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The peristaltic flow of a Jeffrey fluid with variable viscosity through a porous medium in
an asymmetric channel is investigated. The channel asymmetric is produced by choosing the
peristaltic wave train on thewall of different amplitude and phase. The governing nonlinear partial
differential equations for the Jeffrey fluid model are derived in Cartesian coordinates system.
Analytic solutions for stream function, velocity, pressure gradient, and pressure rise are first
developed by regular perturbation method, and then the role of pertinent parameters is illustrated
graphically.

1. Introduction

Peristalsis is a mechanism to pump the fluid by means of moving contraction on the tubes
or channel walls. This process has quite useful applications in many biological systems
and industry. It occurs in swallowing food through the esophagus, chyme motion in the
gastrointestinal tract, the vasomotion of small blood vessels such as venules, capillaries, and
arterioles, urine transport from kidney to bladder, sanitary fluid transport of corrosive fluids,
a toxic liquid transport in the nuclear industry, and so forth. In view of such physiological
and industrial applications, the peristaltic flows has been studied with great interest by the
various researchers for viscous and non-Newtonian fluids [1–9].

In most of the studies which deal with the peristaltic flows, the fluid viscosity is
assumed to be constant. This assumption is not valid everywhere. In general the coefficients
of viscosity for real fluids are functions of space coordinate, temperature, and pressure. For
many liquids such as water, oils, and blood, the variation of viscosity due to space coordinate
and temperature change is more dominant than other effects. Therefore, it is highly desirable
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to include the effect of variable viscosity instead of considering the viscosity of the fluid to be
constant. Some important studies related to the variable viscosity are cited in [10–13].

A porous medium is the matter which contains a number of small holes distributed
throughout the matter. Flows through a porous medium occur in filtration of fluids. Several
investigations have been published by using generalized Darcy’s law where the convective
acceleration and viscous stress are taken into account [14–17].

Considering the importance of non-Newtonian fluid in peristalsis and keeping
in mind the sensitivity of liquid viscosity, an attempt is made to study the peristaltic
transport of Jeffrey having variable viscosity through a porous medium in a two-dimensional
asymmetric channel under the assumption of longwave length and the lowReynolds number
approximation. A regular perturbationmethod is used to solve the problem, and the solutions
are expanded in a power series of viscosity parameter α. The obtained expressions are utilized
to discuss the influences of various emerging parameters.

2. Mathematical Formulation

We consider an incompressible Jeffrey fluid in an asymmetric channel of width d1 + d2. A
sinusoidal wave propagating with constant speed c on the channel walls induces the flow.
The wall surfaces are chosen of the following forms:

H1(X, t) = a1 + b1 cos
[
2π
λ

(X − ct)
]
, upper wall,

H2(X, t) = −a2 − b2 cos
[
2π
λ

(X − ct) + φ

]
, lower wall,

(2.1)

where b1, b2 are amplitude of the upper and lower waves, λ is the wave length, φ is the phase
difference which varies in the range 0 ≤ φ ≤ π . Furthermore, a1, a2, b1, b2, and φ should satisfy
the following condition

b21 + b22 + 2b1b2 cosφ ≤ (a1 + a2)2. (2.2)

We assume that the flow becomes steady in the wave frame (x, y) moving with velocity c
away from the fixed (laboratory) frame (X,Y ). The transformation between these two frames
is given by

x = X − ct, y = Y, u = U − c, v = V, p(x) = P(X, t), (2.3)
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where u and v are the velocity components in the wave frame (x, y), p and P are pressure in
wave and fixed frame of reference, respectively. The governing equations in the wave frame
of reference are the Brinkman extended Daray equations given by

∂u

∂x
+
∂v

∂y
= 0, (2.4)

ρ

(
u
∂u

∂x
+ v

∂u

∂y

)
= −∂p

∂x
+
1
ε

∂τxx
∂x

+
1
ε

∂τxy

∂y
− μ

(
y
)

k
(u + 1), (2.5)

ρ

(
u
∂v

∂x
+ v

∂v

∂y

)
= −∂p

∂y
+
∂τyx

∂x
+
∂τyy

∂y
− μ

(
y
)

k
v, (2.6)

where

τxx =
2μ

(
y
)

(1 + λ1)

[
1 + λ2

(
u

∂

∂x
+ v

∂

∂y

)]
∂u

∂x
,

τxy =
μ
(
y
)

(1 + λ1)

[
1 + λ2

(
u

∂

∂x
+ v

∂

∂y

)](
∂u

∂y
+
∂v

∂x

)
,

τyy =
2μ

(
y
)

(1 + λ1)

[
1 + λ2

(
u

∂

∂x
+ v

∂

∂y

)]
∂v

∂y
,

(2.7)

where λ1 is the ratio of relaxation to retardation times, λ2 is the retardation time, ρ is the
density, k is the permeability of the porous medium, and ε is the porosity of the porous
medium.

