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Finite difference and homotopy analysis methods are used for the approximate solution of the
initial-boundary value problem for the delay parabolic partial differential equation with the
Dirichlet condition. The convergence estimates for the solution of first and second orders of
difference schemes in Hölder norms are obtained. A procedure of modified Gauss elimination
method is used for the solution of these difference schemes. Homotopy analysis method is applied.
Comparison of finite difference and homotopy analysis methods is given on the problem.

1. Introduction

Increase in interest in the theoretical aspects of numerical methods for delay differential
equations points out that delay differential equations are capable of generating extensive
and conceivable models for phenomena in many branches of sciences. Numerical solutions
of the delay ordinary differential equations have been studiedmostly for ordinary differential
equations (cf., e.g., [1–14] and the references therein). Nevertheless, delay partial differential
equations are less in demand than delay ordinary differential equations. Different kinds of
problems for delay partial differential equations are solved by using operator approach (see,
e.g., [15–17]).

In recent years, Ashyralyev and Sobolevskii considered the initial-value problem for
linear delay partial differential equations of parabolic type in the spaces C(Eα) of functions
defined on the segment [0,∞)with values in a Banach space Eα and the stability inequalities
were established under stronger assumption than the necessary condition of the stability
of the differential problem. The stability estimates for the solutions of difference schemes
of the first- and second-order accuracy difference schemes for approximately solving this
initial-value problem for delay differential equations of parabolic type were presented. They
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obtained the stability estimates in Hölder norms for solutions of the initial-value problem
of the delay differential and difference equations of the parabolic type [15, 16]. Gabriella
used extrapolation spaces to solve Banach spaces valued delay differential equations with
unbounded delay operators. The author proved regularity properties of various types of solu-
tions and investigated the existence of strong and weak solutions for a class of abstract semi-
linear delay equations [17].

In this paper, finite difference (see, e.g., [18–28]) and homotopy analysis methods
(HAM) (see, e.g., [29–37]) for the approximate solutions of the delay differential equation
of the parabolic type

ut(t, x) + (−a(x)uxx(t, x) + b(x)ux(t, x) + c(x)u(t, x))

= d(t)(−a(x)uxx(t −ω, x) + b(x)ux(t −ω, x)

+c(x)u(t −ω, x)), 0 < t < ∞, x ∈ (0, l),

u(t, x) = g(t, x), −ω ≤ t ≤ 0, x ∈ [0, l],

u(t, 0) = u(t, l) = 0, t ≥ 0,

(1.1)

are studied. Here g(t, x) (t ∈ (−∞, 0), x ∈ [0, l]), a(x), b(x), c(x) (x ∈ (0,∞)) are given
smooth bounded functions and a(x) ≥ a > 0.

Difference schemes which are accurate to first and second orders for the approximate
solution of problem (1.1) are presented. The convergence estimates for the solution of these
difference schemes are obtained. For the numerical study, procedure of modified Gauss
elimination method is used to solve these difference schemes. Homotopy analysis method is
applied to find the solution of problem (1.1). The numerical results are obtained at the same
points for each method. Comparison of finite difference and homotopy analysis methods is
given on the problem.

2. The Finite Difference Method

In this section, the first and second orders of accuracy in t for the approximate solution of
problem (1.1) are considered. The convergence estimates for the solution of these difference
schemes are established. A procedure of modified Gauss elimination method is used to solve
these difference schemes.

2.1. The Difference Scheme, Convergence Estimates

The discretization of problem (1.1) is carried out in two steps. In the first step, we define the
grid space

[0, L]h = {x = xn : xn = nh, 0 ≤ n ≤ M, Mh = L}. (2.1)
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To formulate our results, we introduce the Banach space
◦
C

α

h =
◦
C

α

[0, L]h, α ∈ [0, 1), of all grid
functions ϕh = {ϕn}M−1

n=1 defined on [0, L]h with ϕ0 = ϕM = 0 equipped with the norm

∥
∥
∥ϕh

∥
∥
∥ ◦
C

α

h

=
∥
∥
∥ϕh

∥
∥
∥
Ch

+ sup
1≤n<n+r≤M−1

∣
∣ϕn+r − ϕn

∣
∣(rh)−α,

∥
∥
∥ϕh

∥
∥
∥
Ch

= max
1≤n≤M−1

∣
∣ϕn

∣
∣.

(2.2)

Moreover,Cτ(E) = C([0,∞)τ , E) is the Banach space of all grid functions fτ = {fk}∞k=1 defined
on

[0,∞)τ = {tk = kτ, k = 0, 1, . . .} (2.3)

with values in E equipped with the norm

∥
∥fτ

∥
∥
Cτ (E)

= sup
1≤k<∞

∥
∥fk

∥
∥
E. (2.4)

To the differential operator A generated by problem (1.1), we assign the difference operators
Ax

h
, Bx

h
by the formulas

Ax
hϕ

h(x) =
{

−a(xn)
ϕn+1 − 2ϕn + ϕn−1

h2
+ b(xn)

ϕn+1 − ϕn−1
2h

+ c(xn)ϕn

}M−1

1
,

Bx
h(t)ϕ

h(x) = d(t)Ax
hϕ

h,

(2.5)

acting in the space of grid functions ϕh(x) = {ϕn}M−1
1 satisfying the conditions ϕ0 = ϕM = 0.

It is well known thatAx
h
is a strongly positive operator in Ch. With the help ofAx

h
and d(t)Ax

h
,

we arrive at the initial value problem

duh(t, x)
dt

+Ax
hu

h(t, x) = d(t)Ax
hu

h(t −w,x), 0 < t < ∞, 0 < x < L,

uh(t, x) = gh(t, x), −ω ≤ t ≤ 0, 0 ≤ x ≤ L.

(2.6)

In the second step, we consider difference schemes of first and second orders of accuracy

1
τ

(

uh
k(x) − uh

k−1(x)
)

+Ax
hu

h
k(x) = d(tk)Ax

hu
h
k−N(x), tk = kτ, 1 ≤ k, Nτ = w,

uh
k(x) = gh(tk, x), tk = kτ, −N ≤ k ≤ 0,

(2.7)

1
τ

(

uh
k(x) − uh

k−1(x)
)

+
(

Ax
h +

1
2
τ
(

Ax
h

)2
)

uh
k(x)

=
1
2

(

I +
τ

2
Ax

h

)

d
(

tk − τ

2

)

Ax
h

(

uh
k−N(x) + uh

k−N−1(x)
)

, tk = kτ, 1 ≤ k,

uh
k = gh(tk, x), tk = kτ, −N ≤ k ≤ 0.

(2.8)
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Theorem 2.1. Assume that

sup
0≤t<∞

|d(t)| ≤ 1 − α

M22−α
. (2.9)

Suppose that problem (1.1) has a smooth solution u(t, x) and

∫∞

0

[

max
0≤x≤L

|uss(s, x)| + sup
0<x<x+y<L

∣
∣uss

(

s, x + y
) − uss(s, x)

∣
∣

y2α

]

ds < ∞,

∫∞

0

[

max
0≤x≤L

|uxxxx(s, x)| + sup
0<x<x+y<L

∣
∣uxxxx

(

s, x + y
) − uxxxx(s, x)

∣
∣

y2α

]

ds < ∞.

(2.10)

Then, for the solution of difference scheme (2.7), the following convergence estimate holds:

sup
k

∥
∥
∥uh

k − uh(tk, ·)
∥
∥
∥ ◦
C

2α

h

≤ M1

(

τ + h2
)

(2.11)

withM1 being a real number independent of τ , α, and h.

Proof. Using notations of Ax
h and Bx

h , we can obtain the following formula for the solution:

uh
k(x) = Rkgh(0, x) +

k∑

j=1

Rk−j+1Bx
j g

h(tj−N, x
)

τ, 1 ≤ k ≤ N,

uh
k(x) = Rk−nNuh

nN(x) +
k∑

j=nN+1

Rk−j+1Bx
j u

h
j−N(x)τ,

nN ≤ k ≤ (n + 1)N,

(2.12)

where R = (I + τAx
h)

−1. The proof of Theorem 2.1 is based on the formulas (2.12), on the
convergence theorem, on the difference schemes in Cτ(Eh

α) (see [38]), on the estimate

‖ exp{−tkAx
h

}‖Ch →Ch ≤ M, k ≥ 0, (2.13)

and on the fact that inEh
α = Eα(Ax

h, Ch) the norms are equivalent to the norms in
◦
C

2α

h uniformly
in h for 0 < α < 1/2 (see, [18]).
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Theorem 2.2. Assume that assumption (2.9) of Theorem 2.1 and the following conditions hold:

∫∞

0

[

max
0≤x≤L

|usss(s, x)| + sup
0<x<x+y<L

∣
∣usss

(

s, x + y
) − usss(s, x)

∣
∣

y2α

]

ds < ∞,

∫∞

0

[

max
0≤x≤L

|uxxss(s, x)| + sup
0<x<x+y<L

∣
∣uxxss

(

s, x + y
) − uxxss(s, x)

∣
∣

y2α

]

ds < ∞,

∫∞

0

[

max
0≤x≤L

|uxxxxs(s, x)| + sup
0<x<x+y<L

∣
∣uxxxxs

(

s, x + y
) − uxxxxs(s, x)

∣
∣

y2α

]

ds < ∞.

