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We introduce an adaptive numerical method for computing blow-up solutions for ODEs and well-
known reaction-diffusion equations. Themethod is based on the implicit midpoint method and the
implicit Euler method. We demonstrate that the method produces superior results to the adaptive
PECE-implicit method and the MATLAB solver of comparable order.

1. Introduction

Reaction-diffusion equations model a wide range of problems in physics, biology, and
chemistry. They explain how the concentration of one or more substances distributed in space
changes under the influence of two processes: chemical reactions and diffusion. These sub-
stances can be basic particles in physics, bacteria, molecules, cells, and so forth. The
substances reside in a region Ω ⊂ R

d, d ≥ 1.
The reaction-diffusion equation is a semilinear parabolic partial differential equation

of the form

ut(t, x) −Δu(t, x) = f(t, x, u), t > 0, x ∈ Ω ⊂ R
d,

u(0, x) = u0(x) ≥ 0, x ∈ Ω,

u(t, x) = 0, t > 0, x ∈ ∂Ω

(1.1)

Equation (1.1) can be viewed as a heat conduction problem, where u(x, t) is the
temperature of a substance in a bounded domain Ω ⊂ R

d and f(t, x, u) represents a heat
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source. Δu(t, x) is referred to as the diffusion term and f(t, x, u) as the reaction term. In this
case, convection does not take place, so f does not depend on ∇u.

For sufficiently large initial function u0(x) the solution of (1.1) will blowup in finite
time. Blow-up occurs when the solution of the partial differential equation ceases to exist in
finite time; that is, there is Tb < ∞ (blow-up time) so that

lim
t→ T−

b

‖u(t, ·)‖ = +∞. (1.2)

Bebernes and Eberly [1] state that a necessary condition for blow-up in finite time is if

∫∞

u0

f−1(s)ds < ∞. (1.3)

Kaplan [2] showed that for convex source terms f = f(u) satisfying (1.3) diffusion cannot
prevent blow-up if the initial state is large enough. In most papers, blow-up properties are
discussed in the case where the nonlinear term in (1.1) is of the form f = f(u) where Ω ⊂ R

d

is bounded and t ∈ (0, T), where T is finite. In most of the work the case where d = 1 has
been studied. However, more recently, Brunner et al. [3] studied the numerical solution of
blow-up problems within the context of unbounded domains.

Stuart and Floater [4] showed that fixed step methods, both explicit and implicit, fail
to reproduce blow-up time for a scalar ODE. They also examined variable step methods.
They used time stepping strategies which are based on a rescaling of the time variable
in the underlying differential equation. They also apply these ideas to a PDE. Bandle and
Brunner [5] present a survey of the theory and the numerical analysis of blow-up solutions
for quasilinear reaction-diffusion equations. Budd et al. [6] proposed the use of moving mesh
partial differential equation (MMPDE)methods for solving (1.1). In this method the function
u(x, t) is discretized to give the solution values ui(t) defined on a moving mesh xi(t), i =
0, . . . ,N. A more general study of the MMPDE is presented in [7] and the references therein.
More recently Ma et al. [8, 9] have used the moving mesh methods to numerically study
blow-up in nonlocal reaction diffusion equations and partial integrodifferential equations in
general.

In this paper we will use the method of lines (MOLs) to solve (1.1). In this method
the PDE is discretized in space, which leads to a system of ODEs with initial conditions. The
numerical solution can then be obtained by solving the ODE initial value problems (see [10]).
We introduce an adaptive method based on the implicit midpoint method and the implicit
Euler method to solve the resulting system of ODEs. More work has been done on PsDEs
with autonomous nonlinear reaction term. In this work we also give numerical results for
PDEs with nonautonomous nonlinear term.

2. Description of Methods Used

In this work we use variable step methods to compute the blow-up time. We use one-point
collocation methods and compare the results with MATLAB solvers ode45 and ode15s. In
our procedures we specify the acceptable error per step, and if it is not met, the procedure
adjusts the step size so that each step introduces an error that is not more than the acceptable
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error. At each step we solve the problem using two different algorithms, giving two different
solutions, say S1 and S2. We adjust the stepsize in accordance with |S1 − S2|.

2.1. One-Point Collocation Methods

One-point collocation methods are a family of methods of the form

yn+1 = yn + hnf
(
tn + c1hn, (1 − c1)yn + c1yn+1

)
, (2.1)

where c1 ∈ [0, 1]. The specified cases are

(i) c1 = 0 corresponds to explicit Euler method;

(ii) c1 = 1/2 corresponds to implicit midpoint method;

(iii) c1 = 1 corresponds to implicit Euler method.