Introducing the following nondimensional quantities:

x =
x

λ
, y =

y

a1
, u =

u

c
, v =

v

cδ
, h1 =

H1

a1
, h2 =

H2

a1
, τ =

a1τ

μ0c

t =
ct

λ
, Da =

k

a2
1

, δ =
a

λ
, p =

pa2
1

μ0cλ
, a =

b1
a1

, b =
b2
a1

, d =
a2

a1
.

(2.8)

With the help of (2.8), (2.4) to (2.6) after dropping the bars take the form

∂u

∂x
+
∂v

∂y
= 0, (2.9)

Re δ
(
u
∂u

∂x
+ v

∂u

∂y

)
= −∂p

∂x
+
δ

ε

∂τxx
∂x

+
1
ε

∂τxy

∂y
− μ

(
y
)

Da
(u + 1), (2.10)

Re δ3
(
u
∂v

∂x
+ v

∂v

∂y

)
= −∂p

∂y
+
δ2

ε

∂τxy

∂x
+
δ

ε

∂τyy

∂y
− δ2μ

(
y
)

Da
v, (2.11)
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where Darcy’s number is

Da =
k

a2
1

,

τxx =
2δμ

(
y
)

(1 + λ1)

[
1 +

λ2δc

a1

(
u

∂

∂x
+ v

∂

∂y

)]
∂u

∂x
,

τxy =
μ
(
y
)

(1 + λ1)

[
1 +

λ2δc

a1

(
u

∂

∂x
+ v

∂

∂y

)](
∂u

∂y
+ δ2 ∂v

∂x

)
,

τyy =
2μ

(
y
)

(1 + λ1)

[
1 +

λ2δc

a1

(
u

∂

∂x
+ v

∂

∂y

)]
∂v

∂y
.

(2.12)

Using the longwave length and small Reynolds number approximation, (2.10) and (2.11) take
the form

∂p

∂x
=

1
ε

∂

∂y

[
μ
(
y
)

(1 + λ1)
∂u

∂y

]
− μ

(
y
)

Da
(u + 1), (2.13)

∂p

∂y
= 0. (2.14)

The corresponding boundary conditions are

u = −1, aty = h1, (2.15a)

u = −1, aty = h2, (2.15b)

where

h1 = 1 + a cos 2πx, h2 = −d − b cos
(
2πx + φ

)
. (2.15c)

Equation (2.14) indicate that p is independent of y. Therefore, (2.10) can be written as

dp

dx
=

1
ε

∂

∂y

[
μ
(
y
)

(1 + λ1)
∂u

∂y

]
− μ

(
y
)

Da
(u + 1), (2.16)

where μ(y) is the viscosity variation on peristaltic flow. For the present analysis, we assume
viscosity variation in the dimensionless form [10]:

u
(
y
)
= e−αy, u

(
y
)
= 1 − αy +

αy2

2
, forα ≺≺ 1. (2.17)
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The volume flow rate in the wave frame is given by

q =
∫h1

h2

udy. (2.18)

The instantaneous flux Q(x, t) in the laboratory frame is defined as

Q(x, t) =
∫h2

h1

(u + 1)dy = q + h1 − h2. (2.19)

The average flux over one period (T = λ/c) is given by

Q =
1
T

∫T

0
Qdt =

1
T

∫T

0

(
q + h1 − h2

)
dt = q + 1 + d. (2.20)

3. Perturbation Solution

Equation (2.16) is a nonlinear differential equation so that it is not possible to obtain a closed
form solution; so we seek perturbation solution. We expand u, p and q as

u = u0 + αu1 + α2u2 + o
(
α3
)
,

p = p0 + αp1 + α2p2 + o
(
α3
)
,

q = q0 + αq1 + α2q2 + o
(
α3
)
.

(3.1)

Substituting these equations into (2.15a), (2.15b), (2.15c), and (2.16), we have the following
system of equations.

3.1. Zeroth-Order Equations α0

∂2u0

∂y2
−N2u0 = ε(1 + λ1)

dp0
dx

+N2, (3.2)

where

N =
ε(1 + λ1)

Da
,

u0 = −1, at y = h1, h2.

(3.3)
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Figure 1: The pressure rise versus flow rate when a = 0.2, b = 0.6, d = 0.8, ε = 0.3, λ1 = 0.8, Da = 0.6, and
φ = π/4.
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Figure 2: The pressure rise verses flow rate when α = 0.01, a = 0.2, b = 0.6, d = 0.8, ε = 0.3, λ1 = 0.4, and
φ = π/4.