(2.14)

Then for the solution of difference scheme (2.8), the following convergence estimate is satisfied:

sup
k

∥
∥
∥uh

k − uh(tk, ·)
∥
∥
∥ ◦
C

2α

h

≤ M2

(

τ2 + h2
)

(2.15)

withM2 being a real number independent of τ , α, and h.

Proof. Using notations of Ax
h
and Bx

h
again, we can obtain the following formula for the solu-

tion:

uh
k(x) = Rkgh(0, x) +

k∑

j=1

Rk−j+1
(

I +
τAx

h

2

)
(

gh(tj−N, x
) − gh(tj−N−1, x

))

τ, 1 ≤ k ≤ N,

uh
k(x) = Rk−nNuh

nN(x) +
k∑

j=nN+1

Rk−j+1
(

I +
τAx

h

2

)

Bx
j

1
2

(

uh
j−N(x) + uh

j−N−1(x)
)

τ,

nN ≤ k ≤ (n + 1)N,
(2.16)

where R = (I + τAx
h + (τAx

h)
2/2)

−1
. The proof of Theorem 2.2 is based on the formulas (2.16),

on the convergence theorem, on the difference schemes in Cτ(Eh
α) (see, [38]), on the estimate

(2.13), and on the equivalence of the norms as in Theorem 2.1.
Finally, the numerical methods are given in the following section for the solution of

delay parabolic differential equation with the Dirichlet condition. The method is illustrated
by numerical examples.

2.2. Numerical Results

We consider the initial-boundary-value problem

∂u(t, x)
∂t

− ∂2u(t, x)
∂x2

+ (0.1)
∂2u(t − 1, x)

∂x2
= 0, t > 0, 0 < x < π,

u(t, x) = e−t sinx, −1 ≤ t ≤ 0, 0 ≤ x ≤ π,

u(t, 0) = u(t, π) = 0, t ≥ 0,

(2.17)

for the delay parabolic differential equation.
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The exact solution of this problem for t ∈ [n − 1, n], n = 0, 1, 2, . . . , x ∈ [0, π] is

u(t, x) =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e−t sinx, −1 ≤ t ≤ 0,
e−t{1 + (0.1) et} sinx, 0 ≤ t ≤ 1,

e−t
{

1 + (0.1) et +
[(0.1)e(t − 1)]2

2!

}

sinx, 1 ≤ t ≤ 2,

...

e−t
{

1 + (0.1) et +
[(0.1)e(t − 1)]2

2!
+ · · · + [(0.1)e(t − n)](n+1)

(n + 1)!

}

sinx, n ≤ t ≤ n + 1,

...
(2.18)

For the approximate solution of delay parabolic equation (2.17), consider the set of grid points

[−1,∞]τ × [0, π]h = {(tk, xn) : tk = kτ, −N ≤ k ≤ ∞, xn = nh, 0 ≤ n ≤ M, Mh = π}.
(2.19)

Using difference scheme accurate to first order for the approximate solutions of the initial-
boundary-value problem for the delay parabolic equation (2.17), we get the following system
of equations:

uk
n − uk−1

n

τ
− uk

n+1 − 2uk
n + uk

n−1
h2

+ (0.1)
uk−N
n+1 − 2uk−N

n + uk−N
n−1

h2
= 0,

mN + 1 ≤ k ≤ (m + 1)N, m = 0, 1, . . . , 1 ≤ n ≤ M − 1,

uk
n = e−tk sinxn, −N ≤ k ≤ 0, 0 ≤ n ≤ M,

uk
0 = uk

M = 0, k ≥ 0.

(2.20)

In this first step, applying difference scheme accurate to first order, we obtain a system of
equations in matrix form

AUm
n+1 + BUm

n + CUm
n−1 = Rϕm

n , 1 ≤ n ≤ M − 1, m = 0, 1, . . . ,

Um
0 = 0̃, Um

M = 0̃,
(2.21)
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where A, B, C are (N + 1) × (N + 1) matrices defined by

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 · · · 0 0 0 0
0 a 0 0 0 · · · 0 0 0 0
0 0 a 0 0 · · · 0 0 0 0
0 0 0 a 0 · · · 0 0 0 0
0 0 0 0 a · · · 0 0 0 0
· · · · · · · · · · · ·
0 0 0 0 0 · · · a 0 0 0
0 0 0 0 0 · · · 0 a 0 0
0 0 0 0 0 · · · 0 0 a 0
0 0 0 0 0 · · · 0 0 0 a

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(N+1)×(N+1)

,

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 · · · 0 · · · 0 · · · 0 0
b c 0 · · · 0 · · · 0 · · · 0 0
0 b c · · · 0 · · · 0 · · · 0 0
0 0 b · · · 0 · · · 0 · · · 0 0
0 0 0 · · · 0 · · · 0 · · · 0 0
0 0 0 · · · 0 · · · 0 · · · 0 0
0 0 0 · · · 0 · · · 0 · · · 0 0
· · · · · · · · · · · · · · · ·
0 0 0 · · · 0 · · · 0 · · · 0 0
0 0 0 · · · 0 · · · 0 · · · c 0
0 0 0 · · · 0 · · · 0 · · · b c

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(N+1)×(N+1)

.

(2.22)

C = A, R is (N + 1) × (N + 1) identity matrix and ϕm
n ,U

m
s are (N + 1) × 1 column vectors as

ϕm
n =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ϕmN
n

ϕmN+1
n
...

ϕ
(m+1)N
n

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(N+1)×(1)

, Um
s =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

UmN
s

UmN+1
s
...

U
(m+1)N
s

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(N+1)×(1)

for s = n ± 1, n, (2.23)

where umN
n is given for any m = 0, 1, . . .,

ϕk
n = −(0.1)u

k−N
n+1 − 2uk−N

n + uk−N
n−1

h2
,

mN + 1 ≤ k ≤ (m + 1)N, m = 0, 1, . . . , 1 ≤ n ≤ M − 1,

uk
n = e−tk sinxn, −N ≤ k ≤ 0.

(2.24)

Here, we denote

a = − 1
h2

, b = − 1
τ
, c =

1
τ
+

2
h2

. (2.25)
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So, we have second-order difference equation (2.21) with matrix coefficients. To solve this
difference equation, we have applied a procedure of modified Gauss elimination method.
Hence, we obtain a solution of the matrix equation in the following form:

Um
j = αj+1U

m
j+1 + βmj+1, j = M − 1, . . . , 2, 1,

Um
M = 0,

(2.26)

where αj (j = 1, . . . ,M) are (N + 1) × (N + 1) square matrices and βmj (j = 1, . . . ,M) are
(N + 1) × 1 column matrices defined by

αj+1 = −(B + Cαj

)−1
A,

βmj+1 =
(

B + Cαj

)−1(
Rϕm

j − Cβj
)

,
(2.27)

where j = 1, . . . ,M − 1, α1 is the (N + 1) × (N + 1) zero matrix, and βm1 is the (N + 1) × 1 zero
matrix.

Second, using the second order of accuracy difference scheme for the approximate
solutions of problem (2.17) and applying formulae

2u(0) − 5u(h) + 4u(2h) − u(3h)
h2

− u′′(0) = O
(

h2
)

,

2u(1) − 5u(1 − h) + 4u(1 − 2h) − u(1 − 3h)
h2

− u′′(1) = O
(

h2
)

,

(2.28)

we obtain the following system of equations:

uk
n − uk−1

n

τ
− uk

n+1 − 2uk
n + uk

n−1
h2

+
τ

2

(

uk
n+2 − 4uk

n+1 + 6uk
n − 4uk

n−1 + uk
n−2

h4

)

+(0.1)

{

uk−N
n+1 − 2uk−N

n + uk−N
n−1

2h2
+
uk−1−N
n+1 − 2uk−1−N

n + uk−1−N
n−1

2h2

−τ
2

[

uk−N
n+2 − 4uk−N

n+1 + 6uk−N
n − 4uk−N

n−1 + uk−N
n−2

2h4

+
uk−1−N
n+2 − 4uk−1−N

n+1 + 6uk−1−N
n − 4uk−1−N

n−1 + uk−1−N
n−2

2h4

]}

= 0

mN + 1 ≤ k ≤ (m + 1)N, m = 0, 1, . . . , 2 ≤ n ≤ M − 2,

uk
n = e−tk sinxn, −N ≤ k ≤ 0, 0 ≤ n ≤ M,

uk
1 =

4
5
uk
2 −

1
5
uk
3 , k ≥ 0,

uk
M−1 =

4
5
uk
M−2 −

1
5
uk
M−3, k ≥ 0,

uk
0 = uk

M = 0, k ≥ 0.