Note that all the one-point collocation methods are of order 1; however, the implicit
midpoint method (c1 = 1/2) achieves order 2 local superconvergence (see [11]).

2.2. Adaptive PECE-Implicit Euler Method

This method is based on the implicit Euler method. We compute S1 using a predictor-
corrector method in which yp is obtained using explicit Euler’s method so that we have

S1 = yn+1 = yn + hnf
(
tn+1, yp

)
, (2.2)

To get S2, we use Newton’s method as the solver to deal with the implicit nature of
the implicit Euler method.

2.3. Adaptive Implicit Midpoint-Implicit Euler Method

We use the implicit Euler method with Newton’s method as the solver to get S1. To get S2 we
use midpoint Euler method given by

yn+1 = yn + hnf

(
tn +

hn

2
,
yn + yn+1

2

)
. (2.3)

First we get yn+1 using the implicit Euler method and substitute in (2.3) to get S2, that
is,

yp = yn + hnf
(
tn+1, yn+1

)
, (2.4)

then,

S2 = yn+1 = yn + hnf

(
tn +

hn

2
,
yn + yp

2

)
. (2.5)
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2.4. MATLAB Solvers (ode45 and ode15s)

ode45 is a one-step Matlab solver that is based on an explicit Runge-Kutta (4,5) scheme. It
varies the size of the step of the independent variable in order to meet the accuracy specified.
On the other hand, ode15s is a multistep Matlab variable order solver based on implicit
methods. We use these solvers to compare with the adaptive implicit midpoint-implicit Euler
method we are introducing.

3. Blow-up for ODEs

We will first consider this simple case

y′(t) = λy(t) + byp(t), t > 0, y(0) = y0 > 0, (3.1)

with λ < 0 and b > 0.

3.1. Analytic Solution

Theorem 3.1. Given the system (3.1), its solution will blowup in finite time for

y0 >

(−b
λ

)1/(1−p)
(3.2)

and at

Tb =
1

λ
(
1 − p

) ln
b

λy
1−p
0 + b

(3.3)

(see Brunner [11]).

Proof. Note that (3.1) is a Bernoulli equation, whose solution is

y(t) =
[−b
λ

+
(
y
(1−p)
0 +

b

λ

)
eλ(1−p)t

]1/(1−p)
. (3.4)

Then, y → ∞when

−b
λ

+
(
y
(1−p)
0 +

b

λ

)
eλ(1−p)t = 0. (3.5)

Thus

Tb =
1

λ
(
1 − p

) ln
b

λy
1−p
0 + b

. (3.6)
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Table 1: Blow-up solutions of (3.1).

p Blow-up time (Tb)

1.1 27.03555
1.5 2.455894
2 0.693147
3 0.143841
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Figure 1: Analytic solution of (3.1).

Tb is finite if

λy
1−p
0 + b > 0. (3.7)

Thus

y0 >

(−b
λ

)1/(1−p)
, (3.8)

as required.

We compute the blow-up time for λ = −1, b = 1, y0 = 2, and p = 1.1, 1.5, 2, 3. The
results are shown in Table 1, and a graph showing the analytic solution of (3.1) is shown in
Figure 1.
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Table 2: Blow-up time for (3.1).

p PECE-implicit Euler Midpoint-implicit Euler ode45 ode15s
1.1 26.89733 27.03530 27.03555 27.03528
1.5 2.442115 2.455886 2.455895 2.455857
2 0.6889782 0.6931451 0.6931474 0.6931295
3 0.1429036 0.1438402 0.1438411 0.1438358

Table 3: Error for (3.1).

p PECE-implicit Euler Midpoint-implicit Euler ode45 ode15s
1.1 0.861780 0.000250 0 0.000270
1.5 0.013779 0.000008 0 0.000038
2 0.004169 0.000002 0 0.000018
3 0.000937 0.000001 0 0.000005

3.2. Numerical Computation

We solve (3.1) with λ = −1, b = 1, y0 = 2, and p = 1.1, 1.5, 2, 3. Tables 2 and 3 show the blow-
up times and the errors of each method, respectively, and Figure 2 shows the graphs of the
solution of (3.1). The tolerance used for the computations is 1e − 6.

3.3. Discussion

The blow-up results for the different methods are very close to the analytic value as shown
in Table 2. From Table 3, we see that ode45, which is of higher order than the other three
methods, gives the best results than the other three methods. The adaptive implicit midpoint-
implicit Euler gives a better result than the other two methods of comparable order, that is,
adaptive PECE-implicit Euler method and ode15s. The adaptive PECE-implicit Euler method
gives a quite large error and requires a very small tolerance to get a result which is close to
the exact value. From the results, we observe that as the value of p in (3.1) is increased the
blow-up time occurs earlier and is much later for values of p much closer to 1.

