Hindawi Publishing Corporation

Journal of Robotics

Volume 2010, Article ID 301923, 14 pages
doi:10.1155/2010/301923

Research Article

An Extensible Dialogue Script for a Robot Based on Unification of

State-Transition Models

Yosuke Matsusaka,! Hiroyuki Fujii,? and Isao Hara'

! National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8568, Japan
2 Japan Science and Technology Agency (JST), 2-1-6 Sengen, Tsukuba, Ibaraki, 305-0047, Japan

Correspondence should be addressed to Yosuke Matsusaka, yosuke.matsusaka@aist.go.jp

Received 1 November 2009; Revised 23 February 2010; Accepted 17 May 2010

Academic Editor: Noriyasu Homma

Copyright © 2010 Yosuke Matsusaka et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

We propose extension-by-unification method to improve reusability of the dialogue components in the development of
communication function of the robot. Compared to previous extension-by-connection method used in behavior-based
communication robot developments, the extension-by-unification method has the ability to decompose the script into
components. The decomposed components can be recomposed to build a new application easily. In this paper, first we, explain a
reformulation we have applied to the conventional state-transition model. Second, we explain a set of algorithms to decompose,
recompose, and detect the conflict of each component. Third, we explain a dialogue engine and a script management server we
have developed. The script management server has a function to propose reusable components to the developer in real time by
implementing the conflict detection algorithm. The dialogue engine SEAT (Speech Event-Action Translator) has flexible adapter
mechanism to enable quick integration to robotic systems. We have confirmed that by the application of three robots, development

efficiency has improved by 30%.

1. Introduction

In recent years, there has been an increasing demand for
robots that work in a human life environment.

Replacement of human labor by robots in the manu-
facturing sectors (e.g., factory production lines) has already
shown success. In the case of manufacturing robots, profes-
sional operators give commands to the robot. Professional
operators have expert knowledge, and they are able to
command the robot in a robot-friendly manner.

However, in the case of the robots used in a life
environment, the operator who gives commands to the
robot only has imperfect knowledge about the robot (called
a “naive user” hereafter). Naive users often use natural
language to command the robot. To create a robot that can be
easily used by naive users, the robot not only needs to have
mechanical skills but also linguistic ability to understand a
variety of commands.

The biggest problem in understanding language is
diversity. Words used by a naive user to command the

robot will be diverse for various reasons (described in
Section 3). This problem has been solved commonly by two
methods: the machine learning methods and the behavior-
based “scripting” methods. Each method has advantages and
disadvantages.

An advantage of using the machine learning method is
that the developer can implement the vast patterns of lan-
guage understanding without any programming effort. For
example, Iwahashi has used Markov model and stochastic
context-free grammar to let the robot understand lexicons
as well as associations between objects and words [1]. Roy
has implemented on-line learning algorithm on a robotic
platform, which automatically acquires the concept of the
words and the objects [2]. However, the disadvantage of this
method is that the models generated by the machine learning
method cannot be edited or modified for reuse. Some meth-
ods enable retraining of the model by controlling a meta-
level learning parameter (e.g., [3]), but we need to realize
intended behaviors in complex situations, so it becomes
generally difficult to find optimal learning parameters.

In contrast, in the case of scripting methods, the
developer can program the specific behavior of the robot as
intended. While the disadvantage is, however, the difficulty to
cover the diversty of language understanding ability required
in each application, because the effort of human developer is
limited.

SHRDLU [4] is one of the most successful applications
based on scripting method. The system was developed
by Winograd in 1972. The system uses “inference-based”
scripting approach. The script consists of planning part
and vocabulary part and uses inference to complement the
meaning of words.

The inference-based scripting approach is useful for the
developer who has deep understanding about the inference
system, but this requirement is sometimes difficult to fulfill
in collaborative and incremental development (discussed
later in Section 7.1).

Recently, “behavior-based” scripting method has been
applied in many practical robotic systems. The application
presented by Brooks [5] used hieratical structure model. The
recent applications [6, 7] use state-transition model (finite
state automata) to model the situation of the system. The
developer incrementally develops the script by adding each
behavior which fits to each small situation. Diverse situation
understanding ability can be realized as a result of long-term
incremental development.

The behavior-based scripting method can also be applied
to communication robots by incorporating speech input
with the situation model. Application of the behavior-
based scripting method to the communication robot is first
presented by Kanda et al. [8] in 2002. In their work, they
not only proposed an incremental development framework,
but also implemented an on-line development environment
which can realize automated control of the robot. They have
confirmed through a 25-day field study that with the help of
the development environment, the conversation ability of the
robot was incremented on line and succeeded to decrease the
operation time of the human operator [9].

However, in the existing behavior-based scripting meth-
ods for communication robot, there is an inefficiency in
terms of reusing the script to develop different types of robots
(this problem is described in Section 3.1). In this paper,
we present the extension-by-unification method in order
to push forwards the behavior-based scripting approach to
develop communication robots.

In our approach, we will not only focus on the ability
of the model itself, but also on the descriptive format of
the script and its operation. We show that the reuse can
be enhanced by reformulating the conventional descriptive
format and also show the effectiveness of the reformulation
by implementing a computer-assisted development environ-
ment to enhance the development activity of the developer.

In Section 2, we give an overview of a basic state-
transition model and its characteristics.

In Section 3, a formal discussion of incremental devel-
opment methods for the state-transition model is presented.
Here, we introduce the formalization of the proposed incre-
mental development method and clarify its characteristics by
comparing it to the previous method.

Journal of Robotics

In Sections 4 and 5, the implementations of the script
server and script engine are presented. The script engine and
script server implemented support functions that will allow
developers to reduce their development efforts.

In Section 6, examples of script development in actual
applications are presented, and the effectiveness of the
development environment is discussed.