(2.29)
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In the second step, we apply second-order difference scheme to get the system of linear equa-
tions in matrix form

AUm
n+2 + BUm

n+1 + CUm
n +DUm

n−1 + EUm
n−2 = Rϕm

n ,

m = 0, 1, . . . , 2 ≤ n ≤ M − 2,

Um
0 = 0̃, Um

M = 0̃,

Um
1 =

4
5
Um

2 − 1
5
Um

3 ,

Um
M−1 =

4
5
Um

M−2 −
1
5
Um

M−3,

(2.30)

where A, B, C are (N + 1) × (N + 1) matrices defined by

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 · · · 0 0 0 0
0 x 0 0 0 · · · 0 0 0 0
0 0 x 0 0 · · · 0 0 0 0
0 0 0 x 0 · · · 0 0 0 0
0 0 0 0 x · · · 0 0 0 0
· · · · · · · · · · · ·
0 0 0 0 0 · · · x 0 0 0
0 0 0 0 0 · · · 0 x 0 0
0 0 0 0 0 · · · 0 0 x 0
0 0 0 0 0 · · · 0 0 0 x

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(N+1)×(N+1)

,

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0 0 · · · 0 0 0 0
0 y 0 0 0 · · · 0 0 0 0
0 0 y 0 0 · · · 0 0 0 0
0 0 0 y 0 · · · 0 0 0 0
0 0 0 0 y · · · 0 0 0 0
· · · · · · · · · · · ·
0 0 0 0 0 · · · y 0 0 0
0 0 0 0 0 · · · 0 y 0 0
0 0 0 0 0 · · · 0 0 y 0
0 0 0 0 0 · · · 0 0 0 y

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(N+1)×(N+1)

,

C =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0 0 · · · 0 0 0 0
z t 0 0 0 · · · 0 0 0 0
0 z t 0 0 · · · 0 0 0 0
0 0 z t 0 · · · 0 0 0 0
0 0 0 z t · · · 0 0 0 0
· · · · · · · · · · · ·
0 0 0 0 0 · · · z t 0 0
0 0 0 0 0 · · · 0 z t 0
0 0 0 0 0 · · · 0 0 z t

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(N+1)×(N+1)

,

(2.31)
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B = D, E = A, R is (N + 1) × (N + 1) identity matrix, and ϕm
n , U

m
s are (N + 1) × 1 column

vectors as

ϕm
n =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ϕmN
n

ϕmN+1
n
...

ϕ
(m+1)N
n

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(N+1)×(1)

, Um
s =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

UmN
s

UmN+1
s
...

U
(m+1)N
s

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(N+1)×(1)

for s = n ± 1, n ± 2, n, (2.32)

where umN
n is given for any m = 0, 1, . . .,

ϕk
n = −(0.1)

{

uk−N
n+1 − 2uk−N

n + uk−N
n−1

2h2
+
uk−1−N
n+1 − 2uk−1−N

n + uk−1−N
n−1

2h2

−τ
2

[

uk−N
n+2 − 4uk−N

n+1 + 6uk−N
n − 4uk−N

n−1 + uk−N
n−2

2h4

+
uk−1−N
n+2 − 4uk−1−N

n+1 + 6uk−1−N
n − 4uk−1−N

n−1 + uk−1−N
n−2

2h4

]}

,

mN + 1 ≤ k ≤ (m + 1)N, m = 0, 1, . . . , 1 ≤ n ≤ M − 1,

uk
n = e−tk sinxn, −N ≤ k ≤ 0.

(2.33)

Here, we denote

x =
τ

2h4
, y = − 1

h2
− 2τ
h4

,

z = − 1
τ
, t =

1
τ
+

2
h2

+
3τ
h4

,

(2.34)

Hence, we have second-order difference equation (2.30) with matrix coefficients. For the
solution of this matrix equation, we use the modified Gauss elimination method. We seek
a solution of the matrix equation by the following form:

Um
j = αj+1U

m
j+1 + βj+1U

m
j+2 + γmj+1, j = M − 2, . . . , 2, 1, 0

Um
M = 0,

Um
M−1 =

[(

βM−2 + 5I
) − 4(I − αM−2)αM−1

]−1[4(I − αM−2)γmM−1 − γmM−2
]

,

(2.35)

where αj (j = 2, . . . ,M− 2) and βj (j = 2, . . . ,M− 2) are (N + 1)× (N + 1) square matrices and
γmj (j = 2, . . . ,M − 2) are column matrices defined by

αj+1 = −(C +Dαj + Eβj−1 + Eαj−1αj

)−1(
B +Dβj + Eαj−1βj

)

,

βj+1 = −(C +Dαj + Eβj−1 + Eαj−1αj

)−1(A),

γmj+1 = −(C +Dαj + Eβj−1 + Eαj−1αj

)−1(
Rϕm

j −Dγmj − Eαj−1γmj − Eγmj−1
)

,

(2.36)
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Table 1: Comparison of the errors of different difference schemes in t ∈ [0, 1].

Method N = M = 20 N = M = 40 N = M = 80
Difference scheme (2.20) 0.00599088 0.00286092 0.00139629
Difference scheme (2.29) 0.00076265 0.00020317 0.00005148

Table 2: Comparison of the errors of different difference schemes in t ∈ [1, 2].

Method N = M = 20 N = M = 40 N = M = 80
Difference scheme (2.20) 0.07324151 0.03693061 0.01845008
Difference scheme (2.29) 0.00077055 0.00020541 0.00005206

Table 3: Comparison of the errors of different difference schemes in t ∈ [2, 3].

Method N = M = 20 N = M = 40 N = M = 80
Difference scheme (2.20) 0.03520081 0.01749862 0.00872690
Difference scheme (2.29) 0.00067084 0.00017845 0.00004521

Table 4: Comparison of the errors of different difference schemes in t ∈ [3, 4].

Method N = M = 20 N = M = 40 N = M = 80
Difference scheme (2.20) 0.01687166 0.00844577 0.00421761
Difference scheme (2.29) 0.00045527 0.00012107 0.00003067

where j = 2, . . . ,M − 2, α1 is (N + 1) × (N + 1) zero matrix, and β1 is (N + 1) × (N + 1) zero
matrix, γm1 and γm2 are (N + 1) × 1 zero matrices.

We give the results of the numerical analysis. The numerical solutions are recorded
for different values of N and M and uk

n represent the numerical solutions of these difference
schemes at (tk, xn). Tables 1, 2, 3, and 4 are constructed for N = M = 20, 40, 80 in t ∈ [0, 1],
t ∈ [1, 2], t ∈ [2, 3], t ∈ [3, 4], respectively, and the error is computed by the following formula:

EN
M = max

−N≤k≤N
1≤n≤M−1

∣
∣
∣u(tk, xn) − uk

n

∣
∣
∣. (2.37)

Thus, by using the second order of accuracy difference scheme, the accuracy of solution
increases faster than the first order of accuracy difference scheme.

3. Homotopy Analysis Method

In this section, we consider homotopy analysis method for the solution of problem (1.1). We
study the initial-boundary-value problem for the delay parabolic equation (1.1). To illustrate
the basic idea of homotopy analysis method (HAM) developed by Liao (see, e.g., [29–35]),
the following differential equation is considered:

N[u(t, x)] = f(t, x), (3.1)
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whereN is a linear operator for problem (1.1), t and x denote independent variables, u(t, x) is
an unknown function, and f(t, x) is a known analytical function. Liao constructs the so-called
zero-order deformation equation

(

1 − q
)

L
[

φ
(

t, x; q
) − u0(t, x)

]

= q�
{

N
[

φ
(

t, x; q
)] − f(t, x)

}

, (3.2)

where q ∈ [0, 1] is an embedding parameter, � is a nonzero auxiliary parameter, L is an
auxiliary linear operator, u0(t, x) is an initial guess of u(t, x), and φ(t, x; q) is an unknown
function. When q = 0 and q = 1, it holds

φ(t, x; 0) = u0(t, x), φ(t, x; 1) = u(t, x), (3.3)

respectively. As q increases from 0 to 1, the solution φ(t, x; q) varies from the initial guess
u0(t, x) to the solution u(t, x). Expanding φ(t, x; q) in Taylor series with respect to q, we get

φ
(

t, x; q
)

= u0(t, x) +
+∞∑

m=1

um(t, x)qm, (3.4)

where

um(t, x) =
1
m!

