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Abstract.
BACKGROUND: Auto-focusing is an important operation in high throughput imaging scanning. Although many auto-focusing
methods have been developed and tested for a variety of imaging modalities, few investigations have been performed on the
selection of an optimal auto-focusing method that is suitable for the pathological metaphase chromosome analysis under a high
resolution scanning microscopic system.
OBJECTIVE: The purpose of this study is to investigate and identify an optimal auto-focusing method for the pathological
metaphase chromosome analysis.
METHODS: In this study, five auto-focusing methods were applied and tested using metaphase chromosome images acquired
from bone marrow and blood specimens. These methods were assessed by measuring a number of indices including execution
time, accuracy, number of false maxima, and full width at half maximum (FWHM).
RESULTS: For the specific condition investigated in this study, the results showed that the Brenner gradient and threshold pixel
counting methods were the optimal methods for acquiring high quality metaphase chromosome images from the bone marrow
and blood specimens, respectively.
CONCLUSIONS: Selecting an optimal auto-focusing method depends on the specific clinical tasks. This study also provides
useful information for the design and implementation of the high throughput microscopic image scanning systems in the future
digital pathology.
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1. Introduction

High throughput microscopy is an important tech-
nique for the diagnosis and treatment of genetic related
diseases [1–4]. To make this technology clinically
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acceptable, it is critically important to efficiently obtain
the in-focused high resolution microscopic images,
as the blurred images may directly affect the diag-
nostic accuracy. Therefore, the autofocus technique is
required for the high throughput microscopic system
in the clinical practice.

During the last twenty years, substantial research
efforts have been devoted to the development of
reliable autofocus techniques for automated digital
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microscopes and other optical imaging applications
[5–11]. Although it has been well known that the per-
formance of the autofocus operation heavily depends
on the selection of the autofocus function [12–15], a
focusing function that performs well for the digital
camera might not be selected as the optimal func-
tion for the digital scanning microscope [12]. Recently,
some researchers have investigated and compared sev-
eral different autofocus techniques for scanning a
number of specific pathological specimens acquired
from blood smear, pap smear, tuberculosis, or fluores-
cent samples [14, 16–18]. However, these researches
are not specifically designed for the clinical specimens
(i.e. blood or bone marrow) used in the pathological
metaphase chromosome analysis.

In this study, we investigated and compared a num-
ber of different auto-focusing methods when they were
applied to acquire metaphase chromosome images
from bone marrow and blood specimens. The optimal
auto-focusing method is selected and recommended
based on the experimental results. The details of our
experimental methods and results are presented as
follows.

2. Materials and methods

In microscopic imaging, the obtained images will
become fuzzy with decreased contrast and edge
sharpness when the imaged objects (e.g. metaphase
chromosomes) are located outside of the focal plane.
The image contrast can be estimated by several auto-
focus functions. Therefore, the in-focused position of
the imaged objects can be determined by searching for
the maximal image contrast value.

In this investigation, a number of five different aut-
ofocus functions were evaluated using the metaphase
chromosome images acquired from the bone marrow
and blood specimens. All the experiments were per-
formed on a prototype microscopic image scanning
system previously developed in our medical image lab-
oratory [19]. The specimens were prepared based on
the standard clinical procedure.

During the experiment, we selected and tested a
number of the autofocus functions aiming to obtain
the high contrast images with maximum sharpness of
chromosome band patterns. The published autofocus
functions can be grouped into several classes includ-
ing but not limited to: i) image gradient [8, 13–15],
ii) histogram or contrast [13–15], iii) statistical mea-

surement (e.g. correlation) [9], iv) wavelet transform
[15, 20, 21], and v) discrete cosine transform [11].
In this study, we tested five typical methods selected
from group i), ii) and iii), which are Brenner gradient,
histogram range, threshold pixel counting, Vollath F5,
and variance [8–10, 12, 13]. These methods have been
used for a variety of biomedical specimens including
fluorescent sample, blood smear, pop smear, and tuber-
culosis [14, 16–18]. The concepts of these functions are
briefly described as follows:

1) Brenner gradient: For each pixel on the captured
image, this method calculates the square of the
difference between its two neighbors, and then
adds them together using the following equation
[8]:

F =
∑

x, y
(i(x + 1, y) − i(x − 1, y))2, (1)

with |i(x + 1, y) − i(i − 1, y)| > α, where i(x,
y) is the intensity at pixel (x, y), � is the threshold
of the intensity difference.

