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Finite difference and homotopy analysis methods are used for the approximate solution of the
initial-boundary value problem for the delay parabolic partial differential equation with the
Dirichlet condition. The convergence estimates for the solution of first and second orders of
difference schemes in Holder norms are obtained. A procedure of modified Gauss elimination
method is used for the solution of these difference schemes. Homotopy analysis method is applied.
Comparison of finite difference and homotopy analysis methods is given on the problem.

1. Introduction

Increase in interest in the theoretical aspects of numerical methods for delay differential
equations points out that delay differential equations are capable of generating extensive
and conceivable models for phenomena in many branches of sciences. Numerical solutions
of the delay ordinary differential equations have been studied mostly for ordinary differential
equations (cf., e.g., [1-14] and the references therein). Nevertheless, delay partial differential
equations are less in demand than delay ordinary differential equations. Different kinds of
problems for delay partial differential equations are solved by using operator approach (see,
e.g., [15-17]).

In recent years, Ashyralyev and Sobolevskii considered the initial-value problem for
linear delay partial differential equations of parabolic type in the spaces C(E,) of functions
defined on the segment [0, o0) with values in a Banach space E, and the stability inequalities
were established under stronger assumption than the necessary condition of the stability
of the differential problem. The stability estimates for the solutions of difference schemes
of the first- and second-order accuracy difference schemes for approximately solving this
initial-value problem for delay differential equations of parabolic type were presented. They
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obtained the stability estimates in Holder norms for solutions of the initial-value problem
of the delay differential and difference equations of the parabolic type [15, 16]. Gabriella
used extrapolation spaces to solve Banach spaces valued delay differential equations with
unbounded delay operators. The author proved regularity properties of various types of solu-
tions and investigated the existence of strong and weak solutions for a class of abstract semi-
linear delay equations [17].

In this paper, finite difference (see, e.g., [18-28]) and homotopy analysis methods
(HAM) (see, e.g., [29-37]) for the approximate solutions of the delay differential equation
of the parabolic type

ur(t, x) + (—a(x)uyx (£, x) + b(x)ux (t, x) + c(x)u(t, x))
=d(t)(—a(xX) Uy (t — w, x) + b(x)uy(t — w, x)
+c(X)u(t-w,x)), 0<t<oo, x€(0,]), (1.1)
u(t,x) =g(t,x), -w<t<0, xel0,1],
u(t,0)=u(t,l)=0, t>0,

are studied. Here g(¢,x) (t € (—o0,0), x € [0,1]), a(x),b(x),c(x) (x € (0,00)) are given
smooth bounded functions and a(x) > a > 0.

Difference schemes which are accurate to first and second orders for the approximate
solution of problem (1.1) are presented. The convergence estimates for the solution of these
difference schemes are obtained. For the numerical study, procedure of modified Gauss
elimination method is used to solve these difference schemes. Homotopy analysis method is
applied to find the solution of problem (1.1). The numerical results are obtained at the same
points for each method. Comparison of finite difference and homotopy analysis methods is
given on the problem.

2. The Finite Difference Method

In this section, the first and second orders of accuracy in ¢ for the approximate solution of
problem (1.1) are considered. The convergence estimates for the solution of these difference
schemes are established. A procedure of modified Gauss elimination method is used to solve
these difference schemes.

2.1. The Difference Scheme, Convergence Estimates

The discretization of problem (1.1) is carried out in two steps. In the first step, we define the
grid space

[0,L],={x=xp,:x,=nh, 0<n<M, Mh=1L}. (2.1)
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o o
To formulate our results, we introduce the Banach space C,, = C [0, L], « € [0,1), of all grid

functions ¢" = {¢,} ;" defined on [0, L], with ¢y = ¢ = 0 equipped with the norm

n=1

”‘Ph o = ”‘Ph + sup  [Quer = @u| (r),
Cy Cr 1<n<nir<M-1 (2.2)
| —
”(P G 15%3(71'%"

Moreover, C-(E) = C([0, %), E) is the Banach space of all grid functions f7 = { fi} 2, defined
on

[0,00), = {tx =kT, k=0,1,...} (2.3)

with values in E equipped with the norm

I f* c.(E) = SUP Il fil - (2.4)
1<k<co

To the differential operator A generated by problem (1.1), we assign the difference operators

Ay, By by the formulas

o M-1
+b(xn)% +C(xn)(Pn} ’ (2.5)
1 .

- 2(Pn + Pn-1
h2
B (tg" (x) = d(t) Axg",

Azl (x) = {—a(x,»"”“1

acting in the space of grid functions ¢"(x) = {¢,}) " satisfying the conditions ¢y = ¢ = 0.
It is well known that A7 is a strongly positive operator in C,. With the help of A} and d(t) A,
we arrive at the initial value problem

dul'(t, x)

— Afu(t,x) = d() ATu"(t —w,x), O0<t<oo, 0<x<L,

(2.6)
ul'(t,x) = gh(t,x), —w<t<0,0<x<L.

In the second step, we consider difference schemes of first and second orders of accuracy

1 X X
- (uﬁ(x) - uZ_l(x)> + Al (x) = d(t) Al (x), te=kt, 1<k, NT=1w, 0

up(x) = g"(tk,x), tr=kr, -N<k<0,

1 1

(0 -1, 0) + (47 374Dk

1+ Za 2)ax 2.8)
- E(I - EAh>d<tk - E)Ah <”27N(x) + ”Z,N,l(x)>, ty =k, 1<k,

up = g"(k,x), te=kr, -N <k<0.
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Theorem 2.1. Assume that

l-a
da(t)] < .
Oséir; O] < v s (2.9)
Suppose that problem (1.1) has a smooth solution u(t, x) and
o) u S, X+ —Uu S, X
I max|ugs(s, x)|+ sup |55 ]/2) 55 (5, 9)| ds < oo,
0 |O0sx<L O<x<x+y<L y=
(2.10)
*® u s, x+Vy)-u 5,x
J maxX|iyrrx (S, X)| +  sup | e yz e )| ds < co.
0 |O0sx<L O<x<x+y<L y
Then, for the solution of difference scheme (2.7), the following convergence estimate holds:
h_ ok 2
sup”uk —u"(tg, ) || o2e < My <T +h ) (2.11)
k Ch

with M being a real number independent of T, a, and h.