∂mφ
(

t, x; q
)

∂qm

∣
∣
∣
∣
∣
q=0

, (3.5)

when the initial guess u0(t, x), the auxiliary linear operator L and the auxiliary parameter �

are chosen properly, the series (3.4) converges at q = 1. We get

u(t, x) = u0(t, x) +
+∞∑

m=1

um(t, x). (3.6)

Then define the vectors

−→un = {u0(t, x), u1(t, x), . . . , un(t, x)}. (3.7)

Differentiating the zero-order deformation equation (3.2)m times with respect to the embed-
ding parameter q and dividing them bym!, we obtain the mth-order deformation equation

L
[

um(t, x) − χmum−1(t, x)
]

= �
m(�um−1), (3.8)

where


m(�um−1) =
1

(m − 1)!
∂m−1(N

[

φ
(

t, x; q
)] − f(t, x)

)

∂qm−1

∣
∣
∣
∣
∣
q=0

,

χm =

{

0, m ≤ 1,
1, m > 1.

(3.9)



Abstract and Applied Analysis 13

with the initial condition

um(0, x) = 0, m ≥ 1. (3.10)

High-order deformation equation (3.8) is governed by the linear operator L.
m(�um−1) can be
represented by u1(t, x), um(t, x), u2(t, x), . . . , um−1(t, x) and high-order deformation equation
can be solved consecutively. TheNth-order approximation of u(t, x) is given by

u(t, x) ≈ u0(t, x) +
N∑

m=1

um(t, x). (3.11)

3.1. Homotopy Analysis Solution

For the approximate solution of the delay parabolic differential equation with the Dirichlet
condition, we consider the delay parabolic equation (2.17) and rewrite the equation for t ∈
[0, 1] in the following form:

∂u(t, x)
∂t

− ∂2u(t, x)
∂x2

= (0.1) e−(t−1) sinx, 0 < t ≤ 1, 0 < x < π,

u(0, x) = sinx, 0 ≤ x ≤ π

u(t, 0) = u(t, π) = 0, 0 ≤ t ≤ 1.

(3.12)

To solve the initial-boundary-value problem (3.12) by means of HAM, we choose the initial
approximation

u0(t, x) = sinx, (3.13)

and the linear operator

L
[

φ
(

t, x; q
)]

=
∂φ
(

t, x; q
)

∂t
, (3.14)

with the property

L[c] = 0, (3.15)

where c is constant of integration. From (3.12), we define a linear operator as

N
[

φ
(

t, x; q
)]

=
∂φ
(

t, x; q
)

∂t
− ∂2φ

(

t, x; q
)

∂x2
. (3.16)

Firstly, we construct the zero-order deformation equation

(

1 − q
)

L
[

φ
(

t, x; q
) − u0(t, x)

]

= q�
{

N
[

φ
(

t, x; q
)] − f(t, x)

}

, (3.17)
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when q = 0 and q = 1,

φ(t, x; 0) = u0(t, x) = u(0, x), φ(t, x; 1) = u(t, x). (3.18)

Then, we get mth-order deformation equations (3.8) for m ≥ 1 with the initial conditions

um(0, x) = 0, (3.19)

where


m(�um−1) =
∂um−1(t, x)

∂t
− ∂2um−1(t, x)

∂x2
− (1 − χm

)

(0.1)e−(t−1) sinx. (3.20)

The solution of the mth-order deformation equations (3.20) for m ≥ 1 is

um(t, x) = χmum−1(t, x) + �L−1[
m(�um−1)]. (3.21)

From (3.12) and (3.21), we obtain

u0(t, x) = sinx,

u1(t, x) = −�(0.1)e
∞∑

k=1

(−1)k+1tk
k!

sinx + �t sinx,

u2(t, x) = �(� + 1)t sinx − �(� + 1)
∞∑

k=2

(−1)ktk−1
(k − 1)!

sinx

+ �
2(0.1)e

∞∑

k=2

(−1)k+1tk
k!

sinx + �
2 t

2

2!
sinx,

u3(t, x) = �(� + 1)t sinx + 3�2(� + 1)
t2

2!
sinx − �(� + 1)2

∞∑

k=3

(−1)k+1tk−2
(k − 2)!

sinx

− 2�2(� + 1)
∞∑

k=3

(−1)k+1tk−1
(k − 1)!

sinx − �
3(0.1)e

∞∑

k=3

(−1)k+1tk
k!

sinx + �
3 t

3

3!
sinx,

...

un(t, x) = f1(� + 1, t, x) + (−1)n�
n(0.1)e

∞∑

k=n

(−1)k+1tk
k!

sinx + �
n t

n

n!
sinx,

...

(3.22)



Abstract and Applied Analysis 15

and so on. Then for � = −1, we get

u0(t, x) = sinx,

u1(t, x) = (0.1)e
∞∑

k=1

(−1)k+1tk
k!

sinx − t sinx,

u2(t, x) = (0.1)e
∞∑

k=2

(−1)k+1tk
k!

sinx +
t2

2!
sinx,

u3(t, x) = (0.1)e
∞∑

k=3

(−1)k+1tk
k!

sinx − t3

3!
sinx,

...

un(t, x) = (0.1)e
∞∑

k=n

(−1)k+1tk
k!

+
(−1)ntn

n!
sinx,

...

(3.23)

and so on.
From (3.6), when we take � = −1, the solution of (3.12) can be obtained as

u(t, x) = ((0.1)et + 1)
∞∑

k=0

(−1)ktk
k!

sinx. (3.24)

Equation (3.24) has the closed form

u(t, x) = ((0.1)et + 1)e−t sinx, (3.25)

which is the exact solution of (3.12).
Second, we consider the solution of the delay parabolic equation (2.17) for t ∈ [1, 2]

and rewrite this equation in the following form:

∂u(t, x)
∂t

− ∂2u(t, x)
∂x2

= (0.1)e−(t−1)[(0.1)e(t − 1) + 1] sinx, 1 < t ≤ 2, 0 < x < π,

u(1, x) = e−1[(0.1)e + 1] sinx, 0 ≤ x ≤ π

u(t, 0) = u(t, π) = 0, 1 ≤ t ≤ 2.

(3.26)

Now, we choose the initial approximation

u0(t, x) = e−1[(0.1)e + 1] sinx. (3.27)

We take the linear operator (3.14)with the property (3.15), and we define the operator (3.16)
from (3.26).
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Firstly, we construct the zero-order deformation equation (3.2) and then, we obtain
mth-order deformation equations (3.8) for m ≥ 1 with the initial conditions

um(1, x) = 0, (3.28)

where


m(�um−1) =
∂um−1(t, x)

∂t
− ∂2um−1(t, x)

∂x2
− (1 − χm

)

(0.1)e−(t−1)[(0.1)e(t − 1) + 1] sinx. (3.29)

The solution of the mth-order deformation equations (3.29) for m ≥ 1 is

um(t, x) = χmum−1(t, x) + �L−1[
m(�um−1)]. (3.30)

From (3.26) and the mth-order deformation equations (3.30), we get

u0(t, x) = e−1[(0.1)e + 1] sinx,

u1(t, x) = �e−1[(0.1)e + 1] sinx(t − 1)

− �(0.1)
∞∑

k=1

(−1)k+1(t − 1)k

k!
− �(0.1)2e

∞∑

k=1

(−1)k+1(t − 1)k+1

(k + 1)(k − 1)!
sinx,

u2(t, x) = �(� + 1)e−1[(0.1)e + 1](t − 1) sinx

− �(� + 1)(0.1)
∞∑

k=2

(−1)k(t − 1)k−1

(k − 1)!
sinx − �(� + 1)(0.1)2e

∞∑

k=2

(−1)k(t − 1)k

k(k − 2)!
sinx

+ �
2e−1[(0.1)e + 1] sinx

(t − 1)2

2!
+ �

2(0.1)
∞∑

k=2

(−1)k+1(t − 1)k

k!
sinx

+ �
2(0.1)2e

∞∑

k=2

(−1)k+1(t − 1)k+1

(k + 1)k(k − 2)!
sinx,

u3(t, x) = �(� + 1)2e−1[(0.1)e + 1] sinx(t − 1)

+ 2�2(� + 1)e−1[(0.1)e + 1] sinx
(t − 1)2

2!

