Eur. Phys. J. C (2016) 76:528
DOI 10.1140/epjc/s10052-016-4368-2

THE EUROPEAN

) CrossMark
PHYSICAL JOURNAL C

Regular Article - Theoretical Physics

Non-perturbative BRST quantization of Euclidean Yang—Mills

theories in Curci-Ferrari gauges

A. D. Pereira'23-2, R. F. Sobreiro'?, S. P. Sorella®*

! Instituto de Fisica, Campus da Praia Vermelha, UFF, Universidade Federal Fluminense, Avenida General Milton Tavares de Souza s/n, Niteroi,

RJ 24210-346, Brazil

2 Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Am Miihlenberg 1, 14476 Potsdam, Germany
3 Departamento de Fisica Tedrica, UERJ, Universidade do Estado do Rio de Janeiro, Rua Sdo Francisco Xavier 524, Maracana, Rio de Janeiro

20550-013, Brazil

Received: 6 June 2016 / Accepted: 12 September 2016 / Published online: 27 September 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract In this paper we address the issue of the non-
perturbative quantization of Euclidean Yang—Mills theories
in the Curci—Ferrari gauge. In particular, we construct a
refined Gribov—Zwanziger action for this gauge, which takes
into account the presence of gauge copies as well as the
dynamical formation of dimension-two condensates. This
action enjoys a non-perturbative BRST symmetry recently
proposed in Capri et al. (Phys. Rev. D 92(4), 045039.
doi:10.1103/PhysRevD.92.045039. arXiv:1506.06995 [hep-
th], 2015). Finally, we pay attention to the gluon propagator
in different space-time dimensions.

1 Introduction

A fundamental task in theoretical physics is the understand-
ing of non-perturbative aspects of Yang—Mills theories due
to the confinement of quarks and gluons; see [2] for a gen-
eral and updated overview. In this regime, the standard well-
developed perturbation theory is not meaningful and differ-
ent techniques must be invoked. So far, we have a good
toolbox to access the strongly coupled regime with dif-
ferent approaches as lattice simulations, Dyson—-Schwinger
equations, functional renormalization group methods, holo-
graphic techniques, effective models and others, see [2,3].
Despite the impressive progress achieved in the last decade,
it seems fair to state that many aspects of the confinement
are still to be unraveled.

A long standing problem in the quantization of Yang—
Mills theories is the presence of Gribov/gauge copies after
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the imposition of the gauge-fixing condition' [4]. Within the
Faddeev—Popov quantization procedure, these spurious con-
figurations are still being taken into account in the path inte-
gral. In particular, a subclass of copies corresponds to zero-
modes of the Faddeev—Popov operator making the gauge-
fixing procedure itself ill-defined; see [4—6]. This feature can
be illustrated in a simple way in the Landau gauge, namely
dpAj, = 0, where we are considering our space-time as a d-
dimensional Euclidean space with the SU (N) gauge group.
Performing an infinitesimal gauge transformation over A%,

BAL = 0 > AL =0, (AL — DI(A)E") =0
= =9 Dy (A)5" = M{"(A)§" =0 M

where £ is the infinitesimal parameter of the gauge transfor-
mation, M‘ﬁb (A) is the Faddeev—Popov operator in the Lan-
dau gauge, and Dzb(A) = 5abau — gf"b”AfL is the covari-
ant derivative in the adjoint representation of the SU (N)
group. From Eq. (1), we see that the equivalent configuration
A;f satisfies the same condition as AZ if be (A) develops
zero-modes. In [4] Gribov showed that the operator th (A)
develops zero-modes and therefore we have a residual gauge
symmetry after the gauge fixing 9, Aj, = 0. Gauge copies
generated by infinitesimal gauge transformations are called
infinitesimal copies. We still have the possibility of gener-
ating copies from finite gauge transformations and they do
exist indeed [7].