3.2. First-Order Equations α

∂2u1

∂y2
−N2u1 = ε(1 + λ1)

dp1
dx

+ εy(1 + λ1)
dp0
dx

+
∂u0

∂y
, (3.4)

u1 = 0, at y = h1, h2. (3.5)
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Figure 3: The pressure rise verses flow rate when α = 0.01, a = 0.2, b = 0.6, d = 0.8, λ1 = 0.4, Da = 0.5,
and φ = π/4.
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Figure 4: The pressure rise verses flow rate when α = 0.01, a = 0.2, b = 0.6, d = 0.8, ε = 0.3, Da = 0.8, and
φ = π/4.

3.3. Second-Order Equations α2

∂2u2

∂y2
−N2u2 = ε(1 + λ1)

dp2
dx

+ ε(1 + λ1)y
dp1
dx

+
y2

2
ε(1 + λ1)

dp0
dx

+
∂u1

∂y
, (3.6)

u2 = 0 at y = h1, h2. (3.7)
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3.4. Zeroth-Order Solution

Solving (3.2) and (3.3), we get

u0 =
ε(1 + λ1)

N2

dp0
dx

[
C1 coshNy + C2 sinhNy − 1

] − 1, (3.8)

where

C1 =
(sinhNh1 − sinhNh2)

sinhN(h1 − h2)
, C2 =

(coshNh2 − coshNh1)
sinhN(h1 − h2)

, (3.9)

and the volume flow rate q0 is given by

q0 =
∫h1

h2

u0dy. (3.10)

From (3.8), we have

dp0
dx

=
(
q0 + h1 − h2

)
A, (3.11)

where

A =
N3 sinhN(h1 − h2)

ε(1 + λ1)[2 coshN(h1 − h2) − 2 − (h1 − h2)N sinhN(h1 − h2)]
. (3.12)

The dimensionless pressure rise at this order is

ΔP0 =
∫1

0

dp0
dx

dx. (3.13)

3.5. First-Order Solution

Substituting zeroth order solution (3.8) into (3.4) and then solving the resulting system along
with the corresponding boundary conditions, we arrive at

u1 =
ε(1 + λ1)

N2

dp1
dx

[
C1 coshNy + C2 sinhNy − 1

]

+
ε(1 + λ1)
2N2

dp0
dx

[
− 2y + C1y coshNy + C2y sinhNy

× sinhNy(h1 coshNh2 − h2 coshNh1)
sinhN(h1 − h2)

+
coshNy(h2 sinhNh1 − h1 sinhNh2)

sinhN(h1 − h2)

]
,

(3.14)
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Figure 5: The pressure rise verses flow rate when α = 0.01, a = 0.4, b = 0.6, d = 0.8, ε = 0.4, λ1 = 0.5, and
Da = 0.5.
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Figure 6: The pressure rise verses flow rate when α = 0.01, b = 0.6, d = 0.8, ε = 0.3, λ1 = 0.4, Da = 0.5,
and φ = π/4.

and the volume flow rate q1 is given by

q1 =
∫h1

h2

u1dy. (3.15)

From (3.14), we get

dp1
dx

= Aq1 +
Aε(1 + λ1)

2N3

dp0
dx

[
N2

(
h2
1 − h2

2

)
+
(h1 + h2)(1 − coshN(h1 − h2))

sinhN(h1 − h2)

]
. (3.16)
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Figure 7: The pressure rise verses flow rate when α = 0.01, a = 0.2, d = 0.8, ε = 0.3, λ1 = 0.4, Da = 0.5,
and φ = π/4.
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Figure 8: Axial velocity versus y at a = 0.2, b = 0.6, d = 0.8, ε = 0.2, λ1 = 1, Da = 1, x = π/6, q = −1, and
φ = π/2.

The dimensionless pressure rise at this order is

ΔP1 =
∫1

0

dp1
dx

dx. (3.17)
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Figure 9: Axial velocity versus y at α = 0.05, a = 0.2, b = 0.6, d = 0.8, ε = 0.2, λ1 = 1, Da = 1, x = 0, and
φ = π/2.

3.6. Second-Order Solution

Solving (3.6) by using (3.8) and (3.14) and the boundary condition (3.5), we obtain

u2 =
ε(1 + λ1)

N2

dp2
dx

[
C1 coshNy + C2 sinhNy − 1

]

+
ε(1 + λ1)
2N2

dp1
dx

[
sinhNy(h1 coshNh2 − h2 coshNh1)

sinhN(h1 − h2)
− 2y

+ C1y coshNy + C2y sinhNy

+
coshNy(h2 sinhNh1 − h1 sinhNh2)

sinhN(h1 − h2)

]

+
dp0
dx

ε(1 + λ1)
4N2

[
C1

(
y sinhNy +Ny2 coshNy

)
+ C2

(
y coshNy + y2N sinhNy

)
2N

− y2 +
(1 − coshN(h1 − h2))