Proof. Using notations of Aj and B;, we can obtain the following formula for the solution:

k
uZ(x) = RFg"(0,x) + ZRk‘7+1B;‘gh(tj_N,x)T, 1<k <N,

j=1

k ) 2.12

uf(x) = RNyl (x) + > Rk‘“lB;‘u;’_N(x)T, (2.12)
j=n N+1

nN <k<(n+1)N,

where R = (I + TAZ)_l. The proof of Theorem 2.1 is based on the formulas (2.12), on the
convergence theorem, on the difference schemes in C,(E") (see [38]), on the estimate

lexp{~tcAf}llc,~c, <M, k>0, (2.13)

o2
and on the fact thatin E Z = E,(A},Cp,) the norms are equivalent to the norms in C;, uniformly

inhfor0<a<1/2 (see, [18]). O
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Theorem 2.2. Assume that assumption (2.9) of Theorem 2.1 and the following conditions hold:

* Ugss (S, X + — Uggs(S, X
I max|ugs(s, x)| + sup | Sss( ’ yzu sss(/ )| ds < oo,
0 |0sxsL O<x<x+y<L y
* u S, X+Y)—Uu S, X
f max|Uyyss (S, X)| +  sup | xxss( 4 yz)u xxss (5, )| ds < oo, (2.14)
0 |OsxsL O<x<x+y<L y

J maX |Uyxxxs (S, X)| + sup I xxxxs( ’ yza xxxxs (S, )|
o [osx<t Wi 8 ;

]ds < oo.

Then for the solution of difference scheme (2.8), the following convergence estimate is satisfied:

sl;p”uZ —u(t, ) & <M (Tz + h2) (2.15)

with M, being a real number independent of T, a, and h.

Proof. Using notations of A} and Bj again, we can obtain the following formula for the solu-
tion:

k ) A¥
uZ(x) = RFg"(0,x) + ZR"”” <I + T2—h> <gh(t]~_N, x) - gh(tj_N_l,x)>T, 1<k<N,
i=1

k ) T A% 1
uZ(x) = RkinNuZN(x) + Z Rk-7+1 <I + Th>B;§<u?—N(x) + u?_N_1(x)>T/
j=nN+1

nN <k<(n+1)N,
(2.16)

where R = (I + TA; + (TAZ)Z/Z)_l. The proof of Theorem 2.2 is based on the formulas (2.16),
on the convergence theorem, on the difference schemes in C,(E") (see, [38]), on the estimate
(2.13), and on the equivalence of the norms as in Theorem 2.1.

Finally, the numerical methods are given in the following section for the solution of
delay parabolic differential equation with the Dirichlet condition. The method is illustrated
by numerical examples. O

2.2. Numerical Results

We consider the initial-boundary-value problem

ou(t,x) du(t,x) Pu(t—1,x)
ot o O =

u(t,x) =e'sinx, -1<t<0, 0<x<um,
u(t,0) =u(t,or)=0, t>0,

0, t>0, 0<x<u,

(2.17)

for the delay parabolic differential equation.
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The exact solution of this problem fort € [n-1,n],n=0,1,2,...,x € [0,o] is

(et sin x, -1<t<0,

et {1+ (0.1) et} sinx, 0<t<l,
De(t-1)]?

et31+(0.1) et+W}Sinx, 1<t<2,

u(t,x) = 1

[(0.1)e(t—1)]? [(0.1)e(t - n)
I TR (n+1)!

e 11+ (0.1) et +

](n+1)
}sinx, n<t<n+1,

(2.18)

For the approximate solution of delay parabolic equation (2.17), consider the set of grid points

[-1,00], x [0,7r]}, = {(tx, xn) 1tk = kT, -N <k <00, x, =nh, 0<n <M, Mh=u}.
(2.19)

Using difference scheme accurate to first order for the approximate solutions of the initial-
boundary-value problem for the delay parabolic equation (2.17), we get the following system
of equations:

_ k- _ ke
uk =kl w2+ uy 0 1)un+f]—2u,’; Ny ykN o
T h? ’ h? ’
mN+1<k<(m+1)N, m=0,1,..., 1<n<M-1, (2.20)

uk =etsinx,, -N<k<0, 0<n<M,

uf =uk, =0, k>0.

In this first step, applying difference scheme accurate to first order, we obtain a system of
equations in matrix form

Aur

n+1

+BU,' +CU;", =Ry}, 1 < ..
~ 5 (2.21)
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where A, B, C are (N + 1) x (N + 1) matrices defined by

d

00000---0000

0a000---0000

00a00---0000

000a0---0000
acfrorreooe

00000---a000

00000---0a00

00000---00a0

00000000 af, . v
[1 00 - 0---0---00] (2.22)
bcO---0---0---00
Obc---0---0---00
00b---0---0---00
000---0---0---00

B=|[000---0---0---00

000---0---0---00

000 -0 - 0 00

000 -0 - 0 c 0
0o00---0---0---bc| (N+1)x(N+1)

C=A, Ris (N +1) x (N +1) identity matrix and ¢!, U7* are (N + 1) x 1 column vectors as

n

(PmN umN
n S
N+1 N+1
oo = o , ur = g fors=n+1,mn, (2.23)
(m.+1)N u(m;l)N
n (N+1)x(1) s (N+1)x(1)
where uZ‘N is given forany m =0,1,. ..,
k-N k-N . , k-N
u -2u +u
(‘01]; — _(01) n+1 1;12 n-1 ,
(2.24)
mN+1<k<(m+1)N, m=0,1,..., 1<n<M-1,
u’,‘, =esinx, -N<k<O0.
Here, we denote
1 1 1 2
a= b:——, C=—+ —. (225)
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So, we have second-order difference equation (2.21) with matrix coefficients. To solve this
difference equation, we have applied a procedure of modified Gauss elimination method.
Hence, we obtain a solution of the matrix equation in the following form:

Ul =ajaUlty +pry, j=M-1,..21,
(2.26)
ur =0,

where a; (j = 1,..., M) are (N + 1) x (N + 1) square matrices and ﬁ]’” (j=1,...,M) are
(N +1) x 1 column matrices defined by

Qjy1 = —(B + Cvc]-)_lA,

_ (2.27)
"y = (B+Cay) ™ (Ry)" - Cp)),

where j=1,...,M -1, a; is the (N + 1) x (N + 1) zero matrix, and " is the (N + 1) x 1 zero
matrix.