Already in [4], Gribov proposed a partial solution, in the
Landau gauge, to remove gauge copies from the domain of
integration of the path integral by restricting it to the so-called
Gribov region 21, which is free of infinitesimal copies. This

! For a pedagogical introduction to the Gribov problem we refer to

[5,6].
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region is defined as
Q = { A%, 9,A% =0, MP(A) > 0 } )

and enjoys very important properties: (1) it is bounded in
every direction in field space; (2) it is convex; (3) it contains
the trivial vacuum A = O configuration and; (4) all gauge
orbits cross it at least once. These results were proved in a
rigorous fashion in [8] and give strong support to Gribov’s
idea to restrict the path integral domain to 27. We should
mention, however, that €7 is not free from Gribov copies.
Additional copies still exist inside €27 [7]. Nevertheless, it is
possible to define a subset A of €27, which is fully free from
gauge copies. The region A is known as the fundamental
modular region (FMR). Yet, so far, the practical implemen-
tation of the restriction of the domain of integration in the
path integral has been worked out only for the Gribov region
Q.
Formally, Gribov’s proposal is written as

2= [ [Doje (SmtSe) 3)
Qr

In his original paper, Gribov implemented this restriction in
the Landau gauge up to leading order in perturbation theory.
Subsequently, this computation was generalized to all orders
by Zwanziger in [9]. Although their methods are different, it
turns out that they lead to equivalent results [10]. The result
worked out by Zwanziger shows that the restriction to €,
can be effectively implemented by the addition of a non-local
term to the standard gauge-fixed Yang—Mills action and of a
vacuum term giving rise to the so-called Gribov—Zwanziger
action,

(D] (Srmts) — f (Do) Sz, @
QL
with
S&; = Sym + Ser + v HL(A) —dVy*(N? — 1), Q)

where (Sym, Sgf) denote, respectively, the Yang—Mills action
and the Faddeev—Popov term corresponding to the Landau
gauge fixing, namely

1
Sot = / d'x (b0, A + 9, D) @
and
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L) = ¢ [atxaly pal o Pt @]
(L ) fYCAS (), ®)

is known as the horizon function. The quantity V in Eq. (5)
represents the Euclidean volume in d-dimensional space-
time, while y is the so-called Gribov parameter, a mass
parameter which naturally emerges from the restriction to
Q1. This parameter, however, is not free, being determined
in a self consistent way through the gap equation (or horizon
condition),

(HL(A)) =dV (N> = 1), &)

where expectation values are taken with respect to the mod-
ified measure of expression (4). It is apparent from the pres-
ence of the inverse of the Faddeev—Popov operator Mfl that
the Gribov—Zwanziger action is non-local. Notably, it can be
cast in local form by the introduction of a suitable set of aux-
iliary fields, namely, a pair of commuting ones ((ﬁ,‘jb, goﬁb )
and another pair of anti-commuting fields (d)laj’, a)/“j’ ). The
expression for the local Gribov—Zwanziger action is given

by
Sk = S+ Su — [ alx (G Ayl
— —ZCMib(A)wZC + gfadb(auébzc)(DfeCe)QDZC)

+y? / dx gf " Al (g + @)l — dy V(INT = 1),
(10)

and is easy to check that, upon integration over the auxil-
iary fields (([sz , go,“f’ , J)Zb , a)ﬁb ), we re-obtain expression (5).
Notice also that the fields ((ﬁﬁb , (pﬁb , cbﬁb , wl‘ib) carry both
Lorentz and color indices in the adjoint representation of the
gauge group, i.e. (a, b) = 1...(N?—1).Inthis local picture,
the gap equation (9) is expressed as

)
— =0, 11
57 (11)

where & stands for the vacuum energy of the theory, i.e.
e~ Vé — f [Dd] 56z, (12)

with ® the complete set of fields.

Remarkably, the Gribov—Zwanziger action (10) is renor-
malizable to all orders in perturbation theory [6, 11]. Thus, the
action (10) provides a local and renormalizable framework to
deal with the existence of (infinitesimal) copies. This action
also displays a very interesting feature: it breaks the BRST
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symmetry explicitly, although in a soft way. In particular,

5867 = gv* / dlx o [=Dile (g + gyl + Aol ],
(13)

whereby we can see that the explicit breaking is softened
by the Gribov parameter y. Solving the gap equation (11)
to leading order, it is possible to show y2 o exp (—1/g2).
This exhibits the non-perturbative nature of y since, in the
deep ultraviolet region, it implies that y> — 0. Also, from
Eq. (13), the BRST invariance is recovered in the UV. Nev-
ertheless, in the IR the breaking is present. This BRST soft
breaking is one of the outstanding points of the Gribov—
Zwanziger scenario and has been debated up to now; see
[12-29].