(
sinhNy(h1 coshNh2 + h2 coshNh1)

)
2sinh2N(h1 − h2)

− (1 − coshN(h1 − h2))
(
(h1 sinhNh2 + h2 sinhNh1) coshNy

)
2sinh2N(h1 − h2)

− (h1 coshNh2 − h2 coshNh1)
(
C1y coshNy + C2y sinhNy

)
(coshNh1 − coshNh2)

+

(
h2
2 coshNh1 − h2

1 coshNh2
)
sinhNy

2 sinhN(h1 − h2)
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+

(
h2
1 sinhNh1 − h2

2 sinhNh2
)
coshNy

2 sinhN(h1 − h2)

×8
(
1 − C1 coshNy − C2 sinhNy

)
N2

+
(h1 − h2)y coshNy

(coshNh1 − coshNh2)

]
,

(3.18)

and the volume flow rate q2 is given by

q2 =
∫h1

h2

u2dy. (3.19)

From (3.18), we have

dp2
dx

= Aq2 +
Aε(1 + λ1)

2N3

dp1
dx

[
2(h1 + h2)(1 − coshN(h1 − h2))

sinhN(h1 − h2)
+N

((
h2
1 − h2

2

))]

− Aε(1 + λ1)
4N3

dp0
dx

[
8(h1 − h2)

N
− 3(h1 − h2)

2N
−
(

h3
1

3
− h3

2

3

)]

+

(
h2
1 + h2

2

)
(1 − coshN(h1 − h2))

2N sinhN(h1 − h2)
+
(h1 − h2)(h1 sinNh1 − h2 sinNh2)

(coshNh1 − coshNh2)

+
(h1 + h2)(1 − coshN(h1 − h2))(h1 coshNh2 − h2 coshNh1)

sinhN(h1 − h2)(coshNh1 − coshNh2)

+

(
h2
1N

2 + h2
2N

2 + 2
)
(coshN(h1 − h2) − 1)

2N2 sinhN(h1 − h2)
+
16(1 − coshN(h1 − h2))
N2 sinhN(h1 − h2)

.

(3.20)

The dimensionless pressure rise at this order is

ΔP2 =
∫2

0

dp2
dx

dx. (3.21)

Summarizing the result obtained from (3.11), (3.16), and (3.20), we write

ΔP = ΔP0 + αΔP1 + α2ΔP2. (3.22)

Corresponding stream functions can be defined as

u =
∂Ψ
∂y

, v = −δ∂Ψ
∂x

. (3.23)
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Figure 10: Axial velocity versus y at α = 0.05, a = 0.2, b = 0.6, d = 0.8, ε = 0.2, λ1 = 1, Da = 1, x = π/2,
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φ = π/2.

4. Results and Discussion

We have used a regular perturbation series in term of the dimensional viscosity parameter
α to obtain analytical solution of the field equations for peristaltic flow of Jeffrey fluid in an
asymmetric channel. To study the behavior of solutions, numerical calculations for several
values of viscosity parameter α, Daray number Da, porosity ε, amplitude ratio φ, Jeffrey fluid
parameter λ1, a and b have been calculated numerically using MATHEMATICA software.

Figure 1 shows the variation of ΔP with flow rate θ for different values of α. It is
depicted that the time-average flux θ increase with increasing the viscosity parameter α.
Figure 2 represents the variation of ΔP with the flow rate θ for different values of Da. We
observe that an increase in the peristaltic pumping rate pressure rises. Figures 3 and 4 are
graphs of pressure rise ΔP with the flow rate θ for values of ε and λ1. It is observed that the
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pumping rate decreases with increase of ε and λ1. Figure 5 is the graph of the variation of
ΔP versus the flow rate θ for different values of phase difference φ. It is observed that the
pumping rate decreases with the increase of φ. Figures 6 and 7 plot the relation between
pressure rise ΔP and flow rate θ for different values of a and b, respectively. Figure 8
represents the graph of axial velocity u versus y. It can be seen that an increase in α decreases
the magnitude of axial velocity u. The effects of q on the axial velocity u are seen through
Figure 9. It is noticed that an increase in q increase the magnitude of the axial velocity. Figures
10 and 11 illustrate the effect of phase difference φ and Daray’s number Da on the axial
velocity u. It is observed that the magnitude of axial velocity decreases with the increasing
phase difference φ and Daray’s number Da. In Figure 12 the axial velocity u is graphed versus
y. We note that the magnitude of axial velocity increases as the channel width d increases.
It is worth mentioning that in the absence of porosity parameter the solutions of [10] can
be derived as special case of the present analysis. This provides the useful check. It may
be remarked that the problem for this particular model was not solved earlier even by any
traditional perturbation technique. The results presented in this paper will now be available
for experimental verification.
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