+ �(� + 1)2(0.1)
∞∑

k=3

(−1)k+1(t − 1)k−2

(k − 2)!
sinx − �(� + 1)2(0.1)2e

∞∑

k=3

(−1)k+1(t − 1)k

(k − 1)(k − 3)!
sinx

− 2�2(� + 1)(0.1)
∞∑

k=3

(−1)k(t − 1)k−1

(k − 1)!
sinx − �(� + 1)(0.1)2e

∞∑

k=3

(−1)k(t − 1)k

k(k − 1)(k − 3)!
sinx

+ �
2(� + 1)(0.1)2e

∞∑

k=3

(−1)k(t − 1)k

k(k − 1)(k − 2)!
sinx + �

3e−1[(0.1)e + 1] sinx
(t − 1)3

3!
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− �
3(0.1)

∞∑

k=3

(−1)k+1(t − 1)k

k!
sinx − �

3(0.1)2e
∞∑

k=3

(−1)k+1(t − 1)k+1

(k + 1)k(k − 1)(k − 3)!
sinx,

...

un(t, x) = f2(� + 1, t, x) + �
ne−1[(0.1)e + 1] sinx

(t − 1)n

n!

− �
n(0.1)

∞∑

k=n

(−1)k+1(t − 1)k

k!
sinx

+ (−1)n�
n(0.1)2e

∞∑

k=n

(−1)k+1(t − 1)k+1

(k + 1)k(k − 1) · · · (k − (n − 2))(k − n)!
sinx,

...

(3.31)

and so on. When we choose � = −1, we obtain

u0(t, x) = e−1[(0.1)e + 1] sinx,

u1(t, x) = −e−1[(0.1)e + 1] sinx(t − 1)

+ (0.1)
∞∑

k=1

(−1)k+1(t − 1)k

k!
sinx + (0.1)2e

∞∑

k=1

(−1)k+1(t − 1)k+1

(k + 1)(k − 1)!
sinx,

u2(t, x) = e−1[(0.1)e + 1] sinx
(t − 1)2

2!

+ (0.1)
∞∑

k=2

(−1)k+1(t − 1)k

k!
sinx + (0.1)2e

∞∑

k=2

(−1)k+1(t − 1)k+1

(k + 1)k(k − 2)!
sinx,

u3(t, x) = −e−1[(0.1)e + 1] sinx
(t − 1)3

3!

+ (0.1)
∞∑

k=3

(−1)k+1(t − 1)k

k!
sinx + (0.1)2e

∞∑

k=3

(−1)k+1(t − 1)k+1

(k + 1)k(k − 1)(k − 3)!
sinx,

...

un(t, x) = (−1)ne−1[(0.1)e + 1] sinx
(t − 1)n

n!

+ (0.1)
∞∑

k=n

(−1)k+1(t − 1)k

k!
sinx

+ (0.1)2e
∞∑

k=n

(−1)k+1(t − 1)k+1

(k + 1)k(k − 1) · · · (k − (n − 2))(k − n)!
sinx,

...

(3.32)

and so on.
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From (3.6), the solution of (3.26) for � = −1 can be obtained as

u(t, x) =

(

[(0.1)e(t − 1)]2

2!
+ (0.1)et + 1

) ∞∑

k=0

(−1)ktk
k!

sinx. (3.33)

Equation (3.33) has the closed form

u(t, x) =

(

[(0.1)e(t − 1)]2

2!
+ (0.1)et + 1

)

e−t sinx, (3.34)

which is the exact solution of the (3.26).
Now, we consider the solution of the delay parabolic equation (2.17) for t ∈ [2, 3] and

rewrite the equation in the following form:

∂u(t, x)
∂t

− ∂2u(t, x)
∂x2

= (0.1)e−(t−1)
[

[(0.1)e(t − 2)]2

2!
+ (0.1)e(t − 1) + 1

]

sinx,

2 < t ≤ 3, 0 < x < π,

u(2, x) = e−2
[

[(0.1)e]2

2!
+ 2(0.1)e + 1

]

sinx, 0 ≤ x ≤ π

u(t, 0) = u(t, π) = 0, 2 ≤ t ≤ 3.

(3.35)

The initial approximation is

u0(t, x) = e−2
[

[(0.1)e]2

2!
+ 2(0.1)e + 1

]

sinx. (3.36)

We take the linear operator (3.14) with the property (3.15). From parabolic equation
(3.35), we define a linear operator (3.16) and obtain the zero-order deformation equation
(3.2). Thus, we get the mth-order deformation equations (3.8) for m ≥ 1 with the initial
conditions

um(2, x) = 0, (3.37)

where


m(�um−1) =
∂um−1(t, x)

∂t
− ∂2um−1(t, x)

∂x2
− (1 − χm

)

× (0.1)e−(t−1)
[

[(0.1)e(t − 2)]2

2!
+ (0.1)e(t − 1) + 1

]

sinx.
(3.38)

The solution of the mth-order deformation equations (3.38) for m ≥ 1 is

um(t, x) = χmum−1(t, x) + �L−1[
m(�um−1)]. (3.39)
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From (3.35) and (3.39), we obtain

u0(t, x) = e−2
[

[(0.1)e]2

2!
+ 2(0.1)e + 1

]

sinx,

u1(t, x) = �e−2
[

[(0.1)e]2

2!
+ 2(0.1)e + 1

]

sinx(t − 2)

− �e−1(0.1)
∞∑

k=1

(−1)k+1(t − 2)k

k!
sinx − �(0.1)2

∞∑

k=1

(−1)k+1(t − 2)k+1

(k + 1)(k − 1)!
sinx

− �(0.1)2
∞∑

k=1

(−1)k+1(t − 2)k

k!
sinx − �e

(0.1)3

2!

∞∑

k=1

(−1)k+1(t − 2)k+2

(k + 2)(k − 1)!
sinx,

u2(t, x) = �(� + 1)e−2
[

[(0.1)e]2

2!
+ 2(0.1)e + 1

]

sinx(t − 2)

− �(� + 1)e−1(0.1)
∞∑

k=2

(−1)k(t − 2)k−1

(k − 1)!
sinx − �(� + 1)(0.1)2

∞∑

k=2

(−1)k(t − 2)k−1

(k − 1)!
sinx

− �(� + 1)(0.1)2
∞∑

k=2

(−1)k(t − 2)k

k(k − 2)!
sinx − �(� + 1)

∞∑

k=2

(−1)k(t − 2)k+1

(k + 1)(k − 2)!
sinx

+ �
2e−2

[

[(0.1)e]2

2!
+ 2(0.1)e + 1

]

sinx
(t − 2)2

2!

+ �
2e−1(0.1)

∞∑

k=2

(−1)k+1(t − 2)k

k!
sinx + �

2(0.1)2
∞∑

k=2

(−1)k+1(t − 2)k+1

(k + 1)k(k − 2)!
sinx

+ �
2(0.1)2

∞∑

k=2

(−1)k+1(t − 2)k

k!
sinx + �

2e
(0.1)3

2!

∞∑

k=2

(−1)k+1(t − 2)k+2

(k + 2)(k + 1)(k − 2)!
sinx,

u3(t, x) = �(� + 1)2e−2
[

[(0.1)e]2

2!
+ 2(0.1)e + 1

]

sinx(t − 2)

+ 2�2(� + 1)e−2
[

[(0.1)e]2

2!
+ 2(0.1)e + 1

]

sinx
(t − 2)2

2!

− �(� + 1)2(0.1)e−1
∞∑

k=3

(−1)k+1(t − 2)k−2

(k − 2)!
sinx

− �(� + 1)2(0.1)2
∞∑

k=3

(−1)k+1(t − 2)k−2

(k − 2)!
sinx

− 3�(� + 1)(0.1)2
∞∑

k=3

(−1)k+1(t − 2)k−1

(k − 1)!
sinx
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− �
2(� + 1)(0.1)2

∞∑

k=3

(−1)k+1(t − 2)k−1

(k − 1)!
sinx

− 2�2(� + 1)e−1(0.1)
∞∑

k=3

(−1)k+1(t − 2)k−1

(k − 1)!
sinx

− �(� + 1)2
(0.1)3

2!
e

∞∑

k=3

(−1)k+1(t − 2)k

k(k − 3)!
sinx

− 2�2(� + 1)(0.1)2
∞∑

k=3

(−1)k+1(t − 2)k

k(k − 1)(k − 3)!
sinx

− 2�2(� + 1)
(0.1)3

2!
e

∞∑

k=3

(−1)k+1(t − 2)k+1

(k + 1)k(k − 3)!
sinx

+ �
3e−2

[

[(0.1)e]2

2!
+ 2(0.1)e + 1

]

sinx
(t − 2)3

3!

− �
3e−1(0.1)

∞∑

k=3

(−1)k+1(t − 2)k

k!
sinx − �

3(0.1)2
∞∑

k=3

(−1)k+1(t − 2)k+1

(k + 1)k(k − 1)(k − 3)!
sinx

− �
3(0.1)2

∞∑

k=3

(−1)k+1(t − 2)k

k!
sinx − �

3e
(0.1)3

2!