Tracing back to the foundations of the Gribov and
Zwanziger ideas to remove gauge copies from the domain
of integration of the path integral, it is rather clear that the
Hermitian nature of the Faddeev—Popov operator My (A) in
the Landau gauge plays a pivotal role. In particular, the very
definition of the Gribov region 27 relies on the positivity
of M (A), a meaningful concept due to the real spectrum
of such operator. Nevertheless, hermiticity of the Faddeev—
Popov operator is generally lost outside of the Landau gauge.
This is the case, for instance, of the linear covariant gauges.
Therefore, a very natural question arises, since the Gribov
problem is not a particular feature of Landau gauge, but of
all gauge conditions that are continuous in field space [30]:
How to construct a consistent resolution of this problem in
different gauges?

This requires the need for strategies different from the
one described above. Also, in perturbative gauge theories,
BRST symmetry plays a prominent role in the proof of gauge
independence of physical operators. Since in the Gribov—
Zwanziger setting in the Landau gauge BRST is broken, it is
rather natural to expect this will pose some difficulties in the
proof of gauge-independence as soon as we move away from
Landau gauge. It is worth mentioning that the construction of
the Gribov—Zwanziger action following the aforementioned
method to maximal Abelian and Coulomb gauges is viable
due to the hermiticity of their Faddeev—Popov operators; see
[18,31-34]. Different frameworks to handle the Gribov prob-
lem in a one-parameter family of Landau gauges were pro-
posed in [22-24]. However, a soft BRST breaking is still
present.

Recently, particular attention was devoted to the lin-
ear covariant gauges in the Gribov—Zwanziger context’
[1,35-37]; see also [38] for the very first attempt. These
gauges bring about two challenging features for the Gribov—

2 See [39-42] for developments outside the Gribov—Zwanziger set up.

Zwanziger set up: First, the gauge condition is given by
Ay = ab, (14)

with o a non-negative gauge parameter and b* a fixed field
configuration. This entails a non-Hermitian Faddeev—Popov
operator. Second, the presence of the gauge parameter o
allows us to check the gauge independence of physical quan-
tities in a very explicit way.

Dealing with this problem has enabled us to introduce a
non-perturbative BRST symmetry i.e. a set of transforma-
tions corresponding to a non-perturbative generalization of
the standard BRST transformations, which result in an exact
symmetry of the Gribov—Zwanziger action [1]. Furthermore,
this non-perturbative symmetry turns out to be generated by
a nilpotent operator, a feature which preserves the important
concept of the BRST cohomology. Remarkably, this frame-
work allows for the construction of a Gribov—Zwanziger
action in linear covariant gauges which, due to its exact non-
perturbative BRST symmetry, enjoys the important feature
that the correlation functions of quantities which are invari-
ant under the new non-perturbative BRST symmetry are in
fact independent from the gauge parameter .

In this paper, we address the quantization of a class of
non-linear gauges, known as Curci—Ferrari gauges [43,44],
generalizing the non-perturbative BRST introduced in the
class of the linear covariant gauges [1,35,36]. As we shall
discuss, the non-linearity of these gauges brings about novel
effects as the formation of ghosts and gluon—ghost conden-
sates. This topic was already investigated in [45—47]. In this
paper we will comment on these effects in light of the new
non-perturbative BRST symmetry. We emphasize that recent
studies on the same issue were done in [23,24].

Meanwhile, before going any further, it is worth spending
a few words on the important and intensively investigated
issue of the understanding of the behavior of the gluon prop-
agator in the non-perturbative IR regime [49]. It is widely
accepted that the IR analysis of the gluon two-point corre-
lation function brings us quantitative information as regards
gluon confinement. In particular, very recent lattice simu-
lations in the Landau gauge have shown an IR suppressed,
positivity violating gluon propagator which attains a finite
non-vanishing value at zero-momentum in d = 4 [50-53].
The violation of positivity hinders a Killén—Lehmann rep-
resentation of such propagator which makes impossible the
interpretation of gluons as stable particles of the physical
spectrum. This positivity violation of the gluon propagator
occurs at the confinement scale and is interpreted as a strong
signal of gluon confinement. Also, due to the finite value of
the form factor at zero-momentum, this propagator is referred
to as the decoupling/massive solution. A similar behavior
for the Landau gluon propagator is found in d = 3, while
in d = 2 the gluon propagator attains a vanishing value at

@ Springer
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zero-momentum; see [53]. In the latter case, the propagator
is known as being of the scaling type.