Second, using the second order of accuracy difference scheme for the approximate
solutions of problem (2.17) and applying formulae

2u(0) — 5u(h) +4u(2h) — u(3h) £(0) = O(,,z)

2
(2.28)
2u(l) - 5u(l - h) + 4u(l - 2h) —u(1-3h) ,
= (1) =0(h?),
we obtain the following system of equations:
uy —uy uk | -2uk+uk LT uk o —duk o+ 6uk —duk 1k,
T 2 2 h*
k=N _ o, k- k=N k-1-N _ o, k-1- k-1-N
+(01) W N =20l , U = 2ukT N 4k
2h? 2h?
T ul N —4uf N 4 Uk N — 4y kN N
2 2h*
G T B Rt S R Rl | B
2h* '

mN+1<k<(m+1)N, m=0,1,...,2<n<M-2,
uk =etsinx, -N<k<0, 0<n<M,

n =

4 0 15
u’fzguz—gu3, k>0,
15

4
Upniq = 5“1\4—2 - g”M—e.f k>0,

ulgzull‘W:O, k>0.
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In the second step, we apply second-order difference scheme to get the system of linear equa-
tions in matrix form

AU"

n+2

+BU;, + CU; + DU, + EU}", = Ry,/,
m=0,1,..., 2<n<M-2,
uy =0, uy, =0,

(2.30)
U125U2—5U3,
Ui :guM—z_guM—ar
where A, B, C are (N + 1) x (N + 1) matrices defined by
[0 0000---000 0]
0x 000 - - 0000
00 x00- - 0000
000xO0 - - 0000
acfroovE ool
000O0O0- -x 000
000O0O- - 0x00
000O0O- - 00x0
00000 - - 000 x| (N+1)x(N+1)
(00000 ---000 0]
0Oy 00O - - 0000
00y 0O - - 0000
000yO- - 0000
B_OOOOy- - 0000 (2.31)
00O0O0O- -y 000
000O0O- -0y 00
000O0O- -00yoO
00000 -+ 000 yf mnm
1 0000 - - 00 0 0]
zt000O0- -0000
0zt 0O- - 0000
00zt O- -0000
C=]1000 2zt - - 0000 ,
00O0O0O - zt 00
00O0O0O - 0ztO
000O00O0 00zt

| T < (N+1)x(N+1)



10 Abstract and Applied Analysis

B=D,E=A, Ris (N +1) x (N + 1) identity matrix, and ¢}, U2 are (N + 1) x 1 column

n
vectors as
N ur~
mN+1 umN+1
o= | Pn , ur = s fors=n+l,n+2,n, (2.32)
(m+1)N u(m.-*—l)N
n (N+1)x(1) s (N+1)x(1)
where 1™V is given forany m=0,1,...,
[ 2N N N N g
(pn - _(01) 2h2 + 2h2
T ul N — b N 4 Uk N — 4y kN kN
2 2h*
(2.33)
k-1-N k-1-N k-1-N k-1-N , ,,k-1-N
+un+2 —du, 7+ 6u, —du, T,
2ht ’
mN+1<k<(m+1)N, m=0,1,..., 1<n<M-1,
uk = etsinx,, -N<k<O0.
Here, we denote
T 1 2T
X =— == -,
Y A ™ 234)
1 1 2 3r 2.
z=-—, t=—+—=+—,
T T h2 R

Hence, we have second-order difference equation (2.30) with matrix coefficients. For the

solution of this matrix equation, we use the modified Gauss elimination method. We seek
a solution of the matrix equation by the following form:

Uj = ajalfy + fralfy + ¥, j=M-2,...,2,1,0
ur, =0, (2.35)
ur = [(Bva +51) = 4(I - apo)ana] " [AUT - a2yl =0l

wherea; (j=2,..., M-2)and ; (j =2,..., M~-2) are (N +1) x (N +1) square matrices and
Y (j=2,..., M —2) are column matrices defined by

a]-+1 = —(C + D[X] + Eﬂj—l + E(Xj_llxj)_l (B + Dﬂ] + Ea]-_1ﬂj),
ﬂj+1 = —(C + sz] + Eﬁ]‘,l + Ea]'fltxj)il (A)/

(2.36)
m -1 m m m m
Y = ~(C+ Daj + Epj1 + Eaj 1) (Ry!" = Dy = Eaj 1y - Eyl™y),
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Table 1: Comparison of the errors of different difference schemes in t € [0, 1].

Method N=M=20 N=M=40 N=M=80
Difference scheme (2.20) 0.00599088 0.00286092 0.00139629
Difference scheme (2.29) 0.00076265 0.00020317 0.00005148

Table 2: Comparison of the errors of different difference schemesin t € [1,2].

Method N=M=20 N=M=40 N=M=280
Difference scheme (2.20) 0.07324151 0.03693061 0.01845008
Difference scheme (2.29) 0.00077055 0.00020541 0.00005206

Table 3: Comparison of the errors of different difference schemesin t € [2,3].

Method N=M=20 N=M=40 N=M=280
Difference scheme (2.20) 0.03520081 0.01749862 0.00872690
Difference scheme (2.29) 0.00067084 0.00017845 0.00004521

Table 4: Comparison of the errors of different difference schemes in t € [3,4].

Method N=M-=20 N=M-=40 N=M=80
Difference scheme (2.20) 0.01687166 0.00844577 0.00421761
Difference scheme (2.29) 0.00045527 0.00012107 0.00003067

wherej=2,...,M =2, a1 is (N +1) x (N + 1) zero matrix, and p; is (N + 1) x (N + 1) zero
matrix, y{" and y3" are (N + 1) x 1 zero matrices.

We give the results of the numerical analysis. The numerical solutions are recorded
for different values of N and M and uk represent the numerical solutions of these difference
schemes at (t, x,). Tables 1, 2, 3, and 4 are constructed for N = M = 20, 40, 80int € [0,1],
te[1,2],t € [2,3],te€ [3,4], respectively, and the error is computed by the following formula:

N _ _ k
EM = _II;II;%;(N u(tk, xn) Uy,|. (237)
1<n<M-1

Thus, by using the second order of accuracy difference scheme, the accuracy of solution
increases faster than the first order of accuracy difference scheme.

3. Homotopy Analysis Method

In this section, we consider homotopy analysis method for the solution of problem (1.1). We
study the initial-boundary-value problem for the delay parabolic equation (1.1). To illustrate
the basic idea of homotopy analysis method (HAM) developed by Liao (see, e.g., [29-35]),
the following differential equation is considered:

Nlu(t,x)] = f(t,x), (3.1)
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where N is a linear operator for problem (1.1), t and x denote independent variables, u(t, x) is
an unknown function, and f (¢, x) is a known analytical function. Liao constructs the so-called
zero-order deformation equation

(1-q)L[p(t, x;9) — uo(t, x)] = qh{N[p(t, x;q)] - f(t, %)}, (3.2)

where g € [0,1] is an embedding parameter, 7 is a nonzero auxiliary parameter, L is an
auxiliary linear operator, uo(t, x) is an initial guess of u(t, x), and ¢(t, x; q) is an unknown
function. When g = 0 and g = 1, it holds