∞∑

k=3

(−1)k+1(t − 2)k+2

(k + 2)(k + 1)k(k − 3)!
sinx,

...

un(t, x) = f3(� + 1, t, x) + �
ne−2

[

[(0.1)e]2

2!
+ 2(0.1)e + 1

]

sinx
(t − 2)n

n!

+ (−1)n�
ne−1(0.1)

∞∑

k=n

(−1)k+1(t − 2)k

k!
sinx

+ (−1)n�
n(0.1)2

∞∑

k=n

(−1)k+1(t − 2)k+1

(k + 1)k(k − 1) · · · (k − (n − 2))(k − n)!
sinx

+ (−1)n�
n(0.1)2

∞∑

k=n

(−1)k+1(t − 2)k

k!
sinx

+ (−1)n�
ne

(0.1)3

2!

∞∑

k=n

(−1)k+1(t − 2)k+2

(k + 2)(k + 1)k · · · (k − (n − 3))(k − n)!
sinx,

...

(3.40)
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and so on. When we choose � = −1, we obtain

u0(t, x) = e−2
[

[(0.1)e]2

2!
+ 2(0.1)e + 1

]

sinx,

u1(t, x) = −e−2
[

[(0.1)e]2

2!
+ 2(0.1)e + 1

]

sinx(t − 2)

+ e−1(0.1)
∞∑

k=1

(−1)k+1(t − 2)k

k!
sinx + (0.1)2

∞∑

k=1

(−1)k+1(t − 2)k+1

(k + 1)(k − 1)!
sinx

+ (0.1)2
∞∑

k=1

(−1)k+1(t − 2)k

k!
sinx + e

(0.1)3

2!

∞∑

k=1

(−1)k+1(t − 2)k+2

(k + 2)(k − 1)!
sinx,

u2(t, x) = e−2
[

[(0.1)e]2

2!
+ 2(0.1)e + 1

]

sinx
(t − 2)2

2!

+ e−1(0.1)
∞∑

k=2

(−1)k+1(t − 2)k

k!
sinx + (0.1)2

∞∑

k=2

(−1)k+1(t − 2)k+1

(k + 1)k(k − 2)!
sinx

+ (0.1)2
∞∑

k=2

(−1)k+1(t − 2)k

k!
sinx + e

(0.1)3

2!

∞∑

k=2

(−1)k+1(t − 2)k+2

(k + 2)(k + 1)(k − 2)!
sinx,

u3(t, x) = −e−2
[

[(0.1)e]2

2!
+ 2(0.1)e + 1

]

sinx
(t − 2)3

3!

+ e−1(0.1)
∞∑

k=3

(−1)k+1(t − 2)k

k!
sinx + (0.1)2

∞∑

k=3

(−1)k+1(t − 2)k+1

(k + 1)k(k − 1)(k − 3)!
sinx

+ (0.1)2
∞∑

k=3

(−1)k+1(t − 2)k

k!
sinx + e

(0.1)3

2!

∞∑

k=3

(−1)k+1(t − 2)k+2

(k + 2)(k + 1)k(k − 3)!
sinx,

...

un(t, x) = (−1)ne−2
[

[(0.1)e]2

2!
+ 2(0.1)e + 1

]

sinx
(t − 2)n

n!

+ e−1(0.1)
∞∑

k=n

(−1)k+1(t − 2)k

k!
sinx

+ (0.1)2
∞∑

k=n

(−1)k+1(t − 2)k+1

(k + 1)k(k − 1) · · · (k − (n − 2))(k − n)!
sinx

+ (0.1)2
∞∑

k=n

(−1)k+1(t − 2)k

k!
sinx

+ e
(0.1)3

2!

∞∑

k=n

(−1)k+1(t − 2)k+2

(k + 2)(k + 1)k · · · (k − (n − 3))(k − n)!
sinx,

...
(3.41)

and so on.
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From (3.6), the solution of (3.35) for � = −1 is

u(t, x) =

(

[(0.1)e(t − 2)]3

3!
+
[(0.1)e(t − 1)]2

2!
+ (0.1)et + 1

) ∞∑

k=0

(−1)ktk
k!

sinx. (3.42)

This series has the closed form

u(t, x) =

(

[(0.1)e(t − 2)]3

3!
+
[(0.1)e(t − 1)]2

2!
+ (0.1)et + 1

)

e−t sinx, (3.43)

which is the exact solution of the (3.35).
Finally, we consider the solution of the delay parabolic equation (2.17) for t ∈ [3, 4]

and rewrite this equation in the following form:

∂u(t, x)
∂t

− ∂2u(t, x)
∂x2

= (0.1)e−(t−1)
[

[(0.1)e(t − 3)]3

3!
+
[(0.1)e(t − 2)]2

2!
+ (0.1)e(t − 1) + 1

]

sinx,

3 < t ≤ 4, 0 < x < π,

u(3, x) = e−3
[

[(0.1)e]3

3!
+
[2(0.1)e]2

2!
+ 3(0.1)e + 1

]

sinx, 0 ≤ x ≤ π,

u(t, 0) = u(t, π) = 0, 3 ≤ t ≤ 4.
(3.44)

We take the initial approximation

u0(t, x) = e−3
[

[(0.1)e]3

3!
+
[2(0.1)e]2

2!
+ 3(0.1)e + 1

]

sinx (3.45)

and the linear operator (3.14)with the property (3.15). From (3.44), we define linear operator
(3.16).

We construct the zero-order deformation equation (3.2) and the mth-order deforma-
tion equations (3.8) for m ≥ 1 with the initial conditions

um(3, x) = 0, (3.46)

where


m(�um−1) =
∂um−1(t, x)

∂t
− ∂2um−1(t, x)

∂x2
− (1 − χm

)

× (0.1)e−(t−1)
(

[(0.1)e(t − 3)]3

3!
+
[(0.1)e(t − 2)]2

2!
+ (0.1)e(t − 1) + 1

)

sinx.

(3.47)
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The solution of the mth-order deformation equations (3.47) form ≥ 1 is

um(t, x) = χmum−1(t, x) + �L−1[
m(�um−1)]. (3.48)

From (3.44) and (3.48), we get

u0(t, x) = e−3
[

[(0.1)e]3

3!
+
[2(0.1)e]2

2!
+ 3(0.1)e + 1

]

sinx,

u1(t, x) = �e−3
[

[(0.1)e]3

3!
+
[2(0.1)e]2

2!
+ 3(0.1)e + 1

]

sinx(t − 3)

− �e−2(0.1)
∞∑

k=1

(−1)k+1(t − 3)k

k!
sinx − �e−1(0.1)2

∞∑

k=1

(−1)k+1(t − 3)k+1

(k + 1)(k − 1)!
sinx

− 2�e−1(0.1)2
∞∑

k=1

(−1)k+1(t − 3)k

k!
sinx − �

(0.1)3

2!

∞∑

k=1

(−1)k+1(t − 3)k+2

(k + 2)(k − 1)!
sinx

− �(0.1)3
∞∑

k=1

(−1)k+1(t − 3)k+1

(k + 1)(k − 1)!
sinx − �

(0.1)3

2!

∞∑

k=1

(−1)k+1(t − 3)k

k!
sinx

− �e
(0.1)4

3!

∞∑

k=1

(−1)k+1(t − 3)k+3

(k + 3)(k − 1)!
sinx,

u2(t, x) = �(� + 1)e−3
[

[(0.1)e]3

3!
+
[2(0.1)e]2

2!
+ 3(0.1)e + 1

]

sinx(t − 3)

− �(� + 1)(0.1)
∞∑

k=2

(−1)k(t − 3)k−1

(k − 2)!
sinx − �(� + 1)(0.1)2e−1

∞∑

k=2

(−1)k(t − 3)k

k!
sinx

− 2�(� + 1)(0.1)2e−1
∞∑

k=2

(−1)k(t − 3)k−1

(k − 1)!
sinx

− �(� + 1)
(0.1)3

2!

∞∑

k=2

(−1)k(t − 3)k−1

(k − 1)!
sinx

− �(� + 1)(0.1)3
∞∑

k=2

(−1)k(t − 3)k

k(k − 2)!
sinx − �(� + 1)(0.1)3

∞∑

k=2

(−1)k(t − 3)k+1

(k + 1)(k − 2)!
sinx

− �(� + 1)
(0.1)4

3!
e

∞∑

k=2

(−1)k(t − 3)k+2

(k + 2)(k − 2)!
sinx

+ �
2e−3

[

[(0.1)e]3

3!
+
[2(0.1)e]2

2!
+ 3(0.1)e + 1

]

sinx
(t − 3)2

2!