Working out the two-point gluon correlation function from
Eq. (10), it turns out that the Gribov—Zwaniger framework
gives rise to a propagator which is of the scaling type for
d = 2,3,4. However, in [54,55], it was noted that the
Gribov—Zwanziger action suffers from IR instabilities giv-
ing rise to the formation of dimension-two condensates. In
particular, albeit introduced to cast the framework in a local
fashion, the auxiliary fields (¢, ¢, ®, w) develop their own
dynamics which results in the formation of dimension-two
condensates in both d = 3,4 [55-57]. These condensates
modify the behavior of the gluon propagator, turning it from
scaling to a decoupling type. Moreover, as discussed in [55—
57], in d = 2 the formation of the aforementioned conden-
sates cannot occur due to the presence of infrared singulari-
ties, a fact in agreement with the observed scaling behavior
for the gluon propagator. The introduction of such conden-
sates in d = 3, 4 gives rise to the so-called refined Gribov—
Zwanziger action [55-57] which predicts a decoupling type
gluon propagator. Moreover, in d = 2, infrared singulari-
ties prevent the formation of the condensates. As a conse-
quence, in d = 2, the Gribov—Zwanziger action does not
suffer from refinement, generating a scaling type gluon prop-
agator. These results are in good qualitative agreement with
recent lattice numerical simulations [53,58].

A non-trivial fact is that these results on the IR behav-
ior of the gluon propagator are not peculiar to the Landau
gauge, but also displayed by the Gribov—Zwanziger approach
to linear covariant, maximal Abelian and Coulomb gauges
[36,59,60], a feature which suggests the possible existence
of a general pattern for the gluon two-point correlation func-
tion. In this paper we show how this extends to Curci—Ferrari
gauges as well.

The paper is organized as follows: Sect. 2 is devoted to a
brief historical overview of the relevance of the Curci—Ferrari
gauges. In Sect. 3 we provide a review of the non-perturbative
BRST quantization in the linear covariant gauges and set the
key tools of the framework. In Sect. 4, the Gribov problem
in the Curci-Ferrari gauges is discussed. In particular, we
shall be able to show that, by means of a suitable redef-
inition of the Lagrange multiplier »¢, it can addressed in
a similar way to the case of the linear covariant gauges,
allowing us to use the techniques introduced in Sect. 3.
Section 5 is devoted to the construction of the Gribov—
Zwanziger action for the Curci-Ferrari gauges, while in
Sect. 6 we present its refined version. We devote Sect. 7
to the tree-level gluon propagator computed with the refined
Gribov—Zwanziger action. In Sect. 8, a local form of the
refined Gribov—Zwanziger action is obtained, providing thus
a local and non-perturbative BRST invariant framework for
the Curci—Ferrari gauges. Finally, we present our conclusions
and perspectives.

@ Springer

2 Usefulness of the Curci—Ferrari model

In this paper the Gribov problem is addressed in the Curci—
Ferrari gauges. One might ask if there are reasons to study
such problem in a rather non-trivial gauge such the Curci—
Ferrari case beyond an intrinsic interest on the Gribov prob-
lem itself. It is worth emphasizing, though, that different
investigations of non-perturbative effects generated in Yang—
Mills theories quantized in Curci—Ferrari gauges have wit-
nessed great interest since many years.

In particular, the study of the condensation of dimension-
two operators was closely analysed in [45-48,61], bring-
ing about novel non-perturbative modifications to the gluon
and ghost propagators. Moreover, investigations on the lat-
tice formulation of the BRST quantization of Yang-Mills
theory have already relied on the use of the Curci—Ferrari
model; see for example [62-64]. In fact, it turns out that
the inclusion of the so-called Curci—Ferrari mass provides
aregularization for the well-known Neuberger problem; see
[65]. More recently, the Curci—Ferrari action was used to
construct a non-perturbative miodel for Yang—Mills theory
whose results are in agreement with the decoupling/massive
solution for the gluon propagator, without making use of the
Higgs mechanism, [66,67].