2) Histogram range: It is defined as the difference
between the maximum and minimum pixel inten-
sities measured on the acquired image. Let Nk be
the number of pixels with intensity k (0 ≤ k ≤ 255
for the 256 level grayscale images), and the his-
togram range can be written as [13]:

F = max(k|Nk /= 0) − min(k|Nk /= 0) (2)

3) Threshold pixel counting: It is defined as the
number of pixels whose intensity is lower than a
predetermined intensity (or grayscale) threshold
[12]:

F = �x,ysign[i(x, y), th], (3)

where the sign function is 1 if the pixel intensity
is below the threshold and 0 otherwise.

4) Vollath F5: It is defined on the basis of the stan-
dard deviation function [9]:

F = �x,yi(x, y) · i(x + 1, y) − MNī2, (4)

where M, N are the length and width of the image,
respectively.

5) Variance: For each pixel of the image, this
method computes the square of difference
between pixel intensity and the average pixel
value of the image, and then adds them together
for the final value [10, 12, 14]:

F = �x,y(i(x, y)-ī)2 (5)



Y. Qiu et al. / Evaluations of auto-focusing methods 39

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Distance away from the focal plane (µm)

F
o

cu
s 

va
lu

e

Focus value

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Distance away from the focal plane (µm)

F
o

cu
s 

va
lu

e

Focus value(a) (b)

Fig. 1. Examples of an ideal focus curve (a) and a failed focus curve (b). The calculated focus value is plotted as a function of focusing position.
The ideal focus curve in (a) is approximated by Gaussian function. It has only one maximum value, which corresponds to the focal plane (0 � m).
The focus value decreases when the cell moves away. The range where the focus value is above 50% of the maximum is defined as full width
at the half maximum (FWHM). Image (b) is a failed autofocus curve. The focus curve has two maximal values, thus the focal position cannot
be located.

In the above five functions, the focus value F is an
estimation of image contrast. Since image contrast is
smaller than 1, the computed focus values are normal-
ized for each metaphase chromosome cell.

In order to evaluate the performance of the above
five different autofocus functions, the off-line (static)
evaluation method was applied in this investigation,
which is widely accepted as a standard method in
this field [12–15, 17, 18]. This method assesses
the autofocus functions using the previously cap-
tured chromosome images. In this study, chromosome
images were obtained from blood and bone marrow
specimens. For each specimen, a number of twenty
metaphase chromosome cells were selected and used.
For each cell, the focal position was first visually deter-
mined by the trained researchers. Then, a number of
25 images were captured for each cell by moving the
scanning stage up and down in a range from +6 �m to
–6 �m, with a step of 0.5 �m. To acquire clinically
acceptable images, a 100× oil immersion objective
lens is used in the experiments.

The performance of using each of these autofocus
functions was then assessed based on the acquired
images. The autofocus function was applied on each
captured image and the focus value was calculated.
The computed focus value was curved as a function
of focusing positions. For a typical autofocus curve
as illustrated Fig. 1(a), it has only one maximum, and
the focusing position corresponding to the maximum
value is determined as the in-focused position.

In order to assess the autofocus function, four eval-
uation criteria were applied in this study, including
execution time, focusing accuracy, number of false
maxima, and full width at the half maximum (FWHM).
These measuring parameters are described as follows
[14, 15, 18]:

1) Execution time: The time used to compute the
autofocus value for each captured image.

2) Focusing accuracy: The difference between the
visually determined and automatically deter-
mined focal positions. In this study, the visually
determined position is calibrated at the central
position (0 �m).

3) Number of false maxima: False maximum is
defined as the failed autofocus curve, as illus-
trated in Fig. 2(b). In this case, the in-focused
position cannot be determined from the curve.

4) FWHM: As shown in Fig. 1(a), the autofocus
value decreases vastly when the targeted cell is
moved away from the in-focused plane. FWHM
is the range where the autofocus function value
reduces to 50% of the maximum.