+ �
2e−2(0.1)

∞∑

k=2

(−1)k+1(t − 3)k

k!
sinx + �

2e−1(0.1)2
∞∑

k=2

(−1)k+1(t − 3)k+1

(k + 1)k(k − 2)!
sinx
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+ 2�2e−1(0.1)2
∞∑

k=2

(−1)k+1(t − 3)k

k!
sinx + �

2 (0.1)
3

2!

∞∑

k=2

(−1)k+1(t − 3)k+2

(k + 2)(k + 1)(k − 2)!
sinx

+ �
2(0.1)3

∞∑

k=2

(−1)k+1(t − 3)k+1

(k + 1)k(k − 2)!
sinx + �

2 (0.1)
3

2!

∞∑

k=2

(−1)k+1(t − 3)k

k!
sinx

+ �
2e

(0.1)4

3!

∞∑

k=2

(−1)k+1(t − 3)k+3

(k + 3)(k + 2)(k − 2)!
sinx,

u3(t, x) = �(� + 1)2e−3
[

[(0.1)e]3

3!
+
[2(0.1)e]2

2!
+ 3(0.1)e + 1

]

sinx(t − 3)

− �(� + 1)2(0.1)e−2
∞∑

k=3

(−1)k+1(t − 3)k−2

(k − 2)!
sinx

− �(� + 1)2(0.1)2e−1
∞∑

k=3

(−1)k+1(t − 3)k−1

(k − 1)(k − 3)!
sinx

− 2�(� + 1)2(0.1)2e−1
∞∑

k=3

(−1)k+1(t − 3)k−2

(k − 2)!
sinx

− �(� + 1)2
(0.1)3

2!

∞∑

k=3

(−1)k+1(t − 3)k

k(k − 3)!
sinx

− �(� + 1)2(0.1)3
∞∑

k=3

(−1)k+1(t − 3)k−1

(k − 1)(k − 3)!
sinx

− �(� + 1)2
(0.1)3

2!

∞∑

k=3

(−1)k+1(t − 3)k−2

(k − 2)!
sinx

− �(� + 1)2e
(0.1)4

3!

∞∑

k=3

(−1)k+1(t − 3)k+1

(k + 1)(k − 3)!
sinx

+ 2�2(� + 1)e−3
[

[(0.1)e]3

3!
+
[2(0.1)e]2

2!
+ 3(0.1)e + 1

]

sinx
(t − 3)2

2!

− 2�2(� + 1)e−2(0.1)
∞∑

k=3

(−1)k+1(t − 3)k−1

(k − 1)!
sinx

− �
2(� + 1)e−1(0.1)2

∞∑

k=3

(−1)k+1(t − 3)k

k(k − 1)(k − 3)!
sinx

− 4�2(� + 1)e−1(0.1)2
∞∑

k=3

(−1)k+1(t − 3)k−1

(k − 1)!
sinx
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− 2�2(� + 1)
(0.1)3

2!

∞∑

k=3

(−1)k+1(t − 3)k+1

(k + 1)k(k − 3)!
sinx

− 2�2(� + 1)(0.1)3
∞∑

k=3

(−1)k+1(t − 3)k

k(k − 1)(k − 3)!
sinx

− 2�2(� + 1)
(0.1)3

2!

∞∑

k=3

(−1)k+1(t − 3)k−1

(k − 1)!
sinx

− 2�2(� + 1)e
(0.1)4

3!

∞∑

k=3

(−1)k+1(t − 3)k+2

(k + 2)(k + 1)(k − 3)!
sinx

+ �
3e−3

[

[(0.1)e]3

3!
+
[2(0.1)e]2

2!
+ 3(0.1)e + 1

]

sinx
(t − 3)3

3!

− �
3e−2(0.1)

∞∑

k=3

(−1)k+1(t − 3)k

k!
sinx − �

3e−1(0.1)2
∞∑

k=3

(−1)k+1(t − 3)k+1

(k + 1)k(k − 1)(k − 3)!
sinx

− 2�3e−1(0.1)2
∞∑

k=3

(−1)k+1(t − 3)k

k!
sinx − �

3 (0.1)
3

2!

∞∑

k=3

(−1)k+1(t − 3)k+2

(k + 2)(k + 1)k(k − 3)!
sinx

− �
3(0.1)3

∞∑

k=3

(−1)k+1(t − 3)k+1

(k + 1)k(k − 1)(k − 3)!
sinx − �

3 (0.1)
3

2!

∞∑

k=3

(−1)k+1(t − 3)k

k!
sinx

− �
3e

(0.1)4

3!

∞∑

k=3

(−1)k+1(t − 3)k+3

(k + 3)(k + 2)(k + 1)(k − 3)!
sinx,

...

un(t, x) = f4(� + 1, t, x) + �
ne−3

[

[(0.1)e]3

3!
+
[2(0.1)e]2

2!
+ 3(0.1)e + 1

]

sinx
(t − 3)n

n!

+ (−1)n�
ne−2(0.1)

∞∑

k=n

(−1)k+1(t − 3)k

k!
sinx

+ (−1)n�
ne−1(0.1)2

∞∑

k=n

(−1)k+1(t − 3)k+1

(k + 1)k(k − 1) · · · (k − (n − 2))(k − n)!
sinx

+ (−1)n�
n2e−1(0.1)2

∞∑

k=n

(−1)k+1(t − 3)k

k!
sinx

+ (−1)n�
n (0.1)

3

2!

∞∑

k=n

(−1)k+1(t − 3)k+2

(k + 2)(k + 1)k(k − 3) · · · (k − (n − 3))(k − n)!
sinx

+ (−1)n�
n(0.1)3

∞∑

k=n

(−1)k+1(t − 3)k+1

(k + 1)k(k − 1) · · · (k − (n − 2))(k − n)!
sinx
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+ (−1)n�
n (0.1)

3

2!

∞∑

k=n

(−1)k+1(t − 3)k

k!
sinx

+ (−1)n�
ne

(0.1)4

3!

∞∑

k=n

(−1)k+1(t − 3)k+3

(k + 2)(k + 1)k · · · (k − (n − 4))(k − n)!
sinx,

...

(3.49)

and so on. For � = −1, we get

u0(t, x) = e−3
[

[(0.1)e]3

3!
+
[2(0.1)e]2

2!
+ 3(0.1)e + 1

]

sinx,

u1(t, x) = −e−3
[

[(0.1)e]3

3!
+
[2(0.1)e]2

2!
+ 3(0.1)e + 1

]

sinx(t − 3)

+ e−2(0.1)
∞∑

k=1

(−1)k+1(t − 3)k

k!
sinx + e−1(0.1)2

∞∑

k=1

(−1)k+1(t − 3)k+1

(k + 1)(k − 1)!
sinx

+ 2e−1(0.1)2
∞∑

k=1

(−1)k+1(t − 3)k

k!
sinx +

(0.1)3

2!

∞∑

k=1

(−1)k+1(t − 3)k+2

(k + 2)(k − 1)!
sinx

+ (0.1)3
∞∑

k=1

(−1)k+1(t − 3)k+1

(k + 1)(k − 1)!
sinx +

(0.1)3

2!

∞∑

k=1

(−1)k+1(t − 3)k

k!
sinx

+ e
(0.1)4

3!

∞∑

k=1

(−1)k+1(t − 3)k+3

(k + 3)(k − 1)!
sinx,

u2(t, x) = e−3
[

[(0.1)e]3

3!
+
[2(0.1)e]2

2!
+ 3(0.1)e + 1

]

sinx
(t − 3)2

2!

+ e−2(0.1)
∞∑

k=2

(−1)k+1(t − 3)k

k!
sinx + e−1(0.1)2

∞∑

k=2

(−1)k+1(t − 3)k+1

(k + 1)k(k − 2)!
sinx

+ 2e−1(0.1)2
∞∑

k=2

(−1)k+1(t − 3)k

k!
sinx +

(0.1)3

2!

∞∑

k=2

(−1)k+1(t − 3)k+2

(k + 2)(k + 1)(k − 2)!
sinx

+ (0.1)3
∞∑

k=2

(−1)k+1(t − 3)k+1

(k + 1)k(k − 2)!
sinx +

(0.1)3

2!

∞∑

k=2

(−1)k+1(t − 3)k

k!
sinx

+ e
(0.1)4

3!

∞∑

k=2

(−1)k+1(t − 3)k+3

(k + 3)(k + 2)(k − 2)!
sinx,

u3(t, x) = −e−3
[

[(0.1)e]3

3!
+
[2(0.1)e]2

2!
+ 3(0.1)e + 1

]

sinx
(t − 3)3

3!

+ e−2(0.1)
∞∑

k=3

(−1)k+1(t − 3)k

k!
sinx + e−1(0.1)2

∞∑

k=3

(−1)k+1(t − 3)k+1

(k + 1)k(k − 1)(k − 3)!
sinx
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+ 2e−1(0.1)2
∞∑

k=3

(−1)k+1(t − 3)k

k!
sinx +

(0.1)3

2!