Let us also mention that the issue of the Gribov copies
in Yang—Mills theory quantized in Curci—Ferrari gauges was
recently addressed in [23,24], where it was shown that they
affect significantly the infrared regime of the theory. In par-
ticular, in the present paper, such effects are studied within
the context of the recently proposed non-perturbative BRST
symmetry [1] which emerges from the elimination of the
Gribov copies.

These considerations provide a good motivation for the
present investigation, while giving an overview of the efforts
which are currently made, from both analytical and numer-
ical sides, to access the non-perturbative regime of Yang—
Mills theory quantized in gauges different from the Landau
gauge.

3 An overview of the non-perturbative BRST
quantization

In this section, we briefly review the main aspects of the
non-perturbative BRST quantization introduced in [1,36]. To
begin with, we construct the non-perturbative BRST symme-
try from a reformulation of the Gribov—Zwanziger action (5)
in terms of the transverse gauge invariant field,

9,0 T1
Al = (5,w — %) (AV —ig [?aA, Av]
ig[1 1 3
+ 5 5204, 5504 | ) + 04D, (15)
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obtained from the minimization with respect to U of the
functional

A2 = 1?31}1 Tr /ddx Al AY, (16)
with
AU =UTAU + iEUTaﬂU, (17)

where U is a SU (N) matrix. Working out the minimization
process, for A?nin one gets the highly non-local, albeit gauge
invariant, expression
A = Tr/ddx Al Al (18)
Our conventions are such that A, = AjT“, with T“
denoting the hermitian SU(N) generators satisfying the alge-
bra [T¢, T?] = i f9%°T¢. For details of the derivation of (15)
we refer to e.g. [1]. From Eq. (15) it is clear that the formal
power series starts with A, itself and then all terms contain
at least one power of d A. With this in mind, we can rewrite
the horizon function (8) as

H(A) = H(A" —/ddxddy R, )3, A%y, (19)

where the explicit form of R“ is not relevant for our pur-
poses. The Gribov—Zwanziger action in Landau gauge is then
rewritten as

Scz = Sym+ f d?x (bh’“a,LAZ+E“8MDZbcb>+y4H(Ah),
(20)

where b"¢ stands for the redefined Lagrange multiplier

b = b — y*R(A). 1)

Notice that Eq. (21) corresponds to a field redefinition with
unit Jacobian, as it is easily checked. Again, we introduce
the Zwanziger auxiliary fields (¢, ¢, @, w) and rewrite the
Gribov—Zwanziger action as

Soz = Sym + / dx (b9, A% + 69, Di ")
dd —ac M(Ah ab bc __ ~ac M(Ah) ab bc
- X\ Pu ) P —@pu n
+ g2 f Al 0 + 9. 22)
Differently from the standard Gribov—Zwanziger formula-

tion in the Landau gauge (10), the action (22) is not local
after the introduction of the auxiliary fields. The reason is

that, when written in terms of A”, the horizon function dis-
plays two sources of non-localities. First, the standard one
comes from the presence of the inverse of M. The second
type of non-locality comes from A” itself, which so far was
written as a formal power series as in (15). Nevertheless, the

action (22) enjoys a non-perturbative BRST symmetry given
by

5,047 = —Dzbcb, 5,00t = %f”hccbcc,
S),zEa = bh’a, Syzbh’a =0,
syzgobe = wﬁb, syzwzb =0,

da
sl =@ =y [ aly Al [ut@n]
5,264 =0, (23)
with
sy2Saz =0 and 7, =0. (24)

We emphasize that the gauge invariance of A" automatically
implies

SART =0 = 5,40 =0, (25)

because sA, = s,2A,. As discussed in [1], the trans-
formations generated by s,,> are such that when y — 0,
5,2 = 8. Therefore, in the perturbative regime where the
Gribov parameter can be set to zero, we recover the standard
BRST transformations. Due to the explicit presence of the
non-perturbative Gribov parameter ¥ in Eq. (23), the nilpo-
tent operator s,,> can be naturally seen as a non-perturbative
extension of the standard BRST operator s.