We seek to determine whether the performance of the methods is the same in the case
where we have a reaction-diffusion equation.

4. Reaction-Diffusion Equation: One Space Dimension

In this section we compute the blow-up time for a one space dimension reaction-diffusion
equation with an autonomous reaction term and a nonautonomous reaction term.

4.1. Autonomous Reaction Term

We solve the system (1.1) with the autonomous reaction term f = up(t, x), where p > 1 and
the domain Ω is just the real line, that is, d = 1 and Ω = (0, 1). The system becomes

ut(t, x) − uxx(t, x) = up(t, x), t > 0, x ∈ (0, 1),
(
p > 1

)
,

u(0, x) = u0(x) ≥ 0, x ∈ (0, 1),

u(t, x) = 0, t > 0, x ∈ ∂Ω.

(4.1)
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We use the method of lines (MOLs) to discretize (4.1) in space. For the spatial discret-
ization, we choose a uniform mesh Dh := {xm : 0 = x0 < x1 < · · · < xM+1 = 1} (with xm = mh)
on Ω and replace uxx(t, xm) (1 ≤ m ≤ M) by the standard central difference approximation.
We use the function A sin(πx) as the initial function with different values of A > 0. We get
the following system of ODEs for Um(t) ≈ u(t, xm)(1 ≤ m ≤ M):

U′
m(t) =

Um+1(t) − 2Um(t) +Um−1(t)
h2

+U
p
m(t), (1 ≤ m ≤ M),

U0(t) = UM+1(t) = 0,

Um(0) = A sin(πxm).

(4.2)

We solve the system (4.2) with p = 2 and h = (1 − 0)/M. Tables 4, 5, and 6 show the
blow-up results obtained with M = 50, 100, and 200, respectively, and with different values
of A in the initial function A sin(πx). Figures 3, 4, 5, and 6 show the graphs of the solution of
(4.1) for A = 10 and A = 12.

4.2. Nonautonomous Reaction Term

We now solve the system (1.1) with the non-autonomous reaction term f = tkxrup(t, x),
where p > 1 and the domain Ω is just the real line, that is, d = 1 and Ω = (0, 1). The system
becomes

ut(t, x) − uxx(t, x) = tkxrup(t, x), t > 0, x ∈ (0, 1),
(
p > 1

)
,

u(0, x) = u0(x) ≥ 0, x ∈ (0, 1),

u(t, x) = 0, t > 0, x ∈ ∂Ω.

(4.3)

As in (4.1)we use themethod of lines to discretize (4.3) to obtain the following system:

U′
m(t) =

Um+1(t) − 2Um(t) +Um−1(t)
h2

+ tkxr
mU

p
m(t), (1 ≤ m ≤ M),

U0(t) = UM+1(t) = 0,

Um(0) = A sin(πxm).

(4.4)

We solve (4.4) for k = 0, 1 and r = 1, 2, Tables 7 and 8 show the blow-up times obtained
from the different values of k and r.

4.3. Discussion

We observe that as we increase the amplitude of the initial function, A, the blow-up time
tends to occur earlier. We also observe that for smaller values of A, there is no blow-up.
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(a) By PECE-implicit Euler
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(b) By midpoint-implicit Euler
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(c) By ode45
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(d) By ode15s

Figure 2: Numerical solution of (3.1).

Considering the reaction-diffusion equation, and comparing the autonomous against
the non-autonomous reaction term cases, we observe that the introduction of the non-
autonomous term ensures that a much larger amplitude,A, in the initial function, is required
for blow-up to occur. We also note that increasing k for fixed r or increasing r for fixed k
increases the minimum amplitude for blow-up to occur.

On the performance of the methods, we note a similar trend to what we observed in
the ODE case. The adaptive implicit midpoint-implicit Euler method gives results that are
significantly superior to the adaptive PECE-implicit Euler method and ode15s. In fact, its
performance is comparable to ode45.



Mathematical Problems in Engineering 9

Table 4: Blow-up time for (4.1) withM = 50.