2. State-Transition-Based Models

2.1. Formalization. A state-transition model is a modeling
method in which the input and output of the system assume
the following form:

A:: <I)S)O)y)A)SO>) (1)

where I represents the input alphabet, O represents the out-
put alphabet, S represents the internal states, y represents the
state-transition function, A represents the output function,
and s is the initial state.

The state transition function p is defined in association
with the state to the input.

p:SxI— 8. (2)

The output function A is defined in association with the
state to the input.

A:SXxI— O. (3)

When the system is in state s; and gets input alphabet i,
state transition to s;; will occur as follows:

St+1 = Vspiy (4)
At the same time, we get output alphabet o, as follows:
011 = Asgjipe (5)

Even the input to the system is the same, the output of
the system may be different, because the internal state s; will
be updated each time the system gets the input.

We have explained the state-transition model in an
equation form, however, the state-transition model can be
also presented in a 2-dimensional diagram called “state-
transition diagram”. In the diagram, each state is represented
by a circle, and the transition between states is represented by
arrows. In this paper, we annotate the transition conditions
and the associative actions by including text over each arrow.
We use a black circle (called a “token”) to represent the
current state.

For example, Figure 1 represents a conversation modeled
by the state-transition model.

In the model presented in Figure 1, the initial state
of the system is in “TV control” state. When the model
gets the instruction “Turn on” as an input, it will output
the command “turn-on-TV”, and state transition “(a)” will
occur. Then the token turns back to the same “TV control”
state. When the model gets the instruction “Video” as an
input, state transition “(b)” will occur, and the token will

Journal of Robotics

(a) “Turn on”/turn-on-tv (¢) “Turn on”/turn-on-video

(b) “Video”

TV control
state

VTR control
state

O—

Initial state
(d) “TV”

FiGure 1: Example of state-transition model.

Detect@facedetector/(talk “hello, ...”)

Hear
state

Initial state

Example interaction:
»

User: “(gets close)
System: “hello, what can i do for you?”

FiGurg 2: Example of state-transition model using multichannel
input.

move to “VTR control” state. This time when the instruction
“Turn on” is given, state transition “(c)” occurs and outputs
the command “turn-on-video”. In this way, we can model the
context by defining an appropriate state and state transitions
between the states.

The above example is expressed as follows in the equation
form:

A:= (LS 0,9\, %),

I = (“Turnon”, “Turnoff”, “TV”, “Video”),
S = (“tv-control”, “vtr-control”),

O = (“turn-on-tv”, “turn-on-video”,

» o«

“turn-off-tv”, “turn-off-video”),
_ (S0 So So $1
Y= s1 st So s1)’

3 (oo 0, none none)

(6)

01 03 none none

As we have seen here, the expression in equation form
has an advantage in formalization, while the expression in
diagram form has an advantage in quick understanding.
In later discussion, we will use both the equation and the
diagram forms to explain the concept quickly and formally.

State-transition model is a very simple get very powerful
modeling method and has been applied to very wide
applications. Because the structure of state-transition model
is very simple, it is frequently misunderstood that the state-
transition model can only model simple behavior. However,
it can model diverse behavior by applying some extensions
(e.g., [10, 11]).

2.2. Extensions

2.2.1. Multichannel Input. The original state-transition
model uses a single input channel. In the case of a con-
versational system, the input channel is assigned to receive
input from the speech recognition subsystem. However, it
can accept multichannel input by formulating the transition
function yasy: S x I x C — Sand the output function A as
A:SXIXC — (O,C),where Cis the type of input channel.
By this extension, the model can integrate voice input as well
as the other sensory inputs.

The example in Figure 2 shows the use of context in
image and voice input.

2.2.2. Loop-Back Events. The state-transition model updates
its internal state using external input. But by connecting
output of the system to the input, it can realize autonomous
behavior generation based on the internal event (in this
paper, we call this a “loop-back event”). Loop-back events
are important in realizing the autonomous behavior of the
robot (examples are presented in Section 6).

2.2.3. Automatic Generation of Frame-Based Questions. A
frame-based question is an interaction that requires answers
to two or more questions in an arbitrary order. Example
in Figure 3 shows realization of frame-based question using
state-transition model. The structure of the model is appar-
ently complex; however, we can generate this model using a
simple algorithm.

2.3. Existing Implementations Used in Industry. There have
been many script engines implemented (e.g., [12]). Most
of them implement both multichannel and loop-back event
extensions.

VoiceXML [13] is the de-facto standard of the script
format used in various dialogue systems. It uses a more
sophisticated format to describe the script than the state-
transition model does. However, as we have shown the
example of frame-based question in the previous section,
we can easily convert the sophisticated description into
the state-transition-based form. The implementation of
VoiceXML script engines also uses this conversion, and the
core part of these engines are based on a state-transition
model.

Our script engine does not only implement the above
extensions, but also has a function to support incremental
development. In the next section, we discuss our incremental
development method.

3. Incremental Development Method

Commands given by the human to the robot are diverse. The
following are the factors that cause this diversity.

The Nature of Language. Human language is ambiguous, and
different expressions can be used to give instructions that
carry the same meaning.

Journal of Robotics

Up/(talk“OK”)

Box state B
. « . oXx-up state
Dish/(talk“and where?”)
Down/(talk“OK”)
Box/(talk“Q
Box/(talk“and’'where?”)
Box-down state
/(Talk “tell me...”)
' Up/(talk“OK”)
Initial state .
Dish-up state
Up/(talk“and which okject?”) Dislf/ (talk " QK”)
Box/(talk“OK”)
Down/(talk“and which object?”)
Down state Dish-down state

Dish/(talk“OK”)

Example interaction:
System: “tell me which object to move and which direction to move.”