Therefore, when written in terms of the variable A”, the
Gribov—Zwanziger action displays an exact and nilpotent
non-perturbative BRST symmetry given by (23). Also, when
employing A", the Gribov—Zwanziger action is non-local
even after the introduction of the Zwanziger auxiliary fields
as well as the BRST transformations. Nevertheless, recently,
a full localization of the entire set up has been constructed,
as presented in [37].

With (23) at our disposal, a non-perturbative BRST quanti-
zation was proposed in [1,36] for the linear covariant gauges.
The resulting Gribov—Zwanziger action in linear covariant
gauges is

_ o
SESC = Sym + 5,2 /ddx @ (BMAZ - Ebh'“)
d (- N
- /d x (wﬁc [M(A )] obe

-ac h ab bc 2 rabc gh,a —\bc
— ) [M(A )] w, ey fTTTA (¢>+<p)u)

@ Springer
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= Sym + / dx (bh’“ (BMAZ - %bh’“) + EaauDﬁbcb)
ab ab
ol
+ e A+ Dl ). 26)

The action (26) is manifestly invariant under non-perturbative
BRST transformations.

An important aspect of the action (26) is that it is possi-

ble to show that it restricts the domain of integration in the
path integral to a region which is free from a large set of Gri-
bov copies [1,36]. It is worth mentioning here that, besides
Yang-Mills theories, other models have been investigated
within the approaches outlined by Gribov and Zwanziger.
Let us quote the case of 2d gravity and string theory [68],
where the powerful and deep knowledge of the topology
of two-dimensional Riemann surfaces has allowed one to
see explicitly the removal of all Gribov redundancies by the
restriction of the path integral to a particular domain. For
instance, in the case of the torus, an explicit check of the
positivity of the eigenvalues of the Faddeev—Popov operator
when restricted to the analogous of the Gribov region has
been worked out in [68].
Coming back to gauge theories, a non-perturbative BRST
quantization leads thus to a Gribov—Zwanziger action in lin-
ear covariant gauges. An immediate consequence of the man-
ifest non-perturbative BRST invariance is the independence
from the gauge parameter « of the gap equation [1,36],

(H(AM)Y = dv(N? = 1). (27)

This equation determines the Gribov parameter y and its
gauge invariance ensures that y itself is independent of «,
namely, it is a physical parameter of the theory. We recall
in fact that the parameter y enters in an explicit way the
correlation functions of gauge invariant operators as reported,
for instance, in the evaluation of the spectrum of the glueballs
in the Landau gauge [69,70]. The a-independence of y is
thus an important outcome of the consistency of the non-
perturbative BRST set up developed in [1,36].

4 Establishing the Gribov problem in Curci-Ferrari
gauges

In [43,44] a family of non-linear gauges containing only one
gauge parameter was introduced. Quite often, these gauges
are called Curci—Ferrari gauges because the Lagrangian is
exactly the same introduced in [71,72] by Curci and Ferrari.
There, however, a mass term for the gluons is introduced to
discuss massive Yang—Mills theories. Here, we will deal with
the massless case.

@ Springer

4.1 Conventions and standard BRST quantization

The gauge-fixed Yang—Mills action in Curci—Ferrari gauges
in d-dimensional Euclidean space-time is given by

d. = o 8 cabc=b ¢
Spp = SYM—i-s/d x I:BMAZ_ > (b” — Ef“ ‘e c“)]

= Sym + / dx [b“ uAY + 2“0, DA (A)c
o

o . . o
> bibe + ngabcbaébcc + gg2fabcfcdeEaEbcdce:I .

(28)

This action is manifestly invariant under the standard BRST
transformations,

a __ ab b
sAu = _Du c
s = gfahccbcc
2 (29)
sc¢® = b
sb® =0,

and it is renormalizable to all orders in perturbation theory
[44]. It is worth mentioning that the action (28) contains an
interaction term between Faddeev—Popov ghosts and the aux-
iliary field b and a quartic interaction of ghosts. As we shall
see, the presence of such terms is responsible to drive differ-
ent dynamical effects with respect to linear covariant gauges.
In particular, the equations of motion of the auxiliary field b
and of the the anti-ghost ¢ do not correspond anymore to Ward
identities, due to the non-linear character of this gauge. We
recall that, in the case of the linear covariant gauges, these
equations do correspond to Ward identities, which play an
important role in the proof of the renormalizability.