¢(t1x;0) = uO(trX)/ ¢(t/ x;l) = u(t/ x)/ (33)

respectively. As g increases from 0 to 1, the solution ¢(t, x;q) varies from the initial guess
uy(t, x) to the solution u(t, x). Expanding ¢ (¢, x; q) in Taylor series with respect to g, we get

Pt q) = ot 1) + St 1), (3.4)
m=1

where

1 9"t x;q)

um(t, x) = —, 3"

, (3.5)
q=0

when the initial guess uy(t, x), the auxiliary linear operator L and the auxiliary parameter /
are chosen properly, the series (3.4) converges at g = 1. We get

u(t,x) = up(t,x) + Jioum(t,x). (3.6)
m=1

Then define the vectors
1y = {uo(t, x), ur (t,x), ..., uy(t,x)}. (3.7)

Differentiating the zero-order deformation equation (3.2) m times with respect to the embed-
ding parameter g and dividing them by m!, we obtain the mth-order deformation equation

L[um(tl X) = XmUm-1(t, x)] = TRy (1), (3.8)

where
1 0" I(N[¢(tx9)] - f(t,x)
m—1)! ogm-1 '

q=0
0, m<1,
1, m>1.

sRm(ﬁm—l) = (
(3.9)
Xm =
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with the initial condition

U,y (0,x)=0, m>1. (3.10)

High-order deformation equation (3.8) is governed by the linear operator L. R, (ii,,-1) can be
represented by u; (¢, x), u,(t, x), u2(t, x), ..., um-1(t, x) and high-order deformation equation
can be solved consecutively. The Nth-order approximation of u(t, x) is given by

u(t,x) = up(t, x) + ium(t,x). (3.11)

m=1

3.1. Homotopy Analysis Solution

For the approximate solution of the delay parabolic differential equation with the Dirichlet
condition, we consider the delay parabolic equation (2.17) and rewrite the equation for t €
[0,1] in the following form:

ou(t,x) d*u(t,x)
ot 0x?

=0.1) e Vsinx, 0<t<1, 0<x<u,

u(0,x) =sinx, 0<x<ur (3.12)

u(t,0)=u(t,or)=0, 0<t<1.

To solve the initial-boundary-value problem (3.12) by means of HAM, we choose the initial
approximation

uy(t, x) =sinx, (3.13)
and the linear operator
L[p(tx:9)] = W’ (3.14)
with the property
L[c] =0, (3.15)

where c is constant of integration. From (3.12), we define a linear operator as

NIp( )] = 22D T30 @16

Firstly, we construct the zero-order deformation equation

(1-q)L[¢p(t x;q) —uo(t,x)] = qh{N[p(t,x;q)] - f(t,x)}, (3.17)
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wheng=0andg=1,

¢(t,x;0) =up(t,x) =u(0,x),¢(t, x;1) = u(t, x).

(3.18)

Then, we get mth-order deformation equations (3.8) for m > 1 with the initial conditions

U, (0,x) =0,

where

. Ot (t, x) U1 (t, x
Ron(m-1) = (;t( ) - 6;2( )

The solution of the mth-order deformation equations (3.20) for m > 1 is

U (t, X) = Ymthm-1 (£, X) + AL [ Ry (1) ]

From (3.12) and (3.21), we obtain

up(t, x) =sinx,

o k+1 k
ui(t,x) = -h(0.1)e Z sinx + ht sin x,
k. & (D
ux(t,x) = h(h+ 1tsinx — h(h + 1>§_;W sin x
2 (-1 >k*1 ¢ 2
+ A~ (0. 1)32 sinx +# Esmx,
2 2 (FDF2
us(t,x) = h(h+ 1)tsinx + 3h°(h + 1)— sinx —A(h+1) ZW sin x
-2 (h+1 Zﬂ sinx — 72(0.1)e Z (1 )k+1 ‘ sinx + h3f sin x
(k-1)! 3! ’

(_ )k+1 k m
un(t,x) = fi(h+1,t,x) + (-1)"1n"(0.1)e Z smx+h" smx,

(1= ym)(0.1)e” "V sinx.

(3.19)

(3.20)

(3.21)

(3.22)
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and so on. Then for / = -1, we get

up(t, x) = sinx,

(_ )k+l k .
uy (¢, x) = (0. 1)62 sinx — tsin x,
up(t,x) = (0.1) Z(_ )kﬂ ‘ sinx + ﬁsmx
2!
(_ )k+1 k t3
uz(t,x) = (0.1)e Z sinx — 30 sin x, (3.23)

k+1 _1\"yn
A
n!

a(t, %) = (0.1)e Z( O

sin x,

and so on.
From (3.6), when we take / = —1, the solution of (3.12) can be obtained as

tk
sin x. (3.24)

o k
u(t,x) = ((0.1)et+1) > (_k)
k=0

Equation (3.24) has the closed form
u(t,x) = ((0.1)et + 1)e ' sinx, (3.25)

which is the exact solution of (3.12).
Second, we consider the solution of the delay parabolic equation (2.17) for t € [1,2]
and rewrite this equation in the following form:

ou(t,x) d*u(t,x)

= (0.1)e"®V[(0.1)e(t-1) +1]sinx, 1<t<2, 0<x <,

ot 0x? 326
u(l,x) =e1[(0.1)e+1]sinx, 0<x<u (3.26)
u(t,0)=u(t,aor)=0 1<t<2
Now, we choose the initial approximation
up(t,x) = e 1[(0.1)e + 1] sin x. (3.27)

We take the linear operator (3.14) with the property (3.15), and we define the operator (3.16)
from (3.26).
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Firstly, we construct the zero-order deformation equation (3.2) and then, we obtain
mth-order deformation equations (3.8) for m > 1 with the initial conditions

un(1,x) =0, (3.28)

where

aum—l(t/x) 0 Um- 1 t X) (1 _
ot ox?

