
= −

1

𝑅

9
𝐶

4

𝑥

1
−

1

𝑅

10
𝐶

4

𝑥

4
.

(14)

Components of the chaotic system circuit are chosen to
be 𝑅

1
= 𝑅

2
= 𝑅

10
= 270 kΩ, 𝑅

3
= 38.461 kΩ, 𝑅

6
= 667 kΩ,

𝑅

4
= 𝑅

5
= 𝑅

7
= 𝑅

9
= 1MΩ, 𝑅

8
= 1429 kΩ, 𝑅

11
= 𝑅

12
=

𝑅

13
= 𝑅

14
= 𝑅

15
= 𝑅

16
= 𝑅

17
= 𝑅

18
= 100 kΩ, and

𝐶

1
= 𝐶

2
= 𝐶

3
= 𝐶

4
= 1 𝜇F.The voltage output signals of the

chaotic circuit simulated in Multisim software are shown in
Figure 9. In addition, the real circuit of the four-dimensional
Lorenz-Stenflo system was constructed on a breadboard
shown in Figure 13. The apparatus and the components used
in the circuit are listed in Table 2. The experimental setup is
shown in Figure 11 and the experimental results are shown in
Figure 12.
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Figure 8: Chaotic circuit of the four-dimensional Lorenz-Stenflo system.

In order to have a better concept about chaotic motions
and periodic motions, we present a four-dimensional dia-
gram, which is a combination of the phase portraits of the
circuits simulation and the bifurcation diagram of variable
parameter a, plotted in Figure 10.

3. Adaptive Generalized Synchronization
of the Four-Dimensional Lorenz-Stenflo
System with Uncertain Chaotic
Parameters via GYC Partial Region Stability
Theory Strategy

Consider the master system

�̇� = 𝑓 (𝑡, 𝑥, 𝐴 (𝑡)) , (15)

and the slave system

̇𝑦 = 𝑓 (𝑡, 𝑦,

̂

𝐴 (𝑡)) + 𝑢, (16)

where 𝑥 = [𝑥

1
, 𝑥

2
, . . . , 𝑥

𝑛
]

𝑇
∈ 𝑅

𝑛 and 𝑦 = [𝑦

1
, 𝑦

2
, . . . , 𝑦

𝑛
]

𝑇
∈

𝑅

𝑛 denote the master state vector and slave state vector,
respectively,𝑓 is nonlinear vector functions,𝐴(𝑡) is uncertain
chaotic parameter in 𝑓, ̂𝐴(𝑡) is estimates of uncertain chaotic
parameter in 𝑓, and 𝑢 = [𝑢

1
, 𝑢

2
, . . . , 𝑢

𝑛
]

𝑇
∈ 𝑅

𝑛 is a control
input vector.

Our goal is to design a controller 𝑢(𝑡) so that the state
vector of the slave system (16) asymptotically approaches the
state vector of the master system (15) plus a given vector
function 𝐹(𝑡) = [𝐹

1
(𝑡), 𝐹

2
(𝑡), . . . , 𝐹

𝑛
(𝑡)]

𝑇 which is either
a regular or a chaotic function of time, and finally the
synchronization will be accomplished in the sense that the
limit of the error vector 𝑒(𝑡) = [𝑒

1
, 𝑒

2
, . . . , 𝑒

𝑛
]

𝑇 approaches
zero:

lim
𝑡→∞

𝑒 (𝑡) = 0, (17)

where 𝑒

𝑖
= 𝑥

𝑖
− 𝑦

𝑖
+ 𝐹

𝑖
(𝑡) + 𝐾𝑒

𝑖
, 𝑖 = 1, 2, . . . , 𝑛. The 𝐾𝑒

𝑖

are positive constants which make the error dynamics always
happens in the first quadrant.

From (17) we have

̇𝑒

𝑖
= �̇�

𝑖
− ̇𝑦

𝑖
+

̇

𝐹

𝑖
(𝑡) , 𝑖 = 1, 2, . . . , 𝑛. (18)

Introducing (15) and (16) in (18), we get

̇𝑒 = 𝑓 (𝑡, 𝑥, 𝐴 (𝑡)) − 𝑓 (𝑡, 𝑦,

̂

𝐴 (𝑡)) +

̇

𝐹 (𝑡) − 𝑢 (𝑡) . (19)

A Lyapunov function 𝑉(𝑒,

̃

𝐴) is chosen as a positive
definite function in the first quadrant.

Consider

𝑉(𝑒,

̃

𝐴) = 𝑒 +

̃

𝐴, (20)
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Figure 9: Oscilloscope graphics for voltage signals outputs of the four-dimensional Lorenz-Stenflo system: (a) 𝑉

𝑥1
-𝑉
𝑥2
, (b) 𝑉

𝑥1
-𝑉
𝑥3
, (c)

𝑉

𝑥1
-𝑉
𝑥4
, (d) 𝑉

𝑥2
-𝑉
𝑥3
, (e) 𝑉

𝑥2
-𝑉
𝑥4
, and (f) 𝑉

𝑥3
-𝑉
𝑥4
.
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Figure 10: Bifurcation diagram with phase portraits of the four-dimensional Lorenz-Stenflo system.

Figure 11: Experimental setup for realization of the four-
dimensional Lorenz-Stenflo system.

where ̃

𝐴

𝑗
= 𝐴

𝑗
(𝑡)−

̂

𝐴

𝑗
(𝑡)+𝐾𝑝

𝑖
, (𝑗 = 1, 2, . . . , 𝑚).The𝐾𝑝

𝑖
are

positive constants whichmake the update laws always happen
in the first quadrant.

Its derivative along the solution of (20) is

̇

𝑉 (𝑒,

̃

𝐴) = 𝑓 (𝑡, 𝑥, 𝐴 (𝑡)) − 𝑓 (𝑡, 𝑦,

̂

𝐴 (𝑡)) +

̇

𝐹 (𝑡) − 𝑢 (𝑡) +

̇

̃

𝐴,

(21)

where 𝑢(𝑡) and ̇

̃

𝐴 are chosen so that ̇

𝑉 = 𝐶𝑒 + 𝐷

̃

𝐴,𝐶 and 𝐷

are negative constants, and ̇

𝑉 is a negative definite function
of 𝑒
1
, 𝑒

2
, . . . , 𝑒

𝑛
and ̃

𝐴

1
,

̃

𝐴

2
, . . . ,

̃

𝐴

𝑚
. When

lim
𝑡→∞

𝑒 = 0, lim
𝑡→∞

̃

𝐴 = 0, (22)

the generalized synchronization is obtained.

By using the GYC partial region stability theory, the
Lyapunov function is easier to find, since the terms of
first degree can be used to construct the definite Lyapunov
function and the controller can be designed in lower order.

4. Numerical Results of Adaptive Generalized
Synchronization of the Four-Dimensional
Lorenz-Stenflo System with Uncertain
Chaotic Parameters via GYC Partial Region
Stability Theory

Themaster system is

�̇�

1
= 𝐴

1
(𝑡) (𝑥

2
− 𝑥

1
)

�̇�

2
= 𝐴

3
(𝑡) 𝑥

1
− 𝑥

1
𝑥

3
− 𝑥

2

�̇�

3
= 𝐴

2
(𝑡) 𝑥

3
− 𝐴

4
(𝑡) 𝑥

3
+ 𝑥

1
𝑥

2

�̇�

4
= −𝐴

1
(𝑡) 𝑥

4
− 𝑥

1
,

(23)

where 𝐴

1
(𝑡), 𝐴

2
(𝑡), 𝐴

3
(𝑡), and 𝐴

4
(𝑡) are uncertain chaotic

parameters. Equation (23) is called four-dimensional Lorenz-
Stenflo system with uncertain chaotic parameters.
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Figure 12: Continued.
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Figure 12: Realization and simulation circuit compare results for voltage signals outputs of the four-dimensional Lorenz-Stenflo system: (a)
𝑉

𝑥1
-𝑉
𝑥2
, (b) 𝑉

𝑥1
-𝑉
𝑥3
, (c) 𝑉

𝑥1
-𝑉
𝑥4
, (d) 𝑉

𝑥2
-𝑉
𝑥3
, (e) 𝑉

𝑥2
-𝑉
𝑥4
, and (f) 𝑉

𝑥3
-𝑉
𝑥4
.

Consider

𝐴

1
(𝑡) = 𝑎 (1 + 𝑓

1
𝑧

1
)

𝐴

2
(𝑡) = 𝑏 (1 + 𝑓

2
𝑧

2
)

𝐴

3
(𝑡) = 𝑐 (1 + 𝑓

3
𝑧

3
)

𝐴

4
(𝑡) = 𝑑 (1 + 𝑓

4
𝑧

4
) ,

(24)

where 𝑓

1
, 𝑓

2
, 𝑓

3
, and 𝑓

4
are arbitrary positive constant and

𝑓

1
= 𝑓

2
= 𝑓

3
= 𝑓

4
= 0.005.

The chaotic signals system is

�̇�

1
= − 𝑧

2
𝑧

3
+ 𝑎𝑧

1
+ 𝑏𝑧

4

�̇�

2
= 𝑧

1
𝑧

3
+ 𝑐𝑧

2

�̇�

3
=

1

3

𝑧

1
𝑧

2
+ 𝑑𝑧

3

�̇�

4
= 𝑧

2
𝑧

3
+ 𝑟𝑧

4
,

(25)

where 𝑎 = 3.7, 𝑏 = 1.5, 𝑐 = 26, and 𝑑 = 0.7.

The slave system is

̇𝑦

1
=

̂

𝐴

1
(𝑦

2
− 𝑦

1
)

̇𝑦

2
=

̂

𝐴

3
𝑦

1
− 𝑦

1
𝑦

3
− 𝑦

2

̇𝑦

3
=

̂

𝐴

2
𝑦

4
−

̂

𝐴

4
𝑦

3
+ 𝑦

1
𝑦

2

̇𝑦

4
= −

̂

𝐴

1
𝑦

4
− 𝑦

1
,

(26)

where ̂

𝐴

1
(𝑡),

̂

𝐴

2
(𝑡),

̂

𝐴

3
(𝑡), and ̂

𝐴

4
(𝑡) are estimates of uncer-

tain chaotic parameters, respectively.
The nonlinear controllers, 𝑢

1
, 𝑢

2
, 𝑢

3
, and 𝑢

4
, are added to

each equation in (26), respectively.
Consider

̇𝑦

1
=

̂

𝐴

1
(𝑦

2
− 𝑦

1
) + 𝑢

1

̇𝑦

2
=

̂

𝐴

3
𝑦

1
− 𝑦

1
𝑦

3
− 𝑦

2
+ 𝑢

2

̇𝑦

3
=

̂

𝐴

2
𝑦

4
−

̂

𝐴

4
𝑦

3
+ 𝑦

1
𝑦

2
+ 𝑢

3

̇𝑦

4
= −

̂

𝐴

1
𝑦

4
− 𝑦

1
+ 𝑢

4
.

(27)

The given functional system for generalized synchroniza-
tion is also the four-dimensional Lorenz-Stenflo system but
with different initial conditions.
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Figure 13: Realization circuit of the four-dimensional Lorenz-
Stenflo system.

Table 2: List of apparatus and components in the circuit experiment.

Apparatus/Component Model Quantity
Multiplier AD633 2
OP-Amplifier LF412 4
Capacitor 2000 pF∼0.47 uF 4

Resister

1 k∼1.2M 19
270 kΩ 3

38.461 kΩ 1
667 kΩ 1
1429 kΩ 1
100 kΩ 8
1MΩ 4

Variable resistor 100 k 2
DC power supply GPS-3303 1

Consider

�̇�

1
= 𝑎 (𝑤

2
− 𝑤

1
)

�̇�

2
= 𝑐𝑤

1
− 𝑤

1
𝑤

3
− 𝑤

2

�̇�

3
= 𝑏𝑤

4
− 𝑑𝑤

3
+ 𝑤

1
𝑤

2

�̇�

4
= − 𝑎𝑤

4
− 𝑤

1
.

(28)

The initial value of the states of the master system, of the
slave system, of the chaotic signals system, and of the given
functional system are taken as 𝑥

1
(0) = 𝑥

2
(0) = 𝑥

3
(0) =

𝑥

4
(0) = 0.2, 𝑦

1
(0) = 𝑦

2
(0) = 𝑦

3
(0) = 𝑦

4
(0) = 0.3,

𝑧

1
(0) = 𝑧

2
(0) = 𝑧

3
(0) = 𝑧

4
(0) = 0.7, and 𝑤

1
(0) = 𝑤

2
(0) =

𝑤

3
(0) = 𝑤

4
(0) = 0.5, respectively.

The generalized synchronization error functions are

𝑒

𝑖
= 𝑥

𝑖
− 𝑦

𝑖
+ 𝑤

𝑖
+ 𝐾𝑒

𝑖
, (𝑖 = 1, 2, 3, 4) . (29)

The addition of constant 𝐾𝑒

𝑖
makes the error states always

greater than zero. As Figure 15 shows, we can confirm that
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Figure 14: Time histories of the master system and slave system.

the error states are always greater than zero. From (29), we
get the following error dynamics:

̇𝑒

1
=

̂

𝐴

1
(𝑒

2
− 𝑒

1
− 𝑤

2
+ 𝑤

1
)

+

̃

𝐴

1
(𝑥

2
− 𝑥

1
) + 𝑎 (𝑤

2
− 𝑤

1
) − 𝑢

1

̇𝑒

2
=

̂

𝐴

3
(𝑒

1
− 𝑤

1
− 𝐾) +

̃

𝐴

3
𝑥

1

+ 𝑐𝑤

1
− 𝑥

1
𝑥

3
− 𝑤

1
𝑤

3
+ (𝑥

1
+ 𝑤

1
− 𝑒

1
+ 𝐾)

× (𝑥

3
+ 𝑤

3
− 𝑒

3
+ 𝐾) − (𝑒

2
− 𝐾) − 𝑢

2

̇𝑒

3
=

̂

𝐴

2
(𝑒

4
− 𝑤

4
− 𝐾) +

̃

𝐴

2
𝑥

4
+ 𝑏𝑤

4

−

̂

𝐴

4
(𝑒

3
− 𝑤

3
− 𝐾) −

̃

𝐴

4
𝑥

3
− 𝑑𝑤

3

+ 𝑥

1
𝑥

3
+ 𝑤

1
𝑤

3
− (𝑥

1
+ 𝑤

1
− 𝑒

1
+ 𝐾)

× (𝑥

2
+ 𝑤

2
− 𝑒

2
+ 𝐾) − 𝑢

3

̇𝑒

4
= −

̂

𝐴

1
(𝑒

4
− 𝑤

4
− 𝐾) −

̃

𝐴

1
𝑥

4
− 𝑎𝑤

4
− (𝑒

1
− 𝐾) − 𝑢

4
,

(30)

where 𝑒

1
= 𝑥

1
− 𝑦

1
+ 𝑤

1
, 𝑒

2
= 𝑥

2
− 𝑦

2
+ 𝑤

2
, 𝑒

3
= 𝑥

3
− 𝑦

3
+

𝑤

3
, 𝑒

4
= 𝑥

4
− 𝑦

4
+ 𝑤

4
,

̃

𝐴

1
= 𝐴

1
−

̂

𝐴

1
+ 𝐾𝑝

1
, ̃

𝐴

2
= 𝐴

2
−

̂

𝐴

2
+

𝐾𝑝

2
,

̃

𝐴

3
= 𝐴

3
−

̂

𝐴

3
+ 𝐾𝑝

3
, and ̃

𝐴

4
= 𝐴

4
−

̂

𝐴

4
+ 𝐾𝑝

4
. The

addition of constant𝐾𝑝

𝑖
(𝑖 = 1, 2, 3, 4)makes the update laws

always greater than zero. As Figure 17 shows, we can confirm
that the update laws are always greater than zero.

Choose a Lyapunov function in the form of a positive
definite function:

𝑉(𝑒

1
, 𝑒

2
, 𝑒

3
, 𝑒

4
,

̃

𝐴

1
,

̃

𝐴

2
,

̃

𝐴

3
,

̃

𝐴

4
)

= (𝑒

1
+ 𝑒

2
+ 𝑒

3
+ 𝑒

4
+

̃

𝐴

1
+

̃

𝐴

2
+

̃

𝐴

3
+

̃

𝐴

4
)

(31)
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Figure 15: Time histories of error states.

and its time derivative is

̇

𝑉 (𝑒

1
, 𝑒

2
, 𝑒

3
, 𝑒

4
,

̃

𝐴

1
,

̃

𝐴

2
,

̃

𝐴

3
,

̃

𝐴

4
)

= ̇𝑒

1
+ ̇𝑒

2
+ ̇𝑒

3
+ ̇𝑒

4
+

̇

�̃� +

̇

̃

𝑏 +

̇

�̃� +

̇

̃

𝑑
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̂

𝐴

1
(𝑒

2
− 𝑒

1
− 𝑤

2
+ 𝑤

1
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̃

𝐴

1
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2
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1
)
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2
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1
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1
)
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3
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3
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2
𝑥
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𝐴
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(𝑒
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𝑥
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We choose the update laws for those uncertain parame-
ters as
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(33)
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Â
1
,Â
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Figure 16: Time histories of estimated parameters.

The initial values of estimates for uncertain parameters
are ̂
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(33), the appropriate controllers can be designed as
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Substituting (33) and (34) into (32), we obtain
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which is a negative-definite function of 𝑒

1
, 𝑒

2
, 𝑒

3
, 𝑒

4
,

̃

𝐴

1
,

̃

𝐴

2
,

̃

𝐴

3
, and ̃

𝐴

4
. The numerical simulation results are shown

in Figures 14, 15, 16, and 17.

5. Conclusions

In summary, the paper has studied the nonlinear dynamical
behaviors of the new chaotic attractor, including some basic
dynamical properties, bifurcations, Lyapunov exponents,
Lyapunov dimension, periodic motion, and routes to chaos



16 Abstract and Applied Analysis

0 0.05 0.1 0.15 0.2

0

1

2

3

4

Time (s)

Ã
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Figure 17: Time histories of parameters differences.

motion. Also, the four-dimensional Lorenz-Stenflo system
based realization circuit has been constructed to implement
various wing butterfly attractors. Furthermore, by electronic
circuit implementation of the proposed four-dimensional
Lorenz-Stenflo system, it is shown that the chaotic attractors
do physically exist. A new strategy, the GYC partial region
stability theory, is proposed to achieve adaptive chaos syn-
chronization with uncertain chaotic parameters.
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