∞∑

k=3

(−1)k+1(t − 3)k+2

(k + 2)(k + 1)k(k − 3)!
sinx

+ (0.1)3
∞∑

k=3

(−1)k+1(t − 3)k+1

(k + 1)k(k − 1)(k − 3)!
sinx +

(0.1)3

2!

∞∑

k=3

(−1)k+1(t − 3)k

k!
sinx

+ e
(0.1)4

3!

∞∑

k=3

(−1)k+1(t − 3)k+3

(k + 3)(k + 2)(k + 1)(k − 3)!
sinx,

...

un(t, x) = (−1)ne−3
[

[(0.1)e]3

3!
+
[2(0.1)e]2

2!
+ 3(0.1)e + 1

]

sinx
(t − 3)n

n!

+ e−2(0.1)
∞∑

k=n

(−1)k+1(t − 3)k

k!
sinx

+ e−1(0.1)2
∞∑

k=n

(−1)k+1(t − 3)k+1

(k + 1)k(k − 1) · · · (k − (n − 2))(k − n)!
sinx

+ 2e−1(0.1)2
∞∑

k=n

(−1)k+1(t − 3)k

k!
sinx

+
(0.1)3

2!

∞∑

k=n

(−1)k+1(t − 3)k+2

(k + 2)(k + 1)k(k − 3) · · · (k − (n − 3))(k − n)!
sinx

+ (0.1)3
∞∑

k=n

(−1)k+1(t − 3)k+1

(k + 1)k(k − 1) · · · (k − (n − 2))(k − n)!
sinx

+
(0.1)3

2!

∞∑

k=n

(−1)k+1(t − 3)k

k!
sinx

+ e
(0.1)4

3!

∞∑

k=n

(−1)k+1(t − 3)k+3

(k + 2)(k + 1)k · · · (k − (n − 4))(k − n)!
sinx,

...

(3.50)

and so on.
From (3.6), the solution of (3.44) is obtained as

u(t, x) =

(

[(0.1)e(t − 3)]4

4!
+
[(0.1)e(t − 2)]3

3!
+
[(0.1)e(t − 1)]2

2!
+ (0.1)et + 1

) ∞∑

k=0

(−1)ktk
k!

sinx.

(3.51)
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Table 5: The absolute error at x = π/2 when � = −1.
t uexact uapp uerr

0.5 0.68896672324764 0.68718517400418 0.00178154924346
1.5 0.31617066069370 0.31528438731741 0.00088627337628
2.5 0.14472535694258 0.14432199982347 0.00040335711910
3.5 0.06624155329591 0.06619299448877 0.00004855880714

Table 6: Comparison of the absolute error in HAM when � = −1 and the errors of different difference
schemes at (0.5, π/2).

Method uapp uerr

HAM forN = 3 0.68718517400418 0.00178154924346
Difference scheme (2.20) forN = M = 48 0.69069236574147 0.00172564249383
Difference scheme (2.29) forN = M = 10 0.69067805057383 0.00171132732619

Table 7: Comparison of the absolute error in HAM when � = −1 and the errors of different difference
schemes at (1.5, π/2).

Method uapp uerr

HAM forN = 3 0.31528438731741 0.00088627337628
Difference scheme (2.20) forN = M = 148 0.31705389317070 0.00088323247700
Difference scheme (2.29) forN = M = 18 0.31707957467449 0.00090891398079

This series has the closed form

u(t, x) =

(

[(0.1)e(t − 3)]4

4!
+
[(0.1)e(t − 2)]3

3!
+
[(0.1)e(t − 1)]2

2!
+ (0.1)et + 1

)

e−t sinx,

(3.52)

which is the exact solution of (3.44).
We give the HAM solutions in t ∈ [0, 1], t ∈ [1, 2], t ∈ [2, 3], t ∈ [3, 4]. We use four

terms for evaluating the approximate solution uapp =
∑3

k=0 uk(t, x). According to the �-curve
of uxt(0, 0), the solution series is convergent when −1.48 ≤ � ≤ 0.48, −1.41 ≤ � ≤ 2.10, −1.19 ≤
� ≤ 0.12, and −1.02 ≤ � ≤ 0, respectively, in t ∈ [0, 1], t ∈ [1, 2], t ∈ [2, 3], t ∈ [3, 4]. We
take � = −1 to determine how much the approximate solution is accurate and compute the
absolute errors uerr = |uexact −uapp| at the points (0.5, π/2), (1.5, π/2), (2.5, π/2), (3.5, π/2) in
Table 5.

4. Conclusion

The numerical solutions of first order of difference scheme (2.20) and second order of differ-
ence scheme (2.29) for different values of N and M and the approximate solutions obtained
by HAM for N = 3 in (3.11) when � = −1 are given at the same points (0.5, π/2), (1.5, π/2),
(2.5, π/2), (3.5, π/2) in Tables 6, 7, 8, and 9, respectively. The absolute errors computed show
that, with homotopy analysis method, the results are more accurate for the parabolic delay
equation (2.17).

Although HAM seems to be more rapid than finite difference method, the series solu-
tions obtained by HAM are convergence only for the regions determined by convergence
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Table 8: Comparison of the absolute error in HAM when � = −1 and the errors of different difference
schemes at (2.5, π/2).

Method uapp uerr

HAM forN = 3 0.14432199982347 0.00040335711910
Difference scheme (2.20) forN = M = 290 0.14512731459568 0.00040195765309
Difference scheme (2.29) forN = M = 24 0.14512723912249 0.00047857754134

Table 9: Comparison of the absolute error in HAM when � = −1 and the errors of different difference
schemes at (3.5, π/2).

Method uapp uerr

HAM forN = 3 0.06619299448877 0.00004855880714
Difference scheme (2.20) forN = M = 480 0.06640694878963 0.00016953954937
Difference scheme (2.29) forN = M = 58 0.06628727563690 0.00004572234990

Table 10: Comparison of the absolute error in HAM when � = −2 and the errors of different difference
schemes at (0.5, π/2).

Method uapp uerr

HAM forN = 3 1.82382103940268 1.13485431615504
Difference scheme (2.20) forN = M = 4 0.71754584429923 0.02857912105159
Difference scheme (2.29) forN = M = 4 0.64396829164838 0.04499843159926

Table 11: Comparison of the absolute error in HAM when � = −2.1 and the errors of different difference
schemes at (1.5, π/2).

Method uapp uerr

HAM forN = 3 −0.71640688651704 1.0325774721074
Difference scheme (2.20) forN = M = 4 0.26625468031687 0.04991598037683
Difference scheme (2.29) forN = M = 4 0.26908021797566 0.04709044271804

Table 12: Comparison of the absolute error in HAM when � = 1.5 and the errors of different difference
schemes at (2.5, π/2).

Method uapp uerr

HAM forN = 3 1.85743968284120 1.71271432589862
Difference scheme (2.20) forN = M = 4 0.09250455294144 0.05222080400114
Difference scheme (2.29) forN = M = 4 0.11418378483060 0.03054157211198

control parameter �. So, convergence region is limited for HAM. The comparison of two
methods of finite difference and homotopy analysis shows that latter is more rapid and
more accurate in the cases that series solutions are convergence. When we take � out of
the convergence region determined by � curves, it is shown that finite difference method
is faster and more accurate than HAM. The approximate solutions obtained by HAM for
different values of � chosen from out of the convergence region of the series solutions and
the numerical solutions of first and second order of difference schemes (2.20) and (2.29) for
N = M = 4 are given in Tables 10, 11, 12, and 13, respectively at the same points (0.5, π/2),
(1.5, π/2), (2.5, π/2), (3.5, π/2).
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Table 13: Comparison of the absolute error in HAM when � = 2 and the errors of different difference
schemes at (3.5, π/2).

Method uapp uerr

HAM for N = 3 1.33954603011737 1.27330447682146
Difference scheme (2.20) forN = M = 4 0.02904127716967 0.03720027612623
Difference scheme (2.29) forN = M = 4 0.04842804202239 0.01781351127352

Despite HAM, by finite difference method, we can guarantee the convergence in the
whole domain that (2.17) is defined in. Therefore finite difference method is more efficient
than HAM.
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[4] K. L. Cooke and I. Győri, “Numerical approximation of the solutions of delay differential equations on
an infinite interval using piecewise constant arguments,” Computers & Mathematics with Applications,
vol. 28, no. 1–3, pp. 81–92, 1994, Advances in difference equations.

[5] L. Torelli, “Stability of numerical methods for delay differential equations,” Journal of Computational
and Applied Mathematics, vol. 25, no. 1, pp. 15–26, 1989.
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