User: “box.”
System: “and where?”
User: “up.”
(ql, gqln) = (("box", "dish"), "where")
(q2, g2n) = (("up", "down"), "which object")

func generate_2frame_question(ql, qln, g2, g2n):
for qlst, gn, g2nd in ((ql, qln, q2), (g2, 92n, ql)):
for questl in glst:

state[start] .rule.push(questl, "And "+qgn+"?7",

state[quest1])
for quest2 in g2nd:
state[questl] .rule.push(quest2, "OK",

state[questi+quest2])

FIGURE 3: Example of state-transition model that can realize a 2-frame question. The structure of the model looks complex, but it can be
generated easily using a simple algorithm.

Tasks. Robots working in a life environment have to accept a
variety of tasks. In order to cope with this, it is necessary for
them to understand a variety of commands.

The language comprehension system of the robot must
be able to deal with these diversities.

In the script-based development approach, diversity has
been dealt with by stacking a newly developed script onto
the existing scripts. By accumulating a number of scripts, the
developer can accumulate the number of commands that the
system can deal with.

Ability of the Robot Itself. The diversity is also caused by
the ability of the robot itself. A command from a human

becomes effective due to the functions of the robot. For
example, humans do not say “walk N steps” to a robot on
wheels.

Incremental development of the state-transition model
has previously been conducted using the “extension-by-
connection” method (described in the next section). In

Journal of Robotics

FIGURE 4: Extension of a state machine using the extension-by-
connection model.

this section, we propose an “extension-by-unification”
method that can cope with the diversities mentioned above
(described in Section 3.3).

3.1. Extension-by-Connection Method. The simplest way to
extend state-transition model is as follows.

(1) Add a new state to the existing state-transition model.

(2) Add a new transition from the existing state to the
new state.

This process is illustrated in Figure 4.

Here, we formulate the above process. Let the existing
state-transition model be A, and the accumulated state-
transition model be A”.

As explained in Section 2.1, the existing state-transition
model A can be represented by the following form.

A= (L,S,0,9,A50). (7)

Here, S is the set of state s € S. The transition function y
can be defined in any form. In this paper, we use the matrix
of § x I, in which the transition from state s; to state s;;1 can
occur if ys,; = sp41.

Similarly, we define the accumulated state-transition
model A" as follows:

A :=(L,5,0,y,)X,s;). (8)
Then, the new state AS can be calculated as follows:
S = SUAS.)

Here, ' N AS = O.
The new state transition Ay can be calculated as follows:

Yei = Vsui (st €S,i€1), (10)
y;;,i =Ayy; (s;eS8,iel), (11)
Aoi=Msi (ss€Siel), (12)
)L;;,I. =AMy, (sse§,iel). (13)

The transition function of the accumulated part Ay needs
to be defined based on the transition from the existing state
S. Therefore, Ay will be a matrix of " X I. Note that the new
state AS can be expressed only by the newly defined part, but
the transition of the accumulated part Ay includes both old
state S and new state AS in its definition.

The state-transition model is easy to understand in draw-
ing a state-transition diagram. Extension-by-connection can
also be carried out very easily by editing this diagram. There
are several GUIs that can add state-transition rules through
the operation of mouse clicks (e.g., [14]).

3.2. Problems with the Extension-by-Connection Method.
Extension-by-connection is a useful method, but it has the
following problems.

As we can see in (9) and (11), the definition of Ay’
requires both S and AS. This causes problems in the function
development of robots. For example, let us consider the
following scenario.

(1) Robot “A” has function A, and we have already
developed a state-transition model A4 to realize the
function.

(2) For the robot “A” to accumulate function C, we have
extended the state-transition model to AAC.

(3) We have developed another robot, “B”, which has
function B. And we want to add function C to this
robot.

Here, the state-transition model for function C is already
developed for robot A. We want to reuse the model for
robot B. Here, we discuss whether such a diversion would
be possible.

First, the state SAC is easily separable from state $* and
state S€

SC = §AC — &4, (14)

However, the definition of state-transition function y4¢
is as follows:

vii=vi (stestier),
(15)
y;ﬁ;g,i:ys (S?CESAC,iEI>.

y© contains state $* in its definition.

Because states $* and SP are defined for different types
of robots, A and B are not equal. In addition, because the
transition for the function C is defined dependently on state
$4, we cannot replace variables like S4¢ = SBC, which means
that we cannot use y¢ to extend the state-transition model
AE. The state transition of function C developed for robot A
cannot be diverted for the extension of robot B.

Ideally, once a feature is developed, it would be possible
to share with other robots that need the same feature.
In order to achieve this, we introduce the extension-by-
unification method.

FiGure 5: Extension of the state-transition model using the
extension-by-unification method.

3.3. Extension-by-Unification Method. In the extension-by-
unification method, we extend the state-transition model by
the following procedure.

(1) Develop a state-transition model to realize a new
function.
(2) Unify a state with the same ID between the existing

and the new state-transition models.

This process is illustrated in Figure 5.

Here, we formulate the above process.

The existing state-transition model A can be represented
by state S, state transition y, and initial state s

A:= <I)S>Oy))>/\r$0>' (16)

Similarly, the new state-transition model A" is repre-
sented as follows:

A :=(LS,0,y,1,s,). (17)

We accumulate the state-transition model A" by unifying
A and A’. First, we calculate state as follows:

§"=8uSs. (18)

Here, SN S #+ &.
Next, the transition between the state S’ is calculated as
follows:

Yoi=7vsi (ss€8iel), (19)
Vii=Ve: (si€SLi€l), (20)
N =M (s€Siel), (21)
Agi=Ag, (steSLiel). (22)

By defining initial state s; to be sy = s, the extended
state-transition model A" will be as follows:

AH _ <I, S”, O, y”,A”,S(,)’ . (23)

As visible in (20), the transition function y’ is an
§" x § matrix that only includes state S’ in its definition.
The extension-by-unification method does not require the
definition of the original state in the accumulated part of the
state-transition model.