Rin (thm-1) = ) (0.1)e"ED[(0.1)e(t - 1) + 1] sinx.  (3.29)

The solution of the mth-order deformation equations (3.29) for m > 1 is
U (t,%) = YXmm-1 (£, %) + AL [Ryy (-1)]. (3.30)
From (3.26) and the mth-order deformation equations (3.30), we get

uo(t,x) = e 1[(0.1)e + 1] sin x,

uy (t,x) = he *[(0.1)e + 1] sinx(t — 1)

k+1 k+l /gy qyk+1
ﬁ(Ol)Z( D) (t DY oy Z%sinm

uy(t,x) = h(h +1)e 1 [(0.1)e + 1] (t — 1) sin x

& (D -1 D ¢-D*
- h(h+ 1)(0.1)kzzzw sinx — (i +1)(0.1)%e ZW sin x
k+
+h2e ' [(0.1)e + 1] smx(t ) + 1*(0. 1)ZM sin x

) © (_1)k+1(t_1)k+1 )
+ ﬁ2(01) ekzﬂm s x,

us(t, x) = h(hi+1)%e7'[(0.1)e + 1] sin x(t — 1)

(t-1)°
21

+ 21 (h+1)e 1 [(0.1)e + 1] sin x

0 (_1)k+1(t_1)k—2 ( 1)k+1(t 1)

+h(h+ 1)2(0.1);3 "o sinx — fi(h +1)%(0.1)% %m sin x
— 202 (1 +1)/(0. 1)2% sinx — hi(h + 1)(0.1)%%% sinx
[ & !
D*e-1* -1y

2 2 N . 3 -1 .
+ h°(h+1)(0.1) eék(k—l)(k—Z)! sinx + ”’e " [(0.1)e + 1] sinx 3
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k+1( _ )k

_ ﬁ3(0‘1)i(_1)+
k=3 :

) © (_1)k+1(t _ 1)k+1 .
sinx — ﬁ3(0.1)2ek2=3(k k-1 (k=3)! sinx,

(t-1"

Uy (t,x) = fa(hi+1,t,x) + B"e '[(0.1)e + 1] sinx p

k+1
- (0. 1)ZM sin x

. (1)k+1(t 1)k+1 .
+ (DO eZ(k T Dk(k=1) (k= (m=2))(k—my %

(3.31)
and so on. When we choose h = —1, we obtain
up(t,x) = e 1[(0.1)e + 1] sin x,
ui(t,x) = —e'[(0.1)e + 1] sinx(t — 1)
k+1 k+1 k+1
+ (0. 1)ZM sinx + (0.1) ez% sinx,
2
uy(t,x) = e 1[(0.1)e + 1] sin x (t 2|1)
( 1)k+1(t )k ) ) © (_1)k+1 (t— 1)k+1 .
+ (O 1)2— smx + (01) Eém s x,
uz(t,x) = —e '[(0.1)e + 1] sinx (¢ _3|1)3
& D=1 2 & (DD (332)
+ (0.1)kZZBT sinx + (0.1) ekzzs(k T Dk(k-D)(k=3)! sinx
u,(t,x) = (-1)"e1[(0.1)e + 1] sinx (¢ ;'1)"

k+1 1)k

+ (0. 1)2% sin x

(1)k+1(t 1)k+1
+(0.1) eZ(k +Dk(k=1)-- (k- (n-2))(k —n)!

sin x,

and so on.
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From (3.6), the solution of (3.26) for ~ = —1 can be obtained as

2 © k
u(t, x) = <w +(0.1)et + 1>Z (_1k)' * sinx. (3.33)
: k=0 :

Equation (3.33) has the closed form

2
u(t,x) = <w +(0.1)et + 1>e"t sinx, (3.34)

which is the exact solution of the (3.26).
Now, we consider the solution of the delay parabolic equation (2.17) for t € [2,3] and
rewrite the equation in the following form:

du(t,x)  Pu(t,x) _ 01)e-tD [[(0.1).2(:&—2)]2

ot 0x? ol +(0.1)e(t-1) + 1] sinx,

2<t<3, O<x<um,

) (3.35)
u2,x) =e? [% +2(0.1)e + 1] sinx, 0<x<umo
u(t,0)=u(t,r)=0, 2<t<3.
The initial approximation is
1e]?
uo(t,x) = e [% +2(0.1)e + 1] sin x. (3.36)

We take the linear operator (3.14) with the property (3.15). From parabolic equation
(3.35), we define a linear operator (3.16) and obtain the zero-order deformation equation
(3.2). Thus, we get the mth-order deformation equations (3.8) for m > 1 with the initial
conditions

un(2,x)=0, (3.37)
where
. Oy (E,x)  O"Up-1(t, X)
ERm( m—l) - ot axz (1 Xm)

10elt=2)P 638)

x (0.1)e~*1 [ o +(0.De(t-1) + 1] sin x.

The solution of the mth-order deformation equations (3.38) for m > 1 is

U (t, X) = XmUm-1(t, x) + AL~ [Ren (tn-1)]- (3.39)



Abstract and Applied Analysis 19

From (3.35) and (3.39), we obtain

2
uo(t,x) = e [ [(O.;)e] +2(0.1)e + 1] sin x,

[(0.1)e]?

ui (t, x) = he™? [ o +2(0.1)e + 1] sinx(t —2)

k+1(t 2)

he_l (O 1)2 ( 1) 1)k+l (t 2)k+1

sin x — (0. 1)22((k+1)w sin x

0 k+1 k k+1 k+2
_noapy D=2t <01) Z( D (t-2)

k! k+2)(k-1) "%

[(0.1)e]?
2!

uy(t,x) = h(h + 1)e-2[ +2(0.1)e + 1] sin x(t - 2)

w© k k-1 0 k k-1
—h(h+ 1)5%0.1)2% sinx — h(h + 1)(0.1)22% sin x

k+1
sinx — h(h + 1)2((;)1(;72)2)' sin x

-D*(t-2)"
k(k - 2)!

+ i2e [ [(0.De]* 2(0.1)e + 1] sinx =2

— (ki +1)(0. 1)22

2! 2!

k+1y o (_1\k+1/p _ H\k+1
(t ) smx+h2(0.1)ZZMsinx

(-1)
e (00) Z & (k+ Dk(k-2)!

s (_1)k+1(t_2)k ' (0 1) ( 1)k+1(t_2)k+2 .
+ﬁ2(0.1)2kZZZT sin x + he Z k+2)(k+ D) (k=2)] sinx,

[(0.1)e]?
2!

us(t, x) = h(h + 1)2e-2[ +2(0.1)e + 1] sinx(t - 2)

[(0.1)e]? (t-2)°
2! 21

+2h2(ﬁ+1)e‘2[ +2(0.1)e + 1] sin x

_ o] (_1)k+1 (t _ 2)k72 )
—Ah+1)%(01)e ' Y
+ e é (k—Z)! smx

0 k+1 k-2
— B+ 1)2(0.1)22% sin x

k+1 k-1
- 3h(h+1)(0. 1)22% sin x
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k+1 k-1
— B2 (h+1)(0. 1)22% sin x