On the other hand, the action (28) enjoys another global
symmetry besides BRST which will generate a Ward identity
that plays a role analogous to that of the anti-ghost equation
in linear gauges. This symmetry is known as the SL(2, R)
symmetry> and its associated Ward identity, together with
the Slavnov—Taylor identity, guarantees the all-order proof
of renormalizability of such gauge [44]. The SL(2, R) sym-
metry is defined by the following set of transformations:

3¢t = “.

5b = g Fbechee, (30)
SAY =5 =0,

and

8Spp = 0. 3D

An useful property is that the SL(2, R) operator § commutes
with the BRST operator s, i.e. [s, §] = 0.

3 We refer to the appendix for more details of the SL(2, R) algebra.
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4.2 Construction of a copies equation

As shown in the example of Eq. (1), given a gauge condition*
F[A] = 0, we can characterize the existence of Gribov copies
by performing a gauge transformation over F[A] = 0 and
looking for solutions of the resulting equation—the copies
equation. Nevertheless, in the case of Curci—Ferrari gauges,
due to its non-linear character, is not clear how to read off
from the action (28) the gauge condition F[A] = 0, with
F being a functional of the gauge field. As it is immedi-
ately checked, in the cases of the Landau and linear covari-
ant gauges, the gauge-fixing condition, i.e. F[A] = 0, is
expressed through the equation of motion of the Lagrange
multiplier field b“. However, looking at this equation in the
case of the Curci—Ferrari gauge, one gets

S Srp
b4

= 9, A% — b + %g fabepaghee. 32)

One sees thus that, due to the presence of the ghost term
58f abepazh e this equation cannot be interpreted as a gen-
uine gauge-fixing condition F[A] = 0.

On the other hand, it is possible to cast the Curci-Ferrari
gauges in a form similar to that of the linear covariant gauges
by means of a suitable shift on the b field [43]. To that pur-
pose, we perform the following shift in the path integral:

ba - b/a — ba _ %fﬁlbt‘ébcc’ (33)

which entails a trivial Jacobian. The Yang—Mills action in
Curci—Ferrari gauges is then rewritten as

Spp = Sym 4§ / d*x & (aMA;; - %b/“) , (34)

which looks the same expression as in the linear covariant
gauges. However, the difference between the two cases arises
from the fact that the corresponding BRST transformations
will now also change. Nevertheless, we can still exploit the
similarity between these gauges at the formal level and keep
in mind the different roles played by » and b’. So, as a gauge-
fixing condition, we express the Curci—Ferrari gauges as

0, AL = ab'. (35)

We can treat (35) as our desired F[A] = 0 equation. Since
it is formally identical to the gauge-fixing equation for lin-
ear covariant gauges, we can immediately conclude that their
solutions are formally the same. As a consequence, the frame-
work contructed in [1] to deal with the Gribov problem in
linear covariant gauges can be employed as well in the case

4 For example, F[A] = 9, A, = 0in the Landau gauge, while F[A] =
0y Ay — ab = 0 in the linear covariant gauges.

of the Curci—Ferrari gauges. This is precisely the subject of
the next section.
The shifted BRST transformations are expressed as

a _ __pab b
sAu— DMC

8
s = Efahccbcc

sct = b + gfabcébcc (36)
ra __ 8 rabcyb ¢ g2 abc pcde=b d e
sb __Ef bc—i—gf feecccl.

Explicitly, the Faddeev—Popov action in terms of the field b’
is given by

1
Sep = Sym + / dx [b’“aMAjg + 58 0Dy + D)
— %b/ab/u + %ngubCfcdeEeEacbcd] , (37)

and the equation of motion of b enforces the gauge condi-
tion (35),

— ab, (38)

The SL(2, R) symmetry takes now the simpler form

85c% =
5b' =0 (39)
(SAZ =c* =0.

We see that the shift over the b field simplifies the structure of
the action and of the SL(2, R) transformations. In particular,
there are no (b’ — ¢ — ¢) interaction vertices. However, the
use of the variable b’ introduces a more involved form for the
BRST transformations, Eq. (36). In the following, we shall
exploit the use of the shifted variable b’ whenever it will be
more useful.