Blow-up time (Tb)

A PECE-implicit Euler Midpoint-implicit Euler ode45 ode15s

8.0 No blow-up No blow-up No blow-up No blow-up
10.0 No blow-up No blow-up No blow-up No blow-up
10.5 No blow-up No blow-up No blow-up No blow-up
11.0 No blow-up No blow-up No blow-up No blow-up
11.1 No blow-up No blow-up No blow-up No blow-up
11.2 0.6184 0.6204 0.6225 0.6198
11.3 0.4611 0.4629 0.4633 0.4625
11.4 0.4019 0.4036 0.4038 0.4033
11.5 0.3649 0.3666 0.3668 0.3663
12.0 0.2729 0.2745 0.2746 0.2743
12.5 0.2280 0.2295 0.2296 0.2294
13.0 0.1989 0.2005 0.2004 0.2002
13.5 0.1777 0.1791 0.1791 0.1790
14.0 0.1613 0.1626 0.1627 0.1626
14.5 0.1480 0.1493 0.1494 0.1493
15.0 0.1370 0.1383 0.1384 0.1383
15.5 0.1277 0.1290 0.1290 0.1290
16.0 0.1197 0.1209 0.1209 0.1209

Table 5: Blow-up time for (4.1) withM = 100.

Blow-up time (Tb)

A PECE-implicit Euler Midpoint-implicit Euler ode45 ode15s

8.0 No blow-up No blow-up No blow-up No blow-up
10.0 No blow-up No blow-up No blow-up No blow-up
10.5 No blow-up No blow-up No blow-up No blow-up
11.0 No blow-up No blow-up No blow-up No blow-up
11.1 No blow-up No blow-up No blow-up No blow-up
11.2 No blow-up No blow-up No blow-up No blow-up
11.3 No blow-up No blow-up No blow-up No blow-up
11.4 0.5322 0.5330 0.5340 0.5325
11.5 0.4323 0.4331 0.4335 0.4328
12.0 0.2923 0.2924 0.2925 0.2922
12.5 0.2382 0.2389 0.2390 0.2388
13.0 0.2062 0.2063 0.2063 0.2062
13.5 0.1826 0.1833 0.1833 0.1832
14.0 0.1651 0.1658 0.1658 0.1656
14.5 0.1511 0.1518 0.1518 0.1516
15.0 0.1396 0.1403 0.1403 0.1402
15.5 0.1299 0.1306 0.1306 0.1305
16.0 0.1216 0.1222 0.1223 0.1222
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Table 6: Blow-up time for (4.1) withM = 200.

Blow-up time (Tb)

A PECE-implicit Euler Midpoint-implicit Euler ode45 ode15s

8.0 No blow-up No blow-up No blow-up No blow-up

10.0 No blow-up No blow-up No blow-up No blow-up

10.5 No blow-up No blow-up No blow-up No blow-up

11.0 No blow-up No blow-up No blow-up No blow-up

11.1 No blow-up No blow-up No blow-up No blow-up

11.2 No blow-up No blow-up No blow-up No blow-up

11.3 No blow-up No blow-up No blow-up No blow-up

11.4 No blow-up No blow-up No-blow-up No blow-up

11.5 0.5074 0.5077 0.5085 0.5067

12.0 0.3034 0.3037 0.3038 0.3034

12.5 0.2441 0.2444 0.2444 0.2442

13.0 0.2094 0.2097 0.2097 0.2095

13.5 0.1853 0.1856 0.1856 0.1855

14.0 0.1672 0.1675 0.1675 0.1673

14.5 0.1528 0.1531 0.1531 0.1530

15.0 0.1410 0.1413 0.1413 0.1412

15.5 0.1311 0.1314 0.1314 0.1313

16.0 0.1227 0.1229 0.1229 0.1229
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(b) with A = 12

Figure 3: Numerical solution of (4.1) obtained using PECE-implicit Euler.
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Figure 4: Numerical solution of (4.1) obtained using midpoint-implicit Euler.
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Figure 5: Numerical solution of (4.1) obtained using ode45.

5. Reaction-Diffusion Equation: Two Space Dimensions

We solve the system (1.1)with the reaction term f = up(t, x, y), where p > 1 withΩ = R
2. The

system becomes

ut

(
t, x, y

) − uxx

(
t, x, y

) − uyy

(
t, x, y

)
= up(t, x, y), t > 0, x, y ∈ (0, 1),

(
p > 1

)
,

u
(
0, x, y

)
= u0

(
x, y

) ≥ 0, x, y ∈ (0, 1),

u
(
t, x, y

)
= 0, t > 0, x, y ∈ ∂Ω.

(5.1)
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Table 7: Blow-up time for (4.1)with M = 100 and k = 0.