The evaluation results were tabulated for compar-
ison and analysis. Among the applied criteria, the
number of false maxima was first considered, as it
directly reflects the efficacy of the autofocus functions.
The execution time was then compared, which reflects
the efficiency of the operation. The FWHM was ana-
lyzed next. The standard of the FWHM is related to the
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Fig. 2. An example of autofocus functions performed on micorsopic images of a pathlogical cell acquried from bone marrow sample. Image
(a) and (b) are captured at in-focused position, and 3 �m away from the focal plane, respectively. The image (b) is blurred as compared to the
in-focused image in (a). The Brenner function (c), threshold pixel counting (e), Vollath F5 (f), and variance (g) successfully select the focal
position. Histogram range (d), however, fails to locate the focal position.
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system depth of field (DOF), as the ideal focus curve
can be approximated by the DOF contrast curve. The
DOF is defined as the range where the measured con-
trast is larger than 80% of the maximum [22]. Under the
experimental conditions (using 100× oil immersion
objective lens), the measured DOF is 1.8 �m. Thus,
the ‘ideal’ FWHM will be approximately 3.0 �m, as
shown in Fig. 1(a). The focusing accuracy will not be
used for comparison if it is within the system’s DOF.
All autofocus algorithms were assessed using a per-
sonal computer equipped with an Intel i3 2.4 G Hz
dual core processor with 4G RAM using the MATLAB
R2011 software application.

3. Results

Figure 2 demonstrates an example of the autofocus
functions. Figure 2 (a) and (b) demonstrate two images
that were separately acquired at the in-focus plane and
3 �m away. Among these two images, Fig. 2 (b) is obvi-
ously blurred. Figure 2 (c)–(g) illustrate the results of
the five different autofocus functions. It reveals that
the Brenner function, threshold, Vollath F5 and vari-
ance methods can effectively locate the focal position,
as the calculated value reaches the maximum around
the focal plane (0 �m). The Brenner function deceases
faster than the other three methods when the cell is
moved away from the in-focused plane. Histogram
range, however, fails to find the focal plane. The range
value varies at different positions and no peak value
can be found.

In the high throughput scanning microscope, the
captured image is very large (3488 × 2048, 3488 pixels
in x direction and 2048 pixels in y direction) and also
contains interphase cells. As compared to the chro-
mosome bands, the size of the interphase nuclei is
larger, thus the spatial frequency is lower. Accord-
ing to the Fourier optics theory, the contrast of high

spatial frequency regions decreases more significantly
than the low frequency regions when the cell is moved
away from the focal position [23]. Therefore, this kind
of system requires that the autofocus function can
extract the useful high frequency components from the
obtained image. Among all the five selected methods,
Brenner function performs better than the others, as
the difference operator can extract the high frequency
information while discarding the others. The threshold
pixel counting, Vollath F5, and variance methods can
somehow extract the useful high frequency informa-
tion. The pixel intensity variance of in-focused images
is larger than the off focused images. This variance can
be reflected by calculating the image variance (variance
method), standard deviation (Vollath F5), or count-
ing pixels with very low grayscale (threshold pixel
counting). Histogram range method, however, cannot
distinguish the high and low frequency components, as
the range are mainly determined by the low frequency
components in this situation.

Tables 1 and 2 summarize the statistical results
of applying the five autofocus functions on the bone
marrow and blood samples. It also demonstrates that
Brenner function and threshold pixel count methods
are superior to the others. Both these two methods
can successfully locate the focal position with high
reliability. The threshold pixel counting method has
one false maximum when it is performed on the bone
marrow samples. For assessing efficiency, however,
the threshold method is much higher than the Bren-
ner function. It takes about 15 seconds for the Brenner
function to process a single image, while threshold
method only needs about 0.2 second. This is due to
the high computing complexity of the Brenner gra-
dient method. The FWHM of the Brenner method is
approximately 1.5 �m, while the FWHM of the thresh-
old method is larger than 12.5 �m. As compared to the
threshold method, the FWHM of the Brenner function
(approximately 1.5 �m) is closer to the ideal FWHM,

Table 1

Results of the evaluation of autofocus functions for bone marrow specimen

Executing time Accuracy (�m) Number of Full width at
(second) false maxima half maximum (�m)

Brenner function 14.7125 ± 0.6406(3) 0.2500 ± 0.2565(1) 0(1) 1.6344 ± 0.1630(1)
Histogram range 0.1411 ± 0.0066(2) 1.3000 ± 0.6708(5) 15(5) ≥12.5(2)
Threshold 0.1383 ± 0.0033(1) 0.2895 ± 0.2536(4) 1(2) ≥12.5(2)
Vollath F5 34.7059 ± 3.0202(4) 0.2632 ± 0.2565(2) 1(2) ≥12.5(2)
Variance 35.0119 ± 0.8372(5) 0.2632 ± 0.2565(2) 1(2) ≥12.5(2)