D k+1 (t _ z)k—l

—2h*(h + 1)e_1(0.1)§)( 1)(k 1 sin x

k+ k
— (i + 1) (O 1) Z( 1k)(k1£t3_)|2)

sin x

(D (-2
—Zﬁz(ﬁ+1)(01)22m sin x

(0 1) ( 1 k+1(t 2)k+1
-2/ (h+1) Z R+ Dk(k-3)! sin x

+ ﬁ3e_2 [M

(t-2)°
T 2(0. 1)e+1] sinx 3

— w© (—1)k+1(t—2)k ) 5 ) ®© (_1)k+1(t_2)k+1 -
- ke (0.1);:;T sinx — /#”(0.1) kz:;(k+ Dk -1 (k=3)! sin x

k+1 k+1 k+2
R 1)22( DS 2 e (01> Z k<—1> (t-2)

) (k+ Dk(k =3y 0%

[(0.1)e]?
2!

un(t,x) = fa(h+1,t,x) + h"e"ZI: p

+2(0.1)e + 1] sinxE=2"

k+1
+ (-1)"K"e71(0. 1)ZMsmx

( 1)k+1(t 2)k+1

ngn 2
+(_1)h(01)z(k +Dk(k-1)--- (k= (n-2))(k—n)!

sin x

k+1
+ (=1)"#"(0. 1)2ZM sin x

. (O 1)3 © ( 1)k+1(t_2)k+2
+(=1)"n"e Z(k+2)(k+1)k~--(k—(n—3))(k—n)!

sin x,

(3.40)
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and so on. When we choose = —1, we obtain

[(0.1)e]?
2!

up(t,x) = e‘z[ +2(0.1)e + 1] sin x,

2
up(t,x) = —e?2 [ [(0';)6] +2(0.1)e + 1] sinx(t - 2)

k+1 k+1 k+1
+e71(0. 1)2% sin x + (0. 1)22% sin x

fe k+ k+
+ (0. 1)22—( DTE-2) nx+e(O 1) Z((;)Jrzl)((tk 2)1),2 sinx,

(t- 2)2

21

[(0-1)e]?
2!

ux(t, x) = _zl: +2(0. 1)e+1] sin x

k+1/.p o (_1\k+1/p _ n\k+1
+e (0. 1)ZM sinx + (O.l)zé% sin x

1k+1t 2 0.1300 _1k+1t_2k+2 .
+(01)ZZ( ) ( )snx+e(2!) kz_z(k(+2;(k-(l-1)(lz—2)!smx'

2! 3!
~ ( 1)k+1(l’ 2) © (_1)k+1(t _2)k+1 )
+e (0. 1)Z—smx + (0.1)22 Sk Dk(k-1)(k - 3)] sinx

(_1)k+1 (t _ 2)k+2
+2)(k + D)k (k - 3)!

us(t,x) = - [M +2(0.1)e + 1] sin g™ 2)?

sin x,

k+1
+(01)2Z—( DT (¢=2) 1nx+.e(O )Z(k

un(t, x) = (-1)"e”? [[(O;J +2(0.1)e + 1] sin x (¢ ;'2)71

k+1
+e (0. 1)ZM sinx

( 1)k+1 (t 2)k+1

2 .
+(01 Z(k Tk(k=1) (k= (m=-2)(k—ny ¥
k+1
+ (0. 1)2ZM sin x
3 o k+1 k+2
+e(0'1) Z ()7 (t-2) sin x,

20 & (k+2)(k+1)k--- (k- (n-3))(k - n)!

(3.41)

and so on.
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From (3.6), the solution of (3.35) for A = -1 is

3 2 - .
u(t,x) = <[(0.1)€(t—2)] n [(0.1)e(t-1)] N (O,l)et+1>z(_1)' £k
k=0

Al o T sin x. (3.42)

This series has the closed form

13 112
u(t’x)=<[(0.1)e§f 2)] +[(O.1)ez(:f 1)]

+ (0.1)et + 1> e'sinx, (3.43)

which is the exact solution of the (3.35).
Finally, we consider the solution of the delay parabolic equation (2.17) for t € [3,4]
and rewrite this equation in the following form:

ou(t,x) d*u(t,x) [(0.1)e(t-3)]° L [O0D)e(t - 2)]?

= (0.1)e-<f-1>[ +(0.1)e(t-1) + 1] sinx,

ot 0x? 3! 2!
3<t<4, O<x<um,
3 2
u@3,x) = e [ [(0‘;‘)61 T [2(0‘21')31 +3(0.1)e + 1] sinx, 0<x<u,
u(t,0) =u(t,or)=0, 3<t<4
(3.44)
We take the initial approximation
Del®  [2(0.1)e]?
uo(t, x) = e"3|:[(03|)e] il (02')‘3] +3(0.1)e+1] sin x (3.45)

and the linear operator (3.14) with the property (3.15). From (3.44), we define linear operator
(3.16).

We construct the zero-order deformation equation (3.2) and the mth-order deforma-
tion equations (3.8) for m > 1 with the initial conditions

un(3,x) =0, (3.46)
where
_ Ouy-1(t, U (t,
me(umfl) = “ St( x) - uai_z( X) - (1 —Xm)
3 2
x (0.1)3-“-1)<[(0'1)e§f_3)] + [(0'1)62(f_2)] +(0.1)e(t-1) +1> sin .

(3.47)
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The solution of the mth-order deformation equations (3.47) for m > 1 is
U (t, %) = Ymthmer (£, %) + BL7 [ Ry (1) | (3.48)
From (3.44) and (3.48), we get
uo(t, x) = e [ [(0‘;!)3]3 + [2(0‘21!)312 +3(0.1)e + 1] sinx,
ui(t,x) = he‘3[[(0'81)!)e]3 + [2(0'21!)612 +3(0.1)e + 1] sin x(t - 3)
— he (0. 1)2% sinx — he (0. 1)22% sin x
205 T e 0 S OO
01y Z <( ;)"T)((tk 1’;1 sinx_ 10 1) Z (- 1>"”<t 3 inx
(O 1) Z ((;)jg)((tk 3)1];3 sin.x,
ua(t,x) = hhi + 1)e” [ [(0';!)613 ¥ [2(0'21!)‘3]2 +3(0.1)e + 1] sinx(t - 3)
— h(h+ 1)(0.1);:;—(_1)(’;“__25’!)1(_1 sin x — fi(fi + 1)(0.1)2e1§;—(_1)kg -3 sin x
—2h(h+ 1)(0.1)2e-1§% sin x
Ch(hi+1) (0 1) kzz( 1>(k(t_ - )33“ s
— h(hi+1)(0. 1)32% sinx — fi(h + 1) (0. 1)32% sin x

0.1 DrE-3)
ﬁ(ﬁ”)( ’ Z((k:z()(k—)Z)!smc

+h2€_3[[(0_;!)g] . [2(0.21!)8]2 +3(0‘1)€+1:| sinx%

k+1 k+1 k+1
+ 126720, 1)ZM sinux + Fe™ (0. DZZ% n
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~ oo ( 1)k+1(t 3) (O 1) (_1)k+1(t _3)k+2 .
+2h%e 1(0.1)21<Z=ZT inx + 1? Z(k+2)(k+1)(k—2)! sinx