Journal of Robotics

As noted in Section 3.2, in the conventional extension-
by-connection method, the definition of the accumulated
part of the state-transition model depends on information
on the existing state. It is limited in terms of reusing scripts
for this reason. The proposed extension-by-unification
method does not have this problem. Using this method,
we can significantly increase the reusability of the state-
transition model (examples shown in Section 6).

3.4. Problems of the Extension-by-Unification Method. As
discussed above, the extension-by-unification method can
overcome a limitation in the extension-by-connection
method by applying a simple reformulation. However, as
a counterpart to this reformulation, we have dealt with
the following problems that do not occur in conventional
methods.

First, a conflict in transition conditions may occur. For
example, when we try to unify two states with one another,
the states may have different actions associated with the
same transition conditions. In this case, the state-transition
models cannot be unified.

Second, an isolated state may occur. For example, when
we try to unify state-transition models that do not have
the same state IDs in common, there will be no transitions
between the old and the new states. In this case, the developer
cannot activate the new function as intended.

In this study, we not only implement a script engine that
has a state unification function (detailed in Section 5), but
also implement a script-management server that includes
conflict detection, isolated state detection, and executability
detection functions (detailed in the next section).

4. The Development Environment

4.1. Script-Management Server. We developed the script-
management system, which is based on wiki.

The developer can write the script in XML form on the
wiki page, and the document of the script can also be written
on the same wiki page. The developer can annotate each
wiki page using tags. Tags are used as identifiers to indicate
multiple pages working as a set.

Algorithm 1 is an example of the state-transition model
written in the XML form.

Our run-time engine SEAT can read script using HTTP
protocol. Thus, the developer can directly load and run the
script (or the set of scripts defined by the tag) by specifying
the URL.

The script-management server uses the core func-
tions of dokuwiki (http://www.dokuwiki.org/). Functions
described in the next sections are realized by extending the
dokuwiki.

4.2. Detection of Isolated State. When we try to unify state-
transition models that do not have state IDs in common,
there will be no transition between the old and the new
states. In this case, the developer cannot activate the new
function as intended. Isolation of the state can be detected in
Algorithm 2.

Journal of Robotics

<rule>

</command>

</command >
</rule>
</state>

<state id="Robot" dict="julian-conf/hrp_operate'>

<key>[take] one step [forward]</key>
<command host="talk">
(talk "Take one step forward.")

<command host="control">
(robot hwalk :set-target-pos 0.2 0 0)

ALGORITHM 1

fstate = []

if command.typ

for state in states:

detected = 1

func checkisolatedstate_recur(stateid):
for command in states(stateid).commands:

== statetransition:

if fstate(command.target) ==
fstate(command.target) = 1
checkisolatedstate_recur (command.target)

func checkisolatedstate(stateid):
checkisolatedstate_recur (command.target)

if fstate(state) != 1

ALGORITHM 2

4.3. Detection of State-Transition Conflict. When we try to
unify two states with one another, the states may have differ-
ent actions associated with the same transition conditions.
In this case, the state-transition models cannot be unified.
A conflict between the state-transition conditions can be
detected in Algorithm 3.

4.4. Detection of an Unexecutable Action. An “unexecutable
action” is an action that is defined in the state-transition
model but cannot produce any output because the robot does
not have the ability to generate the actual output. In this
case, the developer cannot achieve the intended output. By
using the instance ID of the adaptor mechanism (described
in Section 5.2), an unexecutable action can be detected in
Algorithm 4.

4.5. Visualization of Unifiable States. By using the above
algorithms, the possibility of unification between scripts
can be identified as “Unifiable”, “Unifiable (occurrence
of isolated state)”, or “Conflict”. Similarly, scripts can be
classified as “Executable” or “Unexecutable”. By comparing
a script and an adaptor definition for the existing scripts, we
can obtain a list of scripts annotated with 6 (3 X 2) classes.
Our script-management server displays the above list at
the bottom of each wiki page. By displaying the list, the

developer can easily find a script that can be included in
his/her current application.
Figure 6 shows example of using the web-based interface.

5. Implementation of the Run-Time Engine

5.1. Architecture. SEAT consists of an adaptor mechanism,
phrase matcher, automaton driver, and automaton unifier. In
the next sections, we briefly overview each subsystem.

5.2. Adaptor Mechanism. The adaptor mechanism is used to
connect the run-time engine to the other subsystems of the
robot.

Adaptors are configured in XML format. For each
adaptor configuration, an instance ID is defined. In the body
of the state-transition model, the instance ID is used to
describe the actions. By using this mechanism, even if the
developer has changed the hardware configuration, the same
state-transition model can be used by employing an adaptor
definition that has the same instance IDs.

SEAT supports BSD socket communication, child process
communication, UNIX standard input and output, and
OpenRTM [15] as default interface types. Because the
adapter mechanism is defined in an abstract form, the
developer can easily add his/her own interface types.

Journal of Robotics

func checkconflict(statel, state2):
for cl1 in statel.conditions:
for c2 in state2.conditions:
if (c1 == c2) && (cl.action == c2.action):

detected = 1

ALGORITHM 3

detected = 1

func checkactions(adaptor, state):
for ¢ in state.conditions:
if not exist c.action.instanceid in adaptor:

ALGORITHM 4

5.3. Noise Robust Speech Recognition. A speech recognition
function is also important in improving the accuracy of
the robots’ linguistic understanding. In the human life
space, many noises occur around the robot. In such an
environment, normal speech recognition algorithms are not
accurate enough.

We have developed a speech recognition algorithm that
works in a practical noise environment by using a signal
processing technique combined with the speech recognition
engine Julius [16]. Signal processing technique uses MUSIC
spectrum method and fusion of video by Bayesian network,
and it reduces environment noise by using ML beamforming
(details are described in [17, 18]).

For HumanAID application (Figure 7), evaluation is
done with two persons speaking simultaneously. Number of
vocabulary was 492. Under this condition, the word error
rate of speech recognition was over 19.9%, while the word
error rate of normal speech recognition is 90.4%.