5 Construction of the Gribov-Zwanziger action

In the last section we have established a connection between
the Gribov problem in Curci—Ferrari and in linear covariant
gauges. The latter were object of recent investigations in the
context of the refined Gribov—Zwanziger set up; see [1,35—
37]. In particular, since the copies equation for Curci—Ferrari
and linear covariant gauges is formally identical, the removal
of Gribov copies in the Curci—Ferrari gauges follows exactly
the same route as in linear covariant gauges. As a byprod-
uct, the resulting Gribov—Zwanziger action in Curci—Ferrari
gauges enjoys non-perturbative BRST invariance. From a
different perspective, we can establish from the beginning
a non-perturbative BRST quantization as already proposed
in [1,36]. Following this prescription, we begin with the
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standard form of the gauge-fixed action in the Curci—Ferrari
gauges given by Eq. (28) and employ the non-perturbative
BRST quantization, namely

Gy = Sym + 5,2 fddx & [BMAZ - % (bh,a _ %fahcébcc)]
+ /ddx (@ZC [M(Ah)]ab (/)ZC — e [M(Ah)]ab wzg
+ gy AL o + @Z“)
= Sym + / dx [bh’“aﬂAfL + 6“8quj’cb — %bh,abh,a
+ %gfabcbh,aébcc 4 %ngabcfcdeEaEbcdce:I
[t (g [oecan]” o — e [pecans ]

+ gy?rabealag + @f’;‘) : (40)
with s, > being the non-perturbative and nilpotent BRST oper-
ator; see Eq. (23).

As already discussed in the context of linear covariant
gauges, the proposed non-perturbative BRST quantization
gives rise to a non-local action. From Eq. (23), even the
non-perturbative BRST transformations are non-local. It is
of uttermost interest to cast all the framework in a local fash-
ion so that all the powerful machinery of local quantum field
theories is at our disposal. It turns out that it is possible to
localize all this setting, as presented in [37]. The extension
to Curci—Ferrari gauges is straightforward and we will report
the explicit local form in Sect. 7. However, before turning to
this issue, we shall work out some features of the tree-level
gluon propagator which do not require one to go through all
the localization procedure.

For completeness, we present the form of the Gribov—
Zwanziger action in Curci—Ferrari gauges in terms of the
shifted field 5™, see (33),

SGy = Sym+ / dx [b/h’”aﬂAsz;ga(aﬂongrDﬁbau)cb
_ %b/h,ab/h,a + ‘;ngabcfcdeéeéacbcd]
+ f d'x (@ff [M(Ah)]ab ohe— i [M(Ah)]ab Wb
+ gy fP AR (o + <ZJ),’1"> :

(41)

which is invariant under the non-perturbative set of BRST
transformations,

a _ __pab b a_g abc b ¢
syzAu— Duc, §,2€ —2f c’c’,

SyZEa — b/h,u + gfabcébcc’
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Syzb/h,a _ _gfabcb/h,bcc n %ZfabCfcdeEbcdcg’

sl = ofl, sl =0,

s = G =y el f aty Al ) [aet an]™,
sy2@) = 0. ")

As in the linear covariant gauges, the gap equation which
determines the Gribov parameter reads

& _
Byg =0 = (gfahCAZ’“((p + (p)zc) = 2d)/2(N2 —1).
(43)

The integration over b can be performed and the resulting
action is

CF d (ap’Ai)z 1 ~a ab ab b
SGZ = SYM + dx T + EC (a,U«D/L + DM a#)C

+ ngfabc‘fcdeEeEacbcdi|
X ab ) —ac ab c
o f s (g Pocan ] i =g Prcat | o

+ gy Al (o + @)ff) :
(44)

From the action (41) or, equivalently (44), the tree-level gluon
propagator is given by

(A%(P)AL(—p))

2
__ qab 14 PuDv
’ [p“ +2¢2Ny? (8’” P2 ) "

The transverse part turns out to be affected by the restric-
tion of the domain of integration in the path integral due to
the presence of y, while the longitudinal part is equal to the
perturbative result. We emphasize this is a tree-level compu-
tation only. The transverse part has the Gribov type behavior.