© (_1)k+1 (f. _ 3)k+1

3
+I(0) k% (k+ Dk(k = 2)!

k+
sinx+h2(01) Z( ) 1(t ) sin x

(0 1) (_1)k+1 (i’ _ 3)k+3 )
#he Z(k+3)(k+2)(k—2)!smx’

(0.1)e]®  [2(0.1)e]?
3 T o

us(t, x) = h(hi+1)%e [[ +3(0.1)e + 1] sin x(t — 3)

o k+1 k-2
—h(h+ 1)2(0.1)e22% sin x
k=3 :

k+1 k-1
—h(h+1)%(0.1)% 12%&1\@

o0 k+1 k-2
- 2h(h+ 1)2(0.1)2612% sin x
k=3 :

k+1 k
—ﬁ(ﬁ+1)2(0 1) Z( 1k)(k £t3_)'3) sin x

k+1 k-1
- Ak +1)%(0. 1)32% sin x

2(0 1) Z( (- 3)F?

~h(h+1) T

sin x

k+1 k+1
h(h+1)2 (O 1) Z((;"'l)((tk 3:)3)' sin x

(t-3)°

2!

[(0.1)e]® [2(0.1)e]?
3 0

+2ﬁ2(h+1)e3[ +3(0.1)e+1] sin x

k+1 (t _ )k*l

—2m*(h+ 1)6_2(0.1)2% sin x

B ) © (_1)k+1(t_3)k )
—ﬁz(ﬁ‘f‘l)e 1(01) ém s x

- w© (_1)k+1(t_3)k—1 '
—4R*(h+1)e 1(0'1)2,§T1)! sin x
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k+ k+
- 21 (h+1) (0 1) Z ( kl_?_ 1;l(<t(k 3)3)'1 sin x

D E-3)"
—2r%(h+1)(0.1) stmx

k+1 k-1
- 21 (h+1) (0 1) Z( 1)(k Etl_)?) sinx

(01) (1)k+1(t 3)k+2
- 21 (h+1)e Z(k+2)(k+1 = 3)'smx

(t-3)°
3!

3 2
+ ﬁ3e-3[[(0';)e] + [2(0'21')61 +3(0.1)e + 1] sin x

0 k+ k ) k+ k+
—hle™? (0.1)ZM sinx — ﬁ3e‘1(0.1)22 D™ -3 sin x
k=3 =k

k! +k(k -1)(k - 3)!

e 1)22 - Dkﬂ(t s (O 1) Z 1 (k J(r_Zl))(:l-k(tl;kS({f 3); X

oSy g
~fre (0 1) Z 4 (k+ 3;11)+k+21)((tk_+3il;+(3k gy SinX

un(t,x) = fa(li+ 1,8, %) + e [ [(0‘;3613 . [2(0‘21!)312 +3(0.1)e + 1] sinx ;!3)"

+ (-1)"h"e (0. 1)2% sinx

+(=1)"n"e™(0. 1)22 4 (k + Dk (k - ( 11;“52 3():1 ) k=) sin x

+ (—1)”ﬁ"2e‘1(0.1)2§—(_1)k+;€(!t 3" i
o (0 1)3 i 4 (k+2)(k + 1>k(<klzk; . 753'5; S (k= S

i 01)7 S (D (-3
+(=1)""(0.1) é(kﬂ)k(k_l)...(k_(n_z>)(k-n>!

sin x



26 Abstract and Applied Analysis

<0 1) Z( 1)"“<t 3)

+(_1)”ﬁ" sin x
) 1)4 : (DM -3)* ,
(D) e Z(k+2)(k+1)k-~-(k—(11—4))(k—n)!smx'

(3.49)
and so on. For /1 = -1, we get

[(0.1)e]® [2(0.1)e]?
3 2

up(t, x) = e‘3|: +3(0.1)e + 1] sin x,

ul(tlx) ==

3 2
es[[(o-;!)e] N [2(0.21!>e1

+3(0.1)e + 1] sin x(t — 3)

- ( 1)k+1( _3) - 2oo (_1)k+1(t_3)k+1 .
+e72(0. 1)Z—s1nx+e 10.1) ém sin x

-1 .
+2e(0.1) inx + 2 & (k+2) (kD) sin x

ZZ( 1)k+1(t 3) . (0.1)3 ) (_1)k+1(t_3)k+2

sin x

(D)t -3) <o 1)° <1>"”<t 3)
+<°1>32m 2 Z

(0 1)4 o0 ( 1)k+1(t 3)k+3
TETE ATk +3) (k- 1) sinx,

[(0.1)e]? N [2(0.1)e]?

(t-3)°
3! 21 21

ux(t, x) = e‘3|: +3(0.1)e + 1] sinx

k+1(t— )

© k+ k+
+e*2(01>2( ) (Dt -3)""

sinx + 671 (01)2Zm sin x

1k+1t 3 0.1 _1k+1t_3k+2
zZ()() ()Z(k()()

+2¢7(00) 2 (k+ 1) (k=2)!

sin x

( 1k+1(t 3)k+1 (01) ( 1)k+1(t 3)
”01)32 Sk + Dk(k-2)! ° Z

sin x

sin x,

(0 1) (_1)k+1 (t _ 3)k+3
Z 4 (k+3)(k +2)(k-2)!

(t-3)°

3!

[(0.1)e]? . [2(0.1)e]?
3! 2!

uz(t,x) = —e_3[ +3(0.1)e + 1] sinx

~ 1k+1t_ ~ © -1 k+1t_3k+1 .
+e72(0. 1)ZM sinx +e l(0.1)21;3(1(5_1))Ic(k(_ 1)()k—3)! sin x
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~ 00( 1)k+1(t 3) (O 1) (_1)k+1(t_3)k+2 .
+2¢7(01)°3) k! Z(k+2)(k+ Dk(k—3) %
3% (D -3 (o 1) (- 1>k“<t 3)F
+(O Z(k+1)k(k—1)(k—3) Z sinx
01) (—1)k+1(t—3)k+3 )
Z(k+3)(k+2)(k+1)(k—3)!Smx’
un(t, x) = (—1)"@‘3[[(0'?1)!)613 + [2(0'21!)6]2 +3(0.1)e + 1] sinx(t ;!3)11
k+
+e72(0. l)ZMsmx
- (1)k+1(t 3)k+1 )
e @ 1)2Z<k SDRG=1) - (k= (n=2) (k=i "
+2e71(0. 1)zzw sinx
(0 1)3 o ( 1)k+1(t_3)k+2 .
Z(k+2)(k+1)k(k—3)---(k—(n—3))(k—n)!smx
3 (1)k+1(t 3)k+1 )
+(01) Z(k+l)k(k D (k-m=-2)k—mi ¥
k+
01) Z( ) 1<t ).
(0 1)42 ( 1)k+1(t 3)k+3
4 (k+2)(k + L)k (k — (n - 4)) (k - Tk
(3.50)

and so on.
From (3.6), the solution of (3.44) is obtained as

4 3 2 o) k
u(t, x) = <[(0'1)eﬁ_3)] + [(0'1)65_2)] + [(O'l)ez(f_l)] + (0.1)et+1>z(_1k)' * inx.
! ! ! pd !