Speech recognition accuracy not only depends on envi-
ronmental noises, but also depends on number of vocabu-
laries. Because the recognizer needs to distinguish each word
among given vocabularies, as the vocabulary increases, the
recognition accuracy will go down. SEAT has a function to
switch the speech recognition vocabularies depending on the
situation. By using this function, the developer can increase
the number of vocabularies of the total system while keeping
the high speech recognition accuracy.

5.4. Phrase Matcher and Automaton Driver. The phrase
matcher compares the input for each state-transition con-
dition. To cope with the diversity of human language, we
utilized a subset of regular expressions. If we write “[A]”,
phrase A is omissible. If we write “(A | B)” either phrase
A or B can be matched.

When a match is found, the result is passed to the
automaton driver. The automaton driver updates the current
state and executes the commands based on the definition of
the model. When a state transition occurs, switching of the
speech recognition dictionary occurs at the same time.

6. Applications

6.1. Robots and Tasks. In this section, we present the
applications we have developed using the development envi-
ronment.

HRP-2. We have implemented the HumanAID task in the
HRP-2 humanoid robot. The task is designed to assist people
in everyday life. In the task, the robot greets the human, and
the human gives commands to the robot, such as controlling
the video or the TV, carrying drinks from the refrigerator to
the table (Figure 7).

TAIZO. TAIZO is a health exercise demonstration robot
[19]. It is a small robot character that greets people and
demonstrates various exercises (Figure 8(a)).

RH-1. RH-1 is a mobile robot that is designed to assist
humans in the office environment (Figure 8(b)).

6.2. Development History. The development of the Human-
AID task in HRP-2 has taken place from 2006 to 2007.
Development of TAIZO and RH-1 has taken place from 2007
to the present. Table 1 shows the name of each script and its
development period.

Here, we list the development history.

Unit-Based Development in HRP-2 (Period 1). HumanAID
task functions have been developed separately. The state-
transition model for demo conversation (e.g., saying “hello”,
“bye”, introducing itself), the model for controlling the
robot (e.g., walking, picking up objects), and the model for
controlling the TV and VTR using an infrared controller
were split into different scripts and developed simultaneously
in this period.

Integration in HRP-2 (Period 2). After the development of
each part of the function, a script was developed that

Journal of Robotics 9

-
0" ()X) | B il &2 (L) hp://openrtp.jp/seatsat/editor/ o3
L]

</rule>
<rule>
<key>Come here</key>
<statets move </ >
</rule>
</state>
<state name="move">
<rule>
<key source="motion">done </key>
<stateti >greet</ 1sition>
</rule>
</state>
</seatml>

Detect

Come here

Hello ‘

Nice to meet you

(a)

EA e 2 ([hup://openrtp.jp/seatsat/editor/ w

</rule>
</state>
<state name="greet">
| <rule>
<key>What can you do</key>
<statetransition>explain</statetransition>
</rule>
<rule>
<key>Come here</key>
<statetransition>move </statetransition> !
</rule>
</state>
<state name="move">

Hello
ood morni ’
Good aff on

na 0
Nice to meet you

(®)

FiGure 6: Example of using the web-based interface. (a) Overview of the development interface. Visualization of the state-transition model
(left), XML-based editing panel (right top), real-time annotation of existing scripts (right bottom). Editing task script. When the developer
types the keyword “Hello”, the existing script from the script database is annotated as “conflict” and suggests reuse. At this step, the system
only accepts 3 (“Hello”, “What can you do?”, “Come here”) phrases. (b) When the developer checks the “greet” script, which already contains
several vocabularies for greeting, it is unified to the task script. As a result, the developer only has to increment the application specific
vocabulary to realize the whole script with many vocabularies. At this step, the system accepts 7 (“Hello”, “Good morning”, “Good afternoon”,

»

“Thank you”, “Nice to meet you”, “What can you do?”, “Come here”) phrases.

10

Figure 8: TAIZO (a) and RH-1 (b) robots.

defined a menu. Within this script, a central state and states
corresponding to each function were defined. For states
corresponding to each function, nothing was contained in
this script, but it was unified with other scripts to obtain
the functions. Only transitions from the central state to each
function state were defined in the script.

Each automaton has been developed and tested individ-
ually, but at the final stage of development, it was possible to
unify the script by simply confirming the warning messages
given by the script-management server.

Extension of the Scripts in TAIZO (Periods 3 and 4). Script
development of TAIZO was conducted by extending the
scripts developed for HRP-2. The scripts for greeting and
basic demo tasks were selected for reuse, and the other
scripts (TV-control, VIR-control) were not selected because
TAIZO has no ability to control this equipment. To add
more patterns to the greeting, the “greet-taizo” script was
defined, which shares the same state as “greet” but adds more
transitions. Functions specific to TAIZO were developed as
the script “exercise”. Finally, a menu script was developed to
integrate all of the functions.

Journal of Robotics

TABLE 1: Scripts used by each application and its development
period.

Name of Used by #of Period

script HRP-2 TAIZO RH-1 (rans. (developed for)
greet * * * 3 1, 3 (HRP-2)
robot-ctl * * 13 1 (HRP-2)
tv-ctl * * 14 1 (HRP-2)
vtr-ctl * * 10 1 (HRP-2)
hrp-menu * 3 2 (HRP-2)
greet-taizo * 4 3 (TAIZO)
exercize * 17 3 (TAIZO)
taizo-menu * 17 4 (TAIZO)
wander * 15 5 (RH-1)
ask-who * 3 6 (RH-1)

Although the composition of the subsystems (e.g., speech
recognizer, behavior generation) of TAIZO and HRP-2 was
different, it was possible to share the scripts with no
modification by simply switching the adaptor configurations.

Development of RH-1 (Periods 5 and 6). The script devel-
opment of RH-1 was conducted simultaneously with the
development of TAIZO. In RH-1, some control functions
were imported from HRP-2. The script “wander” was defined
as wandering around the office. This script not only uses
speech input, but also uses visual information to find people.
A multichannel input mechanism was used to integrate
visual and speech inputs.

6.3. Results and Effects of Development. As a result of these
developments, the number of acceptable command types has
reached 43, 54, 45 for the respective applications.

Each application shares 93%, 30%, or 60% of its scripts
with the other applications, respectively. As a total, 30% (=
1—(3+13+14+10+3+4+17+17+15+3)/(43+54+45))
of the script development effort is reduced. Because the time
used to develop the system was in proportion to the number
of transitions defined in the script, the development time is
estimated to have decreased by 30%.

7. Discussion

7.1. Comparison with Other Accumulative Development
Methods. In the above discussion, we compared our
method to the extension-by-connection method. Both
the extension-by-connection and extension-by-unification
methods belong to the same state-transition model group.
For other modeling methods, and especially for artificial
intelligence applications, a production system model is used
in some applications.

A production system model is a modeling method that
maintains the state of the system as a multidimensional
feature vector, and controls the execution of actions by
comparing the state to the pattern written in the script.

Journal of Robotics

By using the same symbols as in Section 2, the produc-
tion system model is formalized as follows:

A = <S>R)SO)) (24)

where S is the state in vector (in the state-transition model, S
was a set of states), R represents the conditions for each rule,
and s, is the initial state in vector.

Condition R is a comparison function that can be defined
arbitrarily. In this paper, we define R as a matrix that
consists of the conditions for each rule R;;. The rows of R
stand for each rule, and columns stand for the conditions
corresponding to each dimension of features in the state
vector. We define the conditions as “1”: the value of the
feature is positive, “—1”: the value of the feature is negative,
and “0”: does not care.

Production system models are generally known to be
extensible. Our model can easily accumulate rules, as follows:

R) = Rij (Ri,j #0,i,j € S),

R =0

(otherwise, i, j € S”),

where R represents the accumulated rules, R represents
the existing rules, and R’ is the rule for accumulation. f,,
is a mapping function that converts each feature vector
dimension into the other. S is a dimension of the feature
vector, and N is the number of rules.

Although these are good points theoretically, in practical
development there have only been a few examples of
successful large-scale development. It is generally said that
in a production system, the developers are required to be
proficient in script development in order to ensure the
extensibility of the system. We discuss this problem from the
viewpoint of handling the states.

Let developer “A” has defined the state S, and rule Ry,
and developer “B” has accumulated rule Rg to extend the
system. Rule Rz not only extends the rule, but also adds a new
dimension to the state vector that is not used in rule Ry. Let
the new state vector be Sp and the old state vector be S4. The
final state vector in the extended system is Sa+p3 = Sa U Sp.

In the extended system, the rules R4 and Rp are
evaluated on an equal footing. However, when developer “A”
developed rule R4, only S4 was considered. On the other
hand, when developer “B” developed, rule Rp, Saip was
considered. Sy+p contains more information than S4, and
this may cause an antinomy to rule R4, which only considers
Sa. Figure 9 illustrates this antinomy.

To avoid this problem, the script developer needs to
project the final system before beginning to develop the rule
R4, and maintain consistency during the development of rule
Rg. However, this problem is as difficult as the frame problem
[20] discussed in early artificial intelligence research.

In contrast, the state-transition model clearly defines the
model in the form of state and transition conditions in the
design phase.

11
World Rule fo
state 1
Frame B

FIGURE 9: Antinomy between an existing rule and an accumulated
rule. State 1 may be split into state 1-1 and state 1-2 when a new
feature vector (frame B) is considered. There are no clear criteria to
use to decide whether to select rule 1 or rule 1-1.

In state-transition model, we need to define a new state
every time we add a new feature vector to the internal state
so that the system can handle it. Here, we explain this using a
concrete example. In rule Ry, developer “A” has considered
feature A and defined S; = (A = 0),S, = (A = 1). Developer
“B” wants to consider feature B in addition to feature A. Here,
developer “B” has to define the new states S3 = (A = 0,B =
0),...,S¢ = (A = 1,B = 1). In the production system model,
the state with smaller dimensions will be included in the state
with larger dimensions. In the above case, all states will be
included in S = (A,B)(A,B € [0,1]), and states S; and S,
will be overwritten.

In the state-transition model, the developer assesses the
internal parameters of the system in the design step, but
for the description, the developer needs to break down the
combination of parameters into a set of states. When the
developer wants to increase the internal parameters, he/she
has to use a different state. Due to this restriction, the
definition of a state is always clear, and is not overwritten by
a script that is added later. Thus, the developer can proceed
without being trapped by the issues discussed earlier in this
section.

7.2. Reuse of Motion Content. In this paper, we have proposed
a development environment to enhance the reuse of dialogue
components. However, total development cost of the robot
has to be calculated from both speech communication part
and motion generation part.

Because the cost for reusing the motion depends on the
algorithm, we first explain the algorithm we used. There
are two methods for robot motion generation, one is the
planning-based algorithm, and the other is the motion
database. In our examples, for HumanAID and RH-1, we
have used the planning-based algorithm. For TAIZO robot,
we have used the motion database.

In the planning-based algorithm (HumanAID and RH-
1) the motion generation algorithm will automatically
generate the motion. We do not need to adjust the motion
by hand, but only have to change the parameter such as
structure of the arm, location of the target object. Because we
share the motion generation algorithms between the robot,
the cost of reusing the motion is very low in this case.

12 Journal of Robotics

(Pause): bring (pop ($obj), “here”)
To:
popstate (),

(Pause): popstate (), bring (pop ($0bj), (pop ($loc))

(a) Syntactics model for “bring” command

Pick:
pushstate ()

(Pause): popstate (), pick (pop ($obj))

(b) Syntactics model for “pick” command

Book: Table:
push ($obj, “book”) push ($loc, “table”) And
Cellphone Bottle
Bed

LV N [

(c) Vocaburary for objects and locations (part (d) vocaburary for additional objects
of command is abbriviated)

Table

(Pause)

(e) Unified automaton (commands are abbriviated in this figure)

F1Gure 10: An example of word-level input model.

Journal of Robotics

Book Table

FIGURE 11: An example of three automaton unification. Dotted
rectangle part is the extended part from the example shown in
Figure 10.

When we use motion database (TAIZO), there is a
problem in reusing the motion. Because the motion database
is generated by hand, we have to create a new motion by
hand for the new robot with different structure. For this
problem, we are planning to implement motion retargeting
technique. This algorithm was originally developed for
creating a motion for computer animated creatures in movies
[21]. The algorithm automatically generates a motion of
animated creature from the motion of human actor by
calculating the mapping between both structures. By using
this motion retargeting algorithms, we believe the cost of
reuse for motion database-based robot can be also reduced
to very low level.

7.3. Word-Level Input and Pushdown Functions. State-
transition model is possible to model the input in word level.
An example is shown in Figure 10.

In the example, first, state-transition model in Figures
10(a), 10(b), and 10(c) is developed to interpret command.
Second, state-transition model in Figure 10(d) is developed
to extend the vocabulary. Finally, all the developed models
are unified as Figure 10(e). This model uses pushdown
automata [22] (“pushstate” and “popstate” command) to
enable transition to the shared state “object” and return
back. It also uses “push” and “pop” commands to hold the
information about each object and location. Now the system
can accept the input such as: “Bring Cellphone (pause)”
converted as bring (cellphone, here), and “Bring Drink to
Sofa (pause)” converted as bring (drink, sofa).

In our application, we have used the input in command
(sentence) level. Modeling of input in word-level may be
also useful, especially when the developer wants to share the
syntactical structure of commands among the several scripts.

7.4. Comparison with the Template Methods. In VoiceXML,
the industrial standard for scripting general voice operation
system, there is an extension called RDC (Reusable Dialogue
Component) [23]. The VoiceXML-RDC allows the developer
to write the scripts of primitive interactions in an abstract

13

form. The user can instantiate the primitive interactions by
filling in the template parameters. By using the template,
the user can generate dialogue scripts which fit to their
application with less programming effort.

Our proposed method has equivalence to the template
method. As we have seen in Figure 10, “object” slot of the
syntax can be filled either with Figures 10(c) or 10(d).

The difference between our method and the template
method is the possiblity to compose single model like
in Figure 11 because our method uses “state” as a unit
of unification, and allows unification of two or more
components to one,. The template method is not able to
realize this example, because it explicitly distinguish template
part and instance parameters and only allows to unify those
two.

7.5. Left Problems and Future Research. As shown in the
examples of previous section, by using the proposed
extension-by-unification method, the developer can develop
functions simultaneously, and in the final step he/she can
easily unify those functions to create an integrated system.
In addition, scripts created in the past can easily be reused
in the new application. In the conventional extension-by-
connection method, the developer had to develop each
function in turn, because it did not support the “merging”
of scripts that had been developed simultaneously. Moreover,
the developer needs to erase the unneeded functions manu-
ally when he/she wants to reuse the script in another robot.
The proposed method does not require this process, because
the script keeps information about the function even after
the integration, and it can easily be separated for reuse. In
our example, the script created for HRP-2 could be reused for
TAIZO, but we had to remove the functions for TV and VTR
control because TAIZO does not have this capability. In the
conventional extension-by-connection method, we would
have to do this manually. However, in the extension-by-
unification method, this process is done simply by selecting
the scripts to be unified.

As a result, we have confirmed that the extension-by-
unification method significantly improves the efficiency of
developing conversational function of the robots.

In terms of unification problems, it was possible to
prevent the occurrence of isolated states by displaying
a warning message, but there was a problem when the
developer intentionally isolated the state. This happens when
the developer has written a script in a redundant manner, or
when he/she has tried to use pushdown automation. We are
currently trying to solve this problem using 2 methods. One
is a more intelligent isolation detection algorithm that can
reduce misdetection (e.g., [24]), and the other will allow the
developer to use an annotation tool that indicates that the
state is intentionally isolated.

By applying a probabilistic weight to each transition of
the state-transition model, the model became equivalent to
the Markov model. There are some robots that have realized
interactions with humans using such a model (e.g., [25]). In
this paper, we have discussed the accumulation of the state-
transition model based on deterministic input and output.
However, probabilistic models are effective in modeling

14

real-world information, which includes noise. In further
research, we are planning to incorporate these probabilistic
models to the extensible development environment we have
developed in this paper.

8. Summary

In this paper, we have proposed an extension-by-unification
method to improve reusability and flexibility in the incre-
mental development of state-transition models. The dialogue
engine SEAT has been developed to realize the incremen-
tal development of state-transition models to give robots
a dialogue ability that can cope with various kinds of
speech inputs in various tasks. SEAT has a flexible adaptor
mechanism that can connect to many types of robotic
interfaces, and the developer can accumulate scripts by using
the script server, which has a function to propose existing
reusable scripts to the developer. We have confirmed that
the application of this system to the development of three
robots has significantly improved the efficiency of their
development.

References

[1] N. Iwahashi, “Language acquisition through a human-robot
interface,” in Proceedings of the International Conference on
Spoken Language Processing (ICSLP °00), vol. 3, pp. 442—447,
Beijing, China, 2000.

[2] D. Roy, “Grounded spoken language acquisition: experiments
in word learning,” IEEE Transactions on Multimedia, vol. 5, no.
2, pp. 197-209, 2003.

[3] A. L. Symeonidis, I. N. Athanasiadis, and P. A. Mitkas, “A
retraining methodology for enhancing agent intelligence,”
Knowledge-Based Systems, vol. 20, no. 4, pp. 388-396, 2007.

[4] T. Winograd, Understanding Natural Language, Academic
Press, New York, NY, USA, 1972.

[5] R. A. Brooks, “Intelligence without representation,” Artificial
Intelligence, vol. 47, no. 1-3, pp. 139-159, 1991.

[6] L. Kaelbling, “A situated-automata approach to the design of
embedded agents,” ACM SIGART Bulletin, vol. 2, no. 4, pp.
85-88, 1991.

[7] B. Yartsev, G. Korneev, A. Shalyto, and V. Kotov, “Automata-
based programming of the reactive multi-agent control sys-
tems,” in Proceedings of the IEEE International conference
on Integration of Knowledge Intensive Multi-Agent Systems
(KIMAS °05), pp. 449-453, Waltham, Mass, USA, 2005.

[8] T. Kanda, H. Ishiguro, T. Ono, M. Imai, and R. Nakatsu,
“Development and evaluation of an interactive humanoid
robot Robovie,” in Proceedings of the IEEE International

Conference on Robotics and Automation, pp. 1848-1855,
Anchorage, Alaska, USA, May 2002.

[9] T.Kanda, M. Shiomi, Z. Miyashita, H. Ishiguro, and N. Hagita,
“An affective guide robot in a shopping mall,” in Proceedings
of the ACM/IEEE International Conference on Human-Robot
Interaction, pp. 173-180, La Jolla, Calif, USA, 2009.

E Huang, J. Yang, and A. Waibel, “Dialogue management for
multimodal user registration,” in Proceedings of the Interna-
tional Conference on Spoken Language Processing, vol. 3, pp.
37-40, Beijing, China, 2000.

(10

Journal of Robotics

[11] M. Denecke, “Informational characterization of dialogue
states,” in Proceedings of the International Conference on Spoken
Language Processing, vol. 2, pp. 114-117, Beijing, China, 2000.

[12] SMC, “The State Machine Compiler,” http://smc.sourceforge
.net/.

[13] “Voice Extensible Markup Language (VoiceXML) Version 2.0,”
http://www.w3.org/TR/voicexml20/.

[14] “NEC RoboStudio,” http://www.necst.co.jp/product/robot/.

[15] N. Ando, T. Suehiro, K. Kitagaki, T. Kotoku, and W. Yoon,
“RT-middleware: distributed component middleware for RT
(robot technology),” in Proceedings of thelEEE/RS] Interna-
tional Conference on Intelligent Robots and Systems, pp. 3555—
3560, Ibaraki, Japan, 2005.

[16] T.Kawahara, A. Lee, T. Kobayashi, et al., “Free software toolkit
for Japanese large vocabulary continuous speech recognition,”
in Proceedings of the 6th International Conference on Spoken
Language Processing (ICSLP °00), vol. 4, pp. 476—479, Beijing,
China, 2000.

[17] 1. Hara, F. Asano, H. Asoh et al., “Robust speech interface
based on audio and video information fusion for humanoid
HRP-2,” in Proceedings of the IEEE/RS] International Confer-
ence on Intelligent Robots and Systems (IROS °04), pp. 2404—
2410, Sendai, Japan, October 2004.

F. Asano, K. Yamamoto, I. Hara et al., “Detection and separa-

tion of speech event using audio and video information fusion

and its application to robust speech interface,” EURASIP

Journal on Applied Signal Processing, vol. 2004, no. 11, pp.

1727-1738, 2004.

[19] Y. Matsusaka, H. Fujii, T. Okano, and I. Hara, “Health
exercise demonstration robot TAIZO and effects of using voice
command in robot-human collaborative demonstration,” in
Proceedings of the IEEE/RS] International International Sym-
posium on Robot and Human Interactive Communication, pp.
472-477, Toyama, Japan, 2009.

[20] J. McCarthy and P. J. Hayes, “Some philosophical problems
from the standpoint of artificial intelligence,” Machine Intel-
ligence, vol. 4, pp. 463-502, 1969.

[21] M. Gleicher, “Retargetting motion to new characters,” in
Proceedings of the Annual Conference on Computer Graphics
and Interactive Techniques, pp. 3342, ACM, Orlando, FLa,
USA, July 1998.

[22] M. Sipser, Introduction to the Theory of Computation, PWS

Publishing, Boston, Mass, USA, 1997.

“Reusable Dialog Components (RDC) Tag Library,” http://

jakarta.apache.org/taglibs/doc/rdc-doc/.

—
o

[23

[24] A. Bouajjani, J. Esparza, and O. Maler, “Reachability analysis
of pushdown automata: application to model-checking,” in
Proceedings of the 8th International Conference on Concurrency
Theory, pp. 135-150, Warsaw, Poland, 1997.

[25] H. Asoh, Y. Motomura, I. Hara, S. Akaho, S. Hayamizu, and T.
Matsui, “Combining probabilistic map and dialog for robust
life-long office navigation,” in Proceedings of the IEEE/RS]
International Conference on Intelligent Robots and Systems, pp.
807—-818, Maui, Hawaii, USA, 1996.

- i

/> . =
= &

Advances in

Civil Engineering

Journal of

Robatics

Advances in
OptoElectronics

International Journal of

Chemical Engineering

The Scientific
WQrId Journal

International Journal of

Rotating
Machinery

Journal of

Sensors

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Y :-
.

VLSI Design

‘.
.

Internatio Urna
Antennas and
Propagation

Modelling &
Simulation
in Engineering

International Journal of
Navigation and
Observation

o

Active and Passive
Electronic Components

Shock and Vibration

International Journal of

Distributed
Sensor Networks

Journal of
Control Science
and Engineering

Journal of
Electrical and Computer
Engineering

International Journal of

Aerospace
Engineering

