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For submanifolds tangent to the structure vector field in Sasakian space forms, we establish a
Chen’s basic inequality between the main intrinsic invariants of the submanifold (namely, its
pseudosectional curvature and pseudosectional curvature on one side) and the main extrinsic
invariant (namely, squared pseudomean curvature on the other side) with respect to the Tanaka-
Webster connection. Moreover, involving the pseudo-Ricci curvature and the squared pseudo-
mean curvature, we obtain a basic inequality for submanifolds of a Sasakian space form tangent to
the structure vector field in terms of the Tanaka-Webster connection.

1. Introduction

One of the basic interests in the submanifold theory is to establish simple relationship
between intrinsic invariants and extrinsic invariants of a submanifold. Gauss-Bonnet
Theorem, Isoperimetric inequality, and Chern-Lashof Theorem are those such kind of study.

Chen [1] established a nice basic inequality-related intrinsic quantities and extrinsic
ones of submanifolds in a space form with arbitrary codimension. Moreover, he studied the
basic inequalities of submanifolds of complex space forms and characterize submanifolds
when the equality holds.

In this paper, we introduce pseudosectional curvatures and pseudo-Ricci curvature
for the Tanaka-Webster connection in a Sasakian space form. After then, we study basic
inequalities for submanifolds of a Sasakian space form of a constant pseudosectional
curvature and a pseudo-Ricci curvature in terms of the Tanaka-Webster connection.
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2. Preliminaries

Let M be an odd-dimensional Riemannian manifold with a Riemannian metric g satisfying

1@ =1, ¢*=-I+nei nX)=8Xy2),

. . (2.1)
Z(pX, 0Y) = 3(X,Y) - n(X)n(Y).

Then (¢,¢,1,§) is called the almost contact metric structure on M. Let @ denote the
fundamental 2 form in M glven by ®(X,Y) = (X, ¢Y) forall X,Y € TM, the set of vector
fields of M. If ® = drn, then M is said to be a contact metric manifold. Moreover, if ¢ is a
Killing vector field with respect to g, and the contact metric structure is called a X-contact
structure. Recall that a contact metric manifold is X-contact if and only if

Vxé = —pX (2.2)

for any X € TM, where V is the Levi-Civita connection of M. The structure of M is said to be
normal if [¢, @] +2dn ® ¢ — 0, where [, ¢] is the Nijenhuis torsion of ¢. A Sasakian manifold
is a normal contact metric manifold. In fact, an almost contact metric structure is Sasakian if
and only if

(Vxp)Y =3(X, V)g-n(NX (2.3)

for all vector fields X and Y. Every Sasakian manifold is a X-contact manifold.

Given a Sasakian manifold M, a plane section o in T, M is called a (p-section if it is
spanned by X and ¢X, where X is a unit tangent vector fleld orthogonal to ¢. The sectional
curvature K (o) of a g-section o is called p-sectional curvature. If a Sasakian manifold M has
constant ¢-sectional curvature c, M is called a Sasakian space form, denoted by M(c). (For
more details, see [2]).

Now let M be a submanifold immersed in (M, ¢,¢,7,g). We also denote by g the
induced metric on M. Let TM be the Lie algebra of vector fields in M and T+ M the set of all
vector fields normal to M. We denote by h the second fundamental form of M and by A, the
Weingarten endomorphism associated with any v € T+ M. We put h;j = g(h(ei, ej), er) for any
orthonormal vector e;, e; € TM and e, € T+M. The mean curvature vector field H is defined
by H = (1/ dim M)trace(h). M is said to be totally geodesic if the second fundamental form
vanishes identically.

From now on, we assume that the dimension of M is n + 1, and that of the ambient
manifold M is 2m + 1 (m > 2). We also assume that the structure vector field ¢ is tangent to
M. Hence, if we denote by D the orthogonal distribution to ¢ in T M, we have the orthogonal
direct decomposition of TM by TM = D @ span{¢}. For any X € TM, we write pX = TX +
NX, where TX (NX, resp.) is the tangential (normal, resp.) component of ¢X. If oM is a
K-contact manifold, (2.2) gives

h(X, &) = -NX, (2.4)
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for any X in T M. Given a local orthonormal frame {ej, ..., e,} of D, we can define the squared
norms of T and N by

ITI? = Y g(e: Te;)’,  INI?= > g(ei, Nej)?, 2.5)

i,j=1 ij=1

resepectively. It is easy to show that both IT||> and ||N|J* are independent of the choice of
the orthonormal frames. The submanifold M is said to be invariant if N is identically zero,
that is, X € TM for any X € TM. On the other hand, M is said to be an anti-invariant
submanifold if T is identically zero, that is, X € T*M for any X € TM.

3. The Tanaka-Webster Connection for Sasakian Space Form

The Tanaka-Webster connection [3, 4] is the canonical affine connection defined on a
nondegenerate pseudo-Hermitian CR-manifold. Tanno [5] defined the Tanaka-Webster
connection for contact metric manifolds by the canonical connection which coincides with
the Tanaka-Webester connection if the associated CR-structure is integrable. We define
the Tanaka-Webster connection for submanifolds of Sasakian manifolds by the naturally
extended affine connection of Tanno’s Tanaka-Webster connection. Now we recall the Tanaka-
Webster connection V for contact metric manifolds

VxY = VxY + 7(X)pY + (Vxn) (V) - n(Y) V¢, (3.1)
for all vector fields X, Y € TM. Together with (2.1), V is written by
VxY = VxY +7(X)eY + n(Y)pX - 3(Y, (X)) (3.2)
Also, by using (2.1) and (2.3), we can see that
V=0, Vé=0, Ve=0, Vg=0. (3.3)
We define the Tanaka-Webster curvature tensor of R (in terms of 6) by

R(X,Y)Z = VxVyZ - VyVyZ - Vx| Z, (3.4)

for all vector : fields X, Y, and Z in M.
Let M(c) be a Sasakian space form of constant sectional curvature ¢ and M a sub-
manifold of M(c). Then, we have the following Gauss’ equation:

RO )Z = S22 [(3002) - 102X - (8(%,2) - 1D ¥
+Hg(X, 2)n(Y) - (Y, Z2)n(X) }5 + 28 (X, Y )9 Z] (3.5)
c+7

+— (8(Z9Y)9X - 8(Z, 9X)gY)

for any tangent vector fields X, Y, Z tangent to M.
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Let us define the connection V on M induced from the Tanaka-Webster connection V
on M given by

o

VxY = VxY + (X, Y), (3.6)

for any X,Y € I(TM), where h is called the lightlike second fundamental form of M with

respect to the induced connection V. In the view of (3.2) and (3.6),
VXY + (X, Y) = VxY + h(X,Y) + (X)pY + n(Y)pX - Z(Y,X)2. (3.7)
From (3.7), we obtain

VyY = VxY + g(X)TY + q(Y)TX - 5(Y, 0X)¢, (3.8)

h(X,Y) = h(X,Y) + (X)NY +(Y)NX, (3.9)

where pX =TX + NX.
From (3.3), (3.8), and (3.9) it is easy to verify the following;:

Vnp=0, V¢=0, Ve=0, Vg=0. (3.10)
Moreover, for the induced connection V, we have the following

Vx¢=-TX, h(X¢) =-NX. (3.11)

From the definition of R, together with (3.5), we have

c+3

[{g(Y, 2) -n(Vn(2)} (X, W) - {g(X, Z) -n(X)n(Z) }g(Y, W)
+Hg(X, Z)n(Y) - g(Y, Z)n(X) }g (¢, W) + 28 (X, 9Y) g (9Z, W)]
{8(Z 9Y)g (X, W) - (Z,9X)g(pY, W)}

+2(h(X, W), (Y, 2)) - 3(R(X, 2), h(Y,W)),

g<1°e(x, Y)Z, W> -

+c+7
4

(3.12)

forany X,Y,Z W € TM.
For an orthonormal basis {ey,...,e,.1} of the tangent space T,M, p € M, the pseu-
doscalar curvature 7 at p is defined by

T= ZK(@I' N 6]'), (313)

i<j
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where K (ejAe ;) denotes the pseudosectional curvature of M associated with the plane section

spanned by e; and e; for the Tanaka-Webster connection V.In particular, if we put en1 = ¢,
then (3.13) implies that

27 =Y K(eiAej) + 2ZK(e, AE). (3.14)

i#j
Moreover, from (3.9), we have

hy=hij, ije{l,...n},
hr

in+l —

(3.15)
=0, je{l,...,n+1}.

The pseudomean curvature vector field H is defined by H = 1/ dim M )trace(fz). M is said to
be totally pseudogeodesic if the second fundamental h form vanishes identically. From (2.5),
(3.12) and (3.14), we obtain the following relationship between the pseudoscalar curvature
and the pseudomean curvature of M,

c+3 3C+13||T||2. (3.16)

2f=(n+1)2||ﬁ” || || +n(n-1)

We now recall the Chen’s lemma.

Lemma 3.1 (see [6]). Let ay,...,a,,cben+1 (n > 2) real numbers such that

<Zal> (n- 1)<Za +c> (3.17)

Then, 2a1ay > ¢, with the equality holding if and only if a1 + ax = a3 = - -+ = a,.

Let p € M and let r be a plane section of T, M which is generated by orthonormal
vectors X and Y. We can define a function a(sr) of tangent space T, M into [0, 1] by

a(r) = g(TX,Y)?, (3.18)

which is well defined.
Now, we prove the following.

Theorem 3.2. Let M be an (n+ 1)-dimensional (n > 2) submanifold isometrically immersed in a m-
dimensional Sasakian space form M (c) such that the structure vector field ¢ is tangent to M in terms
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of the Tanaka-Wester connection V. Then, for each point p € M and each plane section i C T, M, we
have the following:

2
f_IZ(ﬂ-)S%Tfn_l)”ﬁ”2+%(n+l)(n+2)(c+3) 619)
. :‘3c;;13”T”2 3c Z S

Equality in (3.19) holds at p € M if and only if there exist an orthonormal basis {e1, ..., en+1} of
T, M and an orthonormal basis {en2, ..., en} of T;M such that (a) o = Spanf{ei, ey} and (b) the
shape operators A, = A.,, ¥ =n+2,...,m, take the following forms:

a 0 O
A=|0-a 0 |,
0 0 0,
(3.20)
Wy B, 0
A=| h}, -hj; 0 |, r=n+3,...,m
0 0 0,1
Proof. Let M™*! be a submanifold of M (¢). We introduce
o (1) - 1) 2 c+3 3c+13 301
p—ZT—T”H“ - (n+ 1)(n+2) = - =T (3.21)
Then, from (3.16) and (3.21), we get
2 ~112 . 2(c+3
s O[] = a4 (p- 252, (3:22)

Let p be a point of M and let r C T, M be a plane section at p. We choose an orthonormal
basis {ey,...,ens1} for T,M and {e,.2,...,en} for T,}M such that e,,1 = ¢, 7 = Span{ey, ez},

and the pseudomean curvature vector His parallel to e,.o. Then, from (3.22), we get

n+1 2 n+l m
<Zflﬁ*z> ~ <Z () + S () + X S() - @) (323)
i=1 i=1 i#] r=n+3 ij
and so, by applying Lemma 3.1, we obtain
—~ ~ ~ m —~
2HPREE > Z(h;;.*z)z + > Z(h;)z +p- Z(CI 3 (3.24)

i#j r=n+3 1i,j



Journal of Applied Mathematics 7

On the other hand, from (3.12), we have

L s e\ W [ e \2\ 43 3c+13
K(m) = i - (hg?) + 3 <hqlhgz-(h;2) )C—+ 2 P(e,per).  (325)

r=n+3 4

Then, from (3.24) and (3.25), we get

K(r) = g 3C+13 g’ (e1,pe2) + Z Z(( > " (ESJ)Z) +% Z @#2)2 (3.26)

r=n+2 j>2 i#j>2
noon ~ \2
Z Z( > > Z <h§1+h£2>
r n+31,j>2 —n+3 (3.27)
> ;2_7 . 3c+13a(ﬁ_)'

Combining (3.21) and (3.27), the inequality (3.19) yields. If the equality in (3.19) holds, then
the inequalities given by (3.24) and (3.27) become equalities. In this case, we have

hn+2 hn+2 hn+2 0’ i#j>2,
fz%=iz£]-=h1] =0, re{n+3,...,m}; i,je{3,...,.n+1}, (3.28)

RSy b = = R 4+ R = 0.
Moreover, choosing e; and e, such that h"*2 0, from (3.11), we also have the following

B2 s = i = = W2 =0 (3.29)

n+ln+l —

Thus, with respect to the chosen orthonormal basis {ej, ..., e;}, the shape operators of M
take the forms. O

We now define a well-defined function 6, on M by using (inf K) (p) = inf{K (i) |
o is a plane section C T, M} in the following manner:

6m =7 —infK. (3.30)

If ¢ = —13/3, then we obtain directly from (3.19) the following result.

Corollary 3.3. Let M be an (n + 1)-dimensional (n > 2) submanifold isometrically immersed in a
m-dimensional Sasakian space form M(=13/3) such that the structure vector field & is tangent to
M in terms of the Tanaka-Wester connection V. Then, for each point p € M and each plane section
ar C T, M, we have the following:

g, <+ 1)*(n-1)

< - ||f—1\“2—é(n+1)(n+2). (3.31)

The equality in (3.31) holds if and only if M is a anti-invariant submanifold with rank(T) =
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Proof. In order to estimate &M, we minimize ITI? = 2a(r) in (3.19). For an orthonormal basis
{e1,..., ens1} of T,M with - = Span{e;, ez}, we write

n+l n+l
ITI = 2a() = 3, g*(einge;) + 2 {8 (er, pe;) + &2 (e2, pey) }- (3.32)
i,j=3 i=3

Thus, we see that the minimum value of ||T||2 —2a(r) is zero, provided that or = Span{ey, ez}
is orthogonal to ¢, and span{ge; | j = 3,...,n} is orthogonal to T, M. Thus we have (3.31)
with equality case holding if and only if M is anti-invariant such that rank(T) = 2. O

4. A Pseudo-Ricci Curvature for Sasakian Space Form

We denote the set of unit vectors in T, M by T;M by
T)M = {X e T,M | g(X,X) =1}. (4.1)

Let {e1,...,ex}, 2 < k < n, be an orthonormal basis of a k-place section Iy of T,M. If k = n,
then [Ty = T, M, and if k = 2, then I', is a plane section of T, M. For a fixed i € {1,...,k}, a
k-pseudo-Ricci curvature of Il at e;, denoted by ﬁﬁnk (e;), is defined by [7]

k
Ricry, (i) = ZKij/ (4.2)
j#i

where 12,7 is the pseudosectional curvature in terms of the Tanaka-Webster connection V of
the plane section spanned by e; and ej. We note that an n-pseudo-Ricci curvature Rich m(ei)
is the usual pseudo-Ricci curvature of e;, denoted by I/Qi\c(ei). Thus, for any orthonormal basis
{e1,...,ens1} for T,M and for a fixed i € {1,...,n + 1}, we have the following:

n+l
Ricr, v (e;) = Ric(e;) = D Kjj. (4.3)
j#i

The pseudoscalar curvature 7(I1x) of the k-plane section Il is given by

M) = > Kj. (4.4)

1<i<j<n+1
The relative null spae of M at p is defined by [8]

My = {X € T,M | R(X,Y) = 0,vY € T,M}. (4.5)
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Theorem 4.1. Let M(c) be a m-dimensional Sasakian space form and M an n + 1-dimensional
submanifold tangent to & with respect to the Tanaka-Webster connection V. Then,

(i) for each unit vector X € T, M orthogonal to &, we have

4Ric(X) < (n +1)2 ||ﬁ||2 +(n—1)(c+3) + Bc+ 13)||ITX|7, (4.6)

(i) if H(p) = O, then a unit tanget vector X € T, M orthogonal to ¢ satisfies the equality case
of (4.6) if and only of X € N,.

(iii) the equality case of (4.6) holds identically for all unit tangent vectors orthogonal to & at p
if and only if p is a totally pseudogeodesic point in terms of the Tanaka-Webster connection.

Proof. (i) Let X € T,M be a unit tangent vector at p, orthogonal to £ We choose an
orthonormal basis {ey,...,en1} for T,M and {en.s,...,en} for T;M such that e; = X and
en+1 = ¢. Then, from (3.16), we have

R 1 I [ e e

T2 (4.7)

From (4.7), we get

(11+1)2||/I—T||2 =27+ _iz [(fzfl>2+ <E;2+...+An+1n+1> +22< > ]

i<j

e c+3 3c+13
_zz >, Wik —n(n- D—- IT|?
r=n+2 2<i<j<n

1 m = . ~ 2 ~ ~ -~ 2
=2T + E Z [<h§1 + hgz +oeee+ h:l+1n+1> + <h;1 - h;z - h:l+1n+1> ]
r=n+2
m - c+3 30 +13
2y Z(%) _2 Z >, Bihl-n - - I,
n+2 i<j r=n+2 2<i<j<n
(4.8)
From (3.12), we have
1
5, [y - () ]+ 57+ 5P T, 49)
r= n+2

and consequently

(n H(n-2)(c+3) 3c+13
8 T8

{ITI? 2Ty |P}.

(4.10)

> Ky= [h;h;]— ()
r=n+2

2<i<j<n+1
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Substituting (4.10) into (4.8), one gets

_ 1)~ = = o
e e O 2§ 5 (0) -2 5 &
reme2 j=2 2<i<j<n+1 (4.11)
_(n- 1)2(0 +3) 3¢ ;— 13 (Tey|l.
Therefore,
2
DA 2 2Rieex) - 2D 3By, (412)

which is equivalent to (4.6)
(ii) Assume that H(p) = 0. Equality holds in (4.6) if and only if

Ar _-.._Ar =
Wiy = =h, =0,

1r _ 1 R
Wiy =hyy +- -+ W)

(4.13)
re{n+2,...,mj.

Then, il;] =0foreachje{l,...,n+1}, re{n+2,...,m}, thatis, X € Np.
(iii) The equality case of (4.6) holds for all unit tangent vectors at p if and only if

fﬂ.=0, i#j, re{n+2,...,m},
ij 7] { } (4.14)

W 4+ h ~2n,=0, i€{l,...,n+1}, re{n+2,...,m).

r
n+ln+l

Since lAz(ei, en+1 = §) = 0 from (3.10), p is a totally pseudogeodesic point, and, hence, ¢ (T, M) C
T, M. The converse is trivial. O

Corollary 4.2. Let M be an n+1-dimensional invariant submanifold of a Sasakian space form M(c).
Then,

(i) for each unit vector X € T, M orthogonal to &, we have

4Ric(X) < (n—1)(c+3) + (3¢ +13). (4.15)

(ii) A unit tanget vector X € T, M orthogonal to ¢ satisfies the equality case of (4.6) if and
only if X € N,.

(iii) The equality case of (4.6) holds identically for all unit tangent vectors orthogonal to ¢ at p
if and only if p is a totally pseudogeodesic point in terms of the Tanaka-Webster connection.
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