(3.51)
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Table 5: The absolute error at x = r/2 when A = —1.
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t Uexact uapp Uerr

0.5 0.68896672324764 0.68718517400418 0.00178154924346
1.5 0.31617066069370 0.31528438731741 0.00088627337628
25 0.14472535694258 0.14432199982347 0.00040335711910
35 0.06624155329591 0.06619299448877 0.00004855880714
Table 6: Comparison of the absolute error in HAM when 7 = -1 and the errors of different difference
schemes at (0.5, 7/2).

Method Uapp Uerr
HAMfor N =3 0.68718517400418 0.00178154924346
Difference scheme (2.20) for N = M =48 0.69069236574147 0.00172564249383
Difference scheme (2.29) for N = M =10 0.69067805057383 0.00171132732619
Table 7: Comparison of the absolute error in HAM when i = -1 and the errors of different difference
schemes at (1.5, 7/2).

Method Uapp Uerr

HAM for N =3 0.31528438731741 0.00088627337628
Difference scheme (2.20) for N = M = 148 0.31705389317070 0.00088323247700
Difference scheme (2.29) for N = M =18 0.31707957467449 0.00090891398079

This series has the closed form

4 3 2
u(t,x) = <[(O.1)ei't—3)] + [(0.1)@3(:5—2)] + [(0.1)62(:,‘—1)] + (O.1)et+1>e‘t sin x,

(3.52)

which is the exact solution of (3.44).

We give the HAM solutions in t € [0,1], ¢t € [1,2],t € [2,3], t € [3,4]. We use four
terms for evaluating the approximate solution u,p, = 3o uk(t, x). According to the h-curve
of 1,+(0,0), the solution series is convergent when —-1.48 < 7 < 0.48, -1.41 < h < 2.10, -1.19 <
h <012, and -1.02 < h < 0, respectively, in t € [0,1], t € [1,2], ¢t € [2,3], t € [3,4]. We
take i = -1 to determine how much the approximate solution is accurate and compute the
absolute errors ey = |Uexact — Uapp| at the points (0.5,r/2), (1.5, /2), (2.5,7/2), (3.5,7r/2) in
Table 5.

4. Conclusion

The numerical solutions of first order of difference scheme (2.20) and second order of differ-
ence scheme (2.29) for different values of N and M and the approximate solutions obtained
by HAM for N = 3in (3.11) when . = -1 are given at the same points (0.5, 7/2), (1.5,7/2),
(2.5,7r/2),(3.5,7r/2) in Tables 6, 7, 8, and 9, respectively. The absolute errors computed show
that, with homotopy analysis method, the results are more accurate for the parabolic delay
equation (2.17).

Although HAM seems to be more rapid than finite difference method, the series solu-
tions obtained by HAM are convergence only for the regions determined by convergence
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Table 8: Comparison of the absolute error in HAM when 2 = -1 and the errors of different difference
schemes at (2.5, 7/2).

Method uapp Uerr

HAM for N =3 0.14432199982347 0.00040335711910
Difference scheme (2.20) for N = M = 290 0.14512731459568 0.00040195765309
Difference scheme (2.29) for N = M =24 0.14512723912249 0.00047857754134
Table 9: Comparison of the absolute error in HAM when 2 = -1 and the errors of different difference

schemes at (3.5, 7r/2).

Method uapp Uerr

HAM for N =3 0.06619299448877 0.00004855880714
Difference scheme (2.20) for N = M = 480 0.06640694878963 0.00016953954937
Difference scheme (2.29) for N = M = 58 0.06628727563690 0.00004572234990
Table 10: Comparison of the absolute error in HAM when .2 = -2 and the errors of different difference

schemes at (0.5, 7/2).

Method uapp Uerr

HAM for N =3 1.82382103940268 1.13485431615504
Difference scheme (2.20) for N = M =4 0.71754584429923 0.02857912105159
Difference scheme (2.29) for N = M =4 0.64396829164838 0.04499843159926

Table 11: Comparison of the absolute error in HAM when 7 = -2.1 and the errors of different difference
schemes at (1.5, 7/2).

Method Uapp Uerr

HAM for N =3 —0.71640688651704 1.0325774721074
Difference scheme (2.20) for N = M =4 0.26625468031687 0.04991598037683
Difference scheme (2.29) for N = M =4 0.26908021797566 0.04709044271804

Table 12: Comparison of the absolute error in HAM when % = 1.5 and the errors of different difference
schemes at (2.5, 7/2).

Method Uapp Uerr

HAM for N =3 1.85743968284120 1.71271432589862
Difference scheme (2.20) for N = M =4 0.09250455294144 0.05222080400114
Difference scheme (2.29) for N = M =4 0.11418378483060 0.03054157211198

control parameter f. So, convergence region is limited for HAM. The comparison of two
methods of finite difference and homotopy analysis shows that latter is more rapid and
more accurate in the cases that series solutions are convergence. When we take 7 out of
the convergence region determined by # curves, it is shown that finite difference method
is faster and more accurate than HAM. The approximate solutions obtained by HAM for
different values of /& chosen from out of the convergence region of the series solutions and
the numerical solutions of first and second order of difference schemes (2.20) and (2.29) for
N = M = 4 are given in Tables 10, 11, 12, and 13, respectively at the same points (0.5,7/2),
(1.5,x/2),(2.5,x/2),(3.5,x/2).
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Table 13: Comparison of the absolute error in HAM when ~ = 2 and the errors of different difference
schemes at (3.5, 7/2).

Method Uapp Uerr

HAM for N =3 1.33954603011737 1.27330447682146
Difference scheme (2.20) for N = M =4 0.02904127716967 0.03720027612623
Difference scheme (2.29) for N = M =4 0.04842804202239 0.01781351127352

Despite HAM, by finite difference method, we can guarantee the convergence in the
whole domain that (2.17) is defined in. Therefore finite difference method is more efficient
than HAM.
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