Note: Rank is illustrated in the parentheses.
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Table 2

Results of the evaluation of autofocus functions for blood specimen

Executing time Accuracy (�m) Number of Full width at
(second) false maxima half maximum (�m)

Brenner function 15.3441 ± 0.4044(3) 0.2250 ± 0.2552(2) 0(1) 1.3404 ± 0.6354(1)
Histogram range 0.1435 ± 0.0099(2) 1.1818 ± 0.7833(5) 9(5) ≥12.5(2)
Threshold 0.1400 ± 0.0064(1) 0.2000 ± 0.2513(1) 0(1) ≥12.5(2)
Vollath F5 32.0297 ± 0.6356(4) 0.2500 ± 0.3035(3) 0(1) ≥12.5(2)
Variance 34.5461 ± 0.2625(5) 0.2500 ± 0.3035(3) 0(1) ≥12.5(2)

Note: Rank is illustrated in the parentheses.

which shows that the Brenner function is more sensi-
tive to the change of focusing position. Thus, it can
search the focal plane more reliably than the threshold
method. The accuracies of both these two methods are
within the system’s DOF.

Blood and bone marrow samples have different opti-
mal autofocus functions. In clinical application, one or
two autofocus false maxima is acceptable when scan-
ning the blood specimens, as one slide usually contains
30–50 useful cells and clinicians only need 3–5 cells
to make the diagnosis. Therefore, the threshold pixel
counting method is the optimal selection, because the
accuracy and robustness of this method is satisfactory
but it has much higher efficiency than the Brenner
function method.

For the bone marrow specimen, however, one slide
only contains 5-6 useful analyzable metaphase cells. In
order to collect enough (20) cells for diagnosis, clin-
icians need to screen 3–5 slides. Furthermore, even
in in-focused state, the image quality of bone marrow
cells is not as good as the blood cells, which may affect
the autofocus operation. Thus, scanning of bone mar-
row slides requires very high reliability. On the other
hand, executing time of the Brenner gradient is highly
dependent on the computing environment. The execut-
ing time can be significantly reduced by utilizing a high
efficiency programming language such as C/C++ under
the environment of a high performance workstation.
Therefore, Brenner function is the optimal solution for
the bone marrow slide, as it has high accuracy and
robustness to the useless information, especially when
using the images with decreased quality.

4. Discussion

Metaphase chromosome karyotyping of patholog-
ical specimens is a widely used technique for the
diagnosis of genetic diseases. In the hospital, clinicians

need to carefully examine the number or morphology
of the chromosome bands, to determine whether the
case is abnormal or not [1, 3, 4, 24, 25]. Therefore,
during the image acquisition, it is critically important
to ensure that the band sharpness is adequate for diag-
nosis, as the off-focused bands in the captured images
might lead to false positive or false negative diagnostic
results.

In order to keep the adequate band sharpness in
microscopic images, autofocus techniques are nec-
essary for the automatic or semi-automatic scanning
microscopes, especially the high throughput scanning
systems [26, 27]. The autofocus technique can be
divided into autofocus function and searching algo-
rithms. Since the performance of autofocus functions
varies in different applications, the autofocus function
must be carefully selected to achieve the satisfactory
or optimal results. Although several studies have been
reported on selecting the optimal autofocus function
for some specimens, such as pap smear or tuberculosis,
little effort has been done on how to select the “best”
autofocus function for the metaphase chromosome
images acquired from different pathological specimens
(i.e. bone marrow or blood) in high resolution imaging
environments [14, 16–18].

In this study, five autofocus functions were tested
and compared on metaphase chromosome images
obtained from bone marrow and blood specimens. Four
different criteria were used for the evaluation. The
results show that the Brenner gradient and threshold
pixel counting are superior to the others. To achieve
the optimal performance, Brenner gradient and thresh-
old pixel counting methods are suggested for the bone
marrow and blood sample scanning, respectively.

However, this is a preliminary study with several
limitations. First, only blood and bone marrow samples
were used in this investigation. Some other speci-
mens, such as amniotic fluid, product of conception
(POC), which are also widely used in clinical practice,
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were not tested. Second, we only selected five differ-
ent autofocus functions in this study. Some recently
developed functions were not considered [5, 28–30].
Third, the selected optimal autofocus methods have
not been actually performed for realistic imaging scan-
ning. Hence, a more comprehensive study is underway,
which may help eventually optimize high throughput
microscopic image scanning system in the future clin-
ical practice.
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