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Autoantibodies against integral membrane proteins are usually pathogenic. Although anti-endothelial cell antibodies (AECAs)
are considered to be critical, especially for vascular lesions in collagen diseases, most molecules identi�ed as autoantigens for
AECAs are localized within the cell and not expressed on the cell surface. For identi�cation of autoantigens, proteomics and
expression library analyses have been performed for many years with some success. To speci�cally target cell-surface molecules
in identi�cation of autoantigens, we constructed a serological identi�cation system for autoantigens using a retroviral vector and
�ow cytometry (SARF). Here, we present an overview of recent research in AECAs and their target molecules and discuss the
principle and the application of SARF. �sing SARF, we successfully identi�ed three di�erent membrane proteins: �bronectin
leucine-rich transmembrane protein 2 (FLRT2) from patients with systemic lupus erythematosus (SLE), intercellular adhesion
molecule 1 (ICAM-1) from a patient with rheumatoid arthritis, and Pk (Gb3/CD77) from an SLE patient with hemolytic anemia,
as targets for AECAs. SARF is useful for speci�c identi�cation of autoantigens expressed on the cell surface, and identi�cation
of such interactions of the cell-surface autoantigens and pathogenic autoantibodies may enable the development of more speci�c
intervention strategies in autoimmune diseases.

1. Introduction

Inappropriate humoral and cellular immune responses medi-
ate the tissue damage in autoimmune diseases, and the out-
come of an autoimmune disease is in�uenced mainly by the
tissue distribution of target self antigens [1].epathogenesis
of most autoimmune diseases is highly complex and involves
multiple cellular and humoral pathways. One part of the
humoral armof the immune assault is caused by autoantibod-
ies, and the mechanisms of autoimmune damage mediated
by many autoantibodies have been studied [2]. Clinically,
speci�c autoantibodies are critical for the diagnosis, classi�-
cation, and monitoring of autoimmune diseases [2].

Autoantibodies cause damage through a number of
mechanisms, including the formation of immune complexes,
cytolysis or phagocytosis of target cells, and interference with
cellular physiology [3]. e cellular localization of the target
antigen is believed to play a critical role in the pathogenetic
potential of autoantibodies [4]. Intracellular proteins are
preferential targets of autoantibodies in autoimmune dis-
eases, butmany questions remain unanswered regarding how
autoantibodies against intracellular proteins play pathogenic
roles. In contrast, it is generally accepted that autoantibodies
against integral membrane proteins are usually pathogenic
[1]. Some autoantibodies have been clearly con�rmed to be
pathogenic in several autoimmune diseases, and a model
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T 1: Prevalence of anti-endothelial cell antibodies.

Disease % of positive sera
Systemic lupus erythematosus 15–85
Rheumatoid arthritis 0–87
Mixed connective tissue disease 33–45
Systemic sclerosis 15–84
Polymyositis/dermatomyositis 44–64
Antiphospholipid syndrome 0–64
Sjögren’s syndrome 24-25
Polyarteritis nodosa 50–56
Microscopic polyangiitis 2–60
Granulomatosis with polyangiitis 19–80
Eosinophilic granulomatosis with polyangiitis 50–69
Takayasu arteritis 54–95
Giant-cell arteritis 33–50
Behçet’s disease 14–80
Kawasaki disease 65

for customized and speci�c therapeutic approaches against
a highly pathogenic subset of autoantibodies using small
molecules have been reported [5].

In 1971, Lind�vist and �sterland �rst described au-
toantibodies to vascular endothelium based on indirect
immuno�uorescence (IIF) experiments [6]. ese autoanti-
bodies were called anti-endothelial cell antibodies (AECAs)
andwere de�ned as autoantibodies targeting antigens present
on the endothelial cell (EC)membrane [7]. As target antigens
of AECAs are present on the ECs, which are always in contact
with these circulating antibodies, AECAs have the potential
to induce vascular lesions directly. Here, we present a review
of AECAs and a novel method for identi�cation of cell-
surface autoantigens.

2. AECAs

2.1. AECAs and Disease. e presence of AECAs has been
reported in patients with a wide variety of diseases, including
collagen diseases (Table 1), in�ammatory bowel disease,
diabetes, thyroid diseases, thrombotic thrombocytopenic
purpura, primary sclerosing cholangitis, interstitial lung
disease, chronic obstructive lung disease, uveoretinitis, renal
transplantation, Susac syndrome, masked hypertension, and
atherosclerosis [8–23]. AECAs are correlated to disease
activity in some collagen diseases, and are thought to be
critical especially for vascular lesions in collagen diseases
[23]. In addition, AECAs have been shown to be clinical signs
of vasculitis in patients with systemic lupus erythematosus
(SLE) and rheumatoid arthritis (RA) [24]. AECAs were also
reported to play critical roles in several pathophysiological
conditions, including pulmonary hypertension, digital ulcers,
and gangrene [21, 22].

AECAs are detected even in healthy subjects [25, 26].
ese natural autoantibodies interact with living ECs with
lower affinity as compared to pathologic AECAs, and their

antigens are highly conserved protein families. ey con-
tribute tomodulate endothelial function with protective anti-
in�ammatory and anti-thrombotic functions [26].

2.2. Detection and �denti�cation of AECAs. Methods for
detection of AECAs have not been standardized, and a
number of methods have been reported, including IIF, cell-
based-enzyme linked immunosorbent assay (ELISA), �ow
cytometry, radioimmunoassay, western blotting (WB), and
immunoprecipitation [22, 23]. As these each of methods
have advantages and disadvantages, use of different technical
approaches to obtain more robust data is recommended [7].

Human umbilical vein endothelial cells (HUVECs) are
commonly used as a substrate, but antigen patterns of
ECs differ among other ECs, passage numbers, and culture
conditions [27]. It is also important whether ECs are �xed
or not because �xation induces permeabilization of the EC
membrane, and intracellular antigens become accessible to
antibodies [22].e results of AECApositivity were therefore
not considered in the same light, and the prevalence of
AECAs differed among studies (Table 1). Miura et al. recently
reported a novel solubilized cell-surface protein capture
ELISA for detection of AECAs [28], and further evaluation
and standardization are needed.

2.3. Pathogenicity of AECAs. An experimental animal model
for pathogenicity of AECAs was reported by Damianovich
et al. [29]. In their experiment, BALB/c mice were actively
immunized with the puri�ed AECAs from a patient with
granulomatosis with polyangiitis. ree months aer a
booster injection with human AECAs, mice developed
endogenous AECAs, and histological examination of lungs
and kidneys revealed both lymphoid cell in�ltration sur-
rounding arterioles and venules.

AECAs have been shown to be correlated with disease
activities, and have the potential to induce vascular lesions
because their targets are expressed on ECs that are readily
accessible to these circulating antibodies. AECAs are also
considered to play roles in the development of pathological
lesions by a number of methods as described below [22, 23,
30–32].

e �rst is the cytotoxicity of ECs through complement-
dependent cytotoxicity (CDC) and antibody-dependent cell-
mediated cytotoxicity (ADCC). CDC activity of AECAs was
reported in patients with SLE, Takayasu arteritis, hemolytic-
uremic syndrome, and Kawasaki disease [7, 24, 33–35].
Recently, we con�rmed that �bronectin leucine-rich trans-
membrane protein 2 (FLRT2) is a novel target antigen of
AECAs in SLE, which exerts direct cytotoxic effects through
CDC [9].

e second is the induction of coagulation. AECAs may
exhibit procoagulant effects by the production of tissue factor
in SLE and the release of heparin sulfate in systemic sclerosis
(SSc) [36, 37].

e third is the induction of apoptosis. AECAs may
induce EC apoptosis through CD95 or cross-reaction with
anti-phospholipid antibodies [38–40]. Dieudé et al. reported
that heat-shock protein (Hsp60) bound to ECs and in-
duced phosphatidylserine exposure and then apoptosis [41].
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Margutti et al. identi�ed antibodies to the C-terminus of
Ral-binding protein 1 (RLIP76), and these autoantibodies
induced oxidative stress-mediated EC apoptosis [42].

e fourth is the activation of ECs. AECAs were reported
to induce the secretion of interleukin (IL)-1𝛽𝛽, IL-6, IL-8, and
monocyte chemotactic protein-1, (MCP-1), and the expres-
sion of adhesion molecules such as E-selectin, intercellular
adhesion molecule 1 (ICAM-1), and vascular cell adhesion
molecule 1 (VCAM-1) [8, 24, 31], which cause leukocyte
recruitment and adhesion.

Alard et al. reported that recognition of cell-surface
adenosine triphosphate (ATP) synthase in the low pH
microenvironment contributes to intracellular acidi�cation
of ECs, whichmay induce cell death and trigger in�ammation
[43].

As described above, there is a great deal of evidence that
AECAs play pathogenic roles in collagen diseases. Identi�-
cation of targets of AECAs is required because (a) antigen-
speci�c detection systems are important for establishing
diagnostic tools and standardization of AECAs measure-
ment, (b) identi�cation will enable thorough analysis of
the pathogenicity of AECAs, and (c) AECA-autoantigen
interactions may be good targets for speci�c therapeutic
approaches against highly pathogenic autoantibodies.

�� �e��no�ogies for ��enti��ation of
Autoantigens for AECAs

e prevalence of AECAs varies according to the type
of ECs used for detection [44]. It was demonstrated that
AECAs cross-react with human �broblasts [45], and partial
inhibition of AECA activity was documented by absorption
of the AECA-containing sera with mononuclear cells [8]. It
was also reported that a structure shared by platelets and
ECs was recognized by a subset of AECAs [46]. ese data
suggested that the target antigens of AECAs may include not
only EC-speci�c but also non-EC-speci�c molecules.

Target antigens of AECAs have been investigated inten-
sively, but they are heterogeneous, and the following classi-
�cation of target antigens was proposed� membrane compo-
nent, ligand-receptor complex, and molecule adhering to the
plasma membrane [8]. e EC autoantigens may be either
constitutively expressed or translocated from intracellular
compartment to membrane by cytokines, such as IL-1 and
tumor necrosis factor 𝛼𝛼 (TNF𝛼𝛼), or physical effects [8,
47]. e reported autoantigens and their pathogenicities are
summarized in Table 2 [7, 9, 22–24, 42, 43, 47–56].

Several molecules can bind to ECs and are called “planted
antigens” for AECA presumably via charge-mediated mech-
anisms, a DNA-histone bridge, or a speci�c receptor.
Myeloperoxidase, DNA, and 𝛽𝛽2-glycoprotein I (𝛽𝛽2-GPI) are
thought to adhere to ECs during incubation of ECs with
sera from patients. Extracellular matrix components, such
as vimentin, may also be target antigens for AECAs [57].
Proteinase 3 (PR3) could represent another potential cryptic
target antigen [58]. PR3 has been maintained to migrate to
the plasma membrane of ECs, following stimulation [8].

As methods for identi�cation of target antigens of
AECAs, immunoprecipitation andWB of glycoproteins from

the EC membrane with AECA-positive sera have been used
[8, 23]. Although numerous protein bands were reported
as candidates for target antigens by this method, some of
the bands were considered to be artifacts [8], and further
identi�cation of given bands was also sometimes difficult.

Alternative methods have been developed, such as pro-
teomics analysis using two-dimensional electrophoresis fol-
lowed by matrix-assisted laser desorption ionization time
of �ight mass spectrometry [8, 23] and expression libraries
[8, 42, 56].

Proteomics analysis identi�ed vimentin, Hsp60, voltage-
dependent anion-selective channel 1 (VDAC-1), peroxire-
doxin 2, and ATP synthase as targets for AECAs [41, 43,
48–50]. Expression libraries also identi�ed tropomyosin, T-
plastin, andRLIP76 [42, 56], and these technologies are there-
fore promising. e problem is that most of the molecules
reported to date as targets for AECAs are intracellular pro-
teins (Table 2) although AECAs must be directed against the
cell surface. ese two methods are not speci�c for detecting
cell-surface molecules rather than intracellular molecules. In
addition, extraction of some membrane proteins has been
reported to be difficult in proteomics analysis, and this may
make it difficult to identify such proteins as AECA targets [7].

To overcome this problem,we constructed a novel expres-
sion cloning system for speci�c identi�cation of cell-surface
antigens [9], which we call serological identi�cation system
for autoantigens using a retroviral vector and �ow cytometry
(SARF) (Figure 1), and we have con�rmed that this system is
useful to identify autoantigens expressed on the EC surface
[9].

�� Strateg� for ��enti��ation of Ce���Surfa�e
Autoantigens: SARF

4.1. Generation of HUVEC cDNA-Expressing Cells (Figure
1(a)). Our strategy to identify AECA target molecules
involves use of a retroviral vector system and �ow cytometry
[9]. As described previously, antigen patterns of ECs differ
among other ECs [27]. Because we used HUVECs as a
substrate for AECAs measurement, we generated a HUVEC
cDNA library using HUVECs grown in the same conditions
as for AECAs measurement and ligated it into the retroviral
vector, pMX [59]. en, the HUVEC cDNA library in pMX
was retrovirally transfected into the YB2/0 rat myeloma cell
line [60]. As the localization of cellular molecules depends on
their structures, only cell-surface molecules are expressed on
the surface of YB2/0 cells transfectedwith theHUVEC cDNA
library.

4.2. Sorting of Cells Expressing Cell-Surface Autoantigens
(Figure 1(b)). AECAs can bind only to cell-surfacemolecules
in �ow cytometry.erefore, sorting of IgG-binding cells can
concentrate and isolate cells expressing target molecules for
AECAs on the cell surface. Aer staining of HUVEC cDNA-
expressing YB2/0 cells with AECA IgG and secondary anti-
body, cells with strong �uorescent signals are sorted by �ow
cytometry. is step of sorting is repeated for several rounds
to concentrate AECA IgG-binding cells. Aer concentration,
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T 2: Reported target antigens of anti-endothelial cell antibodies.

Disease Target antigen Pathogenicity

Systemic lupus erythematosus

DNA-DNA-histone
Ribosomal P protein PO
Ribosomal protein L6
Elongation factor 1-alpha
Adenylyl cyclase-associated protein
Pro�lin 2
Plasminogen activator inhibitor
Fibronectin
Heparan sulfate
𝛽𝛽2-glycoprotein I
Heat-shock protein 60 (Hsp 60) Apoptosis
Heat-shock protein 70 (Hsp 70)
Fibronectin leucine-rich transmembrane protein 2 (FLRT2) Complement-dependent cytotoxicity

Mixed connective tissue disease Voltage-dependent anion-selective channel 1 (VDAC-1)

Systemic sclerosis Topoisomerase I
Centromere protein B (CENP-B)

Vasculitis

Proteinase 3
Myeloperoxidase
Peroxiredoxin 2 Cytokine secretion
Adenosine triphosphate (ATP) synthase Intracellular acidi�cation

Microscopic polyangiitis Human lysosomal-associated membrane protein 2

Behçet’s disease Alpha-enolase
C-terminus of Ral-binding protein 1 (RLIP76) Apoptosis

Kawasaki disease Tropomyosin
T-plastin

Transplantation Vimentin
Keratin-like protein

rombotic thrombocytopenic purpuraGlycoprotein CD36

Heparin-induced thrombocytopenia Platelet factor 4 (PF4)
Heparin sulfate

several cell clones can be established from the AECA IgG-
binding cell population by the limiting dilution method.

�.�. I������������ �� ����� C���-������� A�����������. Aer
polymerase chain reaction (PCR) ampli�cation and cloning
of HUVEC cDNA inserted into the genomic DNA of cloned
cells, DNA sequencing can be performed followed by BLAST
analysis, which enables the identi�cation of the inserted
cDNA. In this step, microarray analysis is an alternative
method to identify the inserted cDNA. Next, an expression
vector of the identi�ed cDNA is generated and transfected
into a cell line that does not express the identi�ed protein.
Finally, it is necessary to con�rm that AECA IgG shows bind-
ing activity to 7-amino-actinomycin D-(7-AAD-) negative
identi�ed protein-expressing cells. If the binding activity is
con�rmed, it can be concluded that the identi�ed protein is a
novel autoantigen.

5.1. FLRT2. We reported the membrane protein FLRT2 as
a novel autoantigen of AECAs in patients with SLE based

on results obtained using SARF [9]. FLRT2 is type I trans-
membrane protein located on the plasma membrane [61].
FLRT2 was shown to be expressed in the pancreas, skeletal
muscle, brain, and heart with Northern blotting [61], and we
con�rmed the expression of FLRT2 on HUVECs and other
ECs by �ow cytometry and IIF [9]. Anti-FLRT2 antibody
activity accounted for 21.4% of AECAs in SLE, and anti-
FLRT2 activity was signi�cantly correlated with low levels
of complement C3, C4, and CH50 [9]. Anti-FLRT2 antibody
induced CDC against FLRT2-expressing cells including ECs,
indicating that anti-FLRT2 autoantibody may exhibit direct
pathogenicity [9].

5.2. ICAM-1. As AECAs can be detected in patients with
collagen diseases, especially SLE, RA, and Takayasu arteritis
[9], we further attempted to identify the autoantigens using
SARF. One sample (X10-3) from an RA patient showed
strong AECA activity (Figure 2(a)), and we selected this
serum sample as the prototype of AECA for subsequent cell
sorting. Using SARF, HUVEC cDNA-expressing YB2/0 cells
were stained with X10-3 IgG and �uorescein isothiocyanate-
(FITC-) conjugated secondary antibody, and cells with strong
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F 1: Serological identi�cation system for autoantigens using a retroviral vector and �ow cytometry (SARF). (a) Generation of human
umbilical vein endothelial cell (HUVEC) cDNA-expressing cells. (b) Sorting of cells expressing cell-surface autoantigens.

FITC signals were sorted by �ow cytometry (Figure 2(b)).
Aer the 4th sorting, cells bound toX10-3 IgGweremarkedly
increased (Figure 2(c), le), and the C5 clone was established
from the X10-3 IgG-binding cell population by the limiting
dilution method (Figure 2(c), right). Microarray analysis
revealed that the signal of ICAM-1was signi�cantly increased
(26.16-fold), and we con�rmed that the ICAM-1 cDNA was
inserted into the genomic DNA of X10-3-C5 clone (Figure
2(d)). �e also con�rmed the expression of ICAM-1 on the
X10-3-C5 clone (Figure 2(e)). Next, we generated an expres-
sion vector for ICAM-1, which was transfected into YB2/0
cells. X10-3 IgG showed signi�cant binding activity to 7-
AAD-negative ICAM-1-expressing YB2/0 cells (Figure 2(f)),
indicating that X10-3 IgG has anti-ICAM-1 activity. us,
the membrane protein ICAM-1 was identi�ed as a novel
autoantigen of AECA in RA. ICAM-1 is an immunoglobulin-
(Ig-) like cell adhesion molecule expressed by several cell
types, including leukocytes andECs. ICAM-1plays an impor-
tant role in both innate and adaptive immune responses. It
is involved in the transendothelial migration of leukocytes
to sites of in�ammation, as well as in interactions between
antigen presenting cells (APC) and T cells (immunological
synapse formation) [62].

ICAM-1 was also con�rmed to transduce signals �outside
in” [63, 64]. e cross-linking of ICAM-1 with monoclonal
antibodies was reported to activate the mitogen-activated
protein kinase (MAPK) kinases ERK-1/2 and/or JNK [65–
67]. e activation of ERK-1 lead to AP-1 activation [66],
the ERK-dependent production and secretion of IL-8 and
RANTES [67], and upregulation of VCAM-1 on the cell
surface [66, 68]. ICAM-1 cross-linking can also upregulate
tissue factor production [69] and proin�ammatory cytokines,
including IL-1 [70]. Lawson et al. reported production of anti-
ICAM-1 IgM aer cardiac transplantation, and the antibody
induced robust activation of the ERK-2 MAPK pathway
[71]. e use of anti-ICAM-1 antibody was examined for
the treatment of RA, but the second course of therapy was
associatedwith adverse effects suggestive of immune complex
formation [72]. Identi�cation of anti-ICAM-1 antibody in a
patient with RA suggested that this autoantibodymay exhibit
such pathogenic roles.

5.3. Pk (Gb3/CD77). Using serum from an SLE patient who
showed hemolytic anemia, SARF revealed that cDNA
inserted into the cloned cells that were sorted with this
AECA-IgG was alpha 1,4-galactosyltransferase (A4GALT).
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F 2: Identi�cation of intercellular adhesion molecule 1 (ICAM-1) as a target antigen of anti-endothelial cell antibodies (AECAs). (a)
Nonpermeabilized HUVECs were stained with 0.5mg/mL of IgG of control or X10-3 from a patient with rheumatoid arthritis followed by
secondary antibody and analyzed by �ow cytometry. (b) HUVEC cDNA-expressing cells were stained with 0.5mg/mL of X10-3 IgG followed
by secondary antibody, and cells in the positive fraction were sorted (black box). (c) Unsorted and 4th sorted cells (le) and unsorted and
cloned cells from 4th sorted cells, C5 (right), were stained with 0.5mg/mL of X10-3 IgG followed by secondary antibody and analyzed by
�ow cytometry. (d) ICAM-1 cDNA fragments inserted into the genomic DNA of C5 were ampli�ed, and �C� products were electrophoresed
on an 0.8% agarose gel. (e) Unsorted and C5 were stained with isotype control or anti-ICAM-1 antibody, followed by secondary antibody
and analyzed by �ow cytometry. (f) Expression vector, empty-I�E�-GF�, or ICAM-1-I�E�-GF� were transfected into �� 2/0 cells, and these
cells were stained with 0.5mg/mL of control IgG or X10-3 IgG, followed by secondary antibody and analyzed by �ow cytometry.
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is AECA showed signi�cant binding activity to 7-AAD-
negative A4GALT-overexpressing YB2/0 cells. e A4GALT
locus encodes a glycosyltransferase that synthesizes the
terminal Gal𝛼𝛼1-4Gal of Pk (Gb3/CD77) glycosphingolipid
[73, 74]. is means that synthesis of the terminal Gal𝛼𝛼1-
4Gal is needed for the binding of this AECA-IgG.

Gb3 is the Pk blood group antigen and has been
designated CD77 [74]. Monoclonal antibodies against Pk
(Gb3/CD77) are used as markers for Burkitt’s B-cell lym-
phoma and are able to initiate apoptosis [75]. Pk (Gb3/CD77)
plays a direct role in the entry of Shiga toxin into the
cell [76], and the presence of Pk (Gb3/CD77) in the ECs
of the kidney accounts for the development of hemolytic
uremic syndrome during bacterial infection with Shigella
species that produce verotoxin [77].e anti-Pk (Gb3/CD77)
antibody was reported to cause acute intravascular hemolytic
transfusion reactions and recurrent spontaneous abortions
due to damage to the placenta [73, 78]. ese data suggested
that Pk (Gb3/CD77) is one of the target antigens of AECAs in
SLE patients manifesting hemolytic anemia, and that anti-Pk
(Gb3/CD77) antibody may exhibit some pathogenic roles.

Identi�cation of A4GALT indicated the usefulness of
SARF, which can be used to identify genes that encode not
only the membrane protein itself, but also the transferase(s)
responsible for modifying the membrane protein.

As described above, this system is very useful for iden-
ti�cation of cell-surface autoantigens. Although this system
seems to present difficulties in sorting cells at very low
frequency, we could isolate and clone autoantigen-expressing
cells by repeated sorting.

As AECAs are a heterogeneous group of autoantibodies
that target ECs, it is predicted that there are different
autoantigens. us, it is important to determine the clin-
ical signi�cance and potential pathogenicity of identi�ed
autoantibodies. If an autoantibody is speci�c for a disease or
pathophysiology, it could be used as amarker for diagnosis or
classi�cation according to the underlying pathophysiology.
At the same time, the pathogenic potential of the autoanti-
body should also be examined. Along with in vitro studies
mentioned previously, experimental animal models of iden-
ti�ed autoantibody should be constructed to determine the
pathogenetic reactions in vivo.

6. Summary

AECAs are considered to be critical, especially for vascular
lesions in collagen diseases, but most are directed against
molecules localized within the cell and not expressed on the
cell surface. In addition to conventional immunoprecipita-
tion and WB, proteomics and expression library analyses
have been performed to identify the targets for AECAs with
some success. SARF was developed to identify autoantigens
expressed on the EC surface with greater sensitivity. Using
SARF, we successfully identi�ed three different membrane
proteins as targets for AECAs: FLRT2 frompatients with SLE,
ICAM-1 from a patient with RA, and Pk (Gb3/CD77) from
an SLE patient with hemolytic anemia. Using this technology,
it may be possible to determine cell-surface autoantigens
of AECAs and achieve a comprehensive understanding of

AECA-mediated vascular injury. Furthermore, SARF can
be used when autoantibodies against cell-surface molecules
are considered to take part in autoimmune diseases. e
identi�cation of such pathogenic autoantibodies may enable
the development of more speci�c intervention strategies in
autoimmune diseases.
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