Blow-up time (Tb)
r A PECE-implicit Euler Midpoint-implicit Euler ode45 ode15s

1

21.0 No blow-up No blow-up No blow-up No blow-up
21.5 No blow-up No blow-up No blow-up No blow-up
22.0 0.4670 0.4679 0.4681 0.4675
22.5 0.3305 0.3312 0.3313 0.3310
23.0 0.2780 0.2787 0.2787 0.2785
23.5 0.2454 0.2461 0.2461 0.2460
24.0 0.2221 0.2228 0.2228 0.2227

2

36.0 No blow-up No blow-up No blow-up No blow-up
36.5 No blow-up No blow-up No blow-up No blow-up
37.0 0.3673 0.3681 0.3681 0.3679
37.5 0.3038 0.3045 0.3045 0.3043
38.0 0.2683 0.2690 0.2690 0.2688
38.5 0.2438 0.2444 0.2445 0.2443
39.0 0.2252 0.2258 0.2259 0.2257

Table 8: Blow-up time for (4.1)with M = 100 and k = 1.

Blow-up time (Tb)
r A PECE-implicit Euler Midpoint-implicit Euler ode45 ode15s

1

215 No blow-up No blow-up No blow-up No blow-up
216 0.8041 0.8367 0.8367 0.8410
217 0.6872 0.6981 0.6981 0.6956
218 0.6310 0.6378 0.6378 0.6384
219 0.5936 0.5987 0.5987 0.5990
220 0.5655 0.5696 0.5697 0.5684

2

370 No blow-up No blow-up No blow-up No blow-up
371 0.8054 0.8671 0.8671 0.8754
372 0.6949 0.7126 0.7126 0.7142
373 0.6427 0.6533 0.6533 0.6541
374 0.6080 0.6157 0.6157 0.6162
375 0.5819 0.5881 0.5881 0.5884

We use the method of lines (MOLs) to discretize (5.1) in space. For the spatial
discretization, we choose uniform meshes for x and y, Dh := {xm : 0 = x0 < x1 < · · · <
xM+1 = 1} and Ih := {yn : 0 = y0 < y1 < · · · < yN+1 = 1}, respectively, (with xm = mh
and yn = nh) on Ω. We replace uxx(t, xm, yn) and uyy(t, xm, yn) (1 ≤ m ≤ M, 1 ≤ n ≤ N)
by the standard central difference approximation. We use the function A sin(πx) sin(πy) as
the initial function with different values of A > 0. We get the following system of ODEs for
Um,n(t) ≈ u(t, xm, yn) (1 ≤ m ≤ M, 1 ≤ n ≤ N):

U′
m,n(t) =

Um+1,n(t) +Um−1,n(t) − 4Um,n +Um,n+1(t) +Um,n−1(t)
h2

+U
p
m,n(t),

U0,n(t) = UM+1,n(t) = Um,0 = Um,N+1 = 0,

Um,n(0) = A sin(πxm) sin
(
πyn

)
, 1 ≤ m ≤ M, 1 ≤ n ≤ N.

(5.2)
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Table 9: Blow-up time for (5.1) withM = 10 and N = 10.

Blow-up time (Tb)
A PECE-implicit Euler Midpoint-implicit Euler ode45 ode15s
21 no blow-up no blow-up no blow-up no blow-up
22 no blow-up no blow-up no blow-up no blow-up
23 0.4717971 0.4721022 0.4721028 0.4720943
24 0.2034135 0.2036998 0.2037004 0.2036986
25 0.1564947 0.1567547 0.1567553 0.1567541
26 0.1306537 0.1308970 0.1308976 0.1308967
27 0.1133313 0.1135619 0.1135625 0.1135617
28 0.1005905 0.1008109 0.1008115 0.1008108
29 0.0906900 0.0909017 0.0909023 0.0909017
30 0.0827090 0.0829133 0.0829139 0.0829133
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(b) With A = 12

Figure 6: Numerical solution of (4.1) obtained using ode15s.

We solve the system (5.2) with p = 2 and h = (1 − 0)/M. Figure 7 shows the solution
of (5.2), and Table 9 shows the blow-up times obtained using the four methods.

5.1. Discussion

We observe similar results for the two space dimensions reaction-diffusion equation to the
one space dimension case; that is, the adaptive implicit midpoint-implicit Euler method gives
significantly better results than the adaptive PECE-implicit Euler method and ode15s. Its
results are comparable with the higher order, computationally costly ode45.
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(a) By PECE-implicit Euler
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(b) By midpoint-implicit Euler
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(c) By ode45
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Figure 7: Numerical solution of (5.1).

6. Future Work

We would like to extend the blow-up computations to the Volterra integrodifferential
equations, that is, cases where the reaction term is nonlocal.

Given the relative simplicity of this newmethod, and cheaper computational expense,
we conclude that it is much better than the higher-order RK-based solver, for implementation
on problems of the nature studied in this paper. We would further like to test the newmethod
on other problems in engineering and applied science, with the objective of proposing it for
wider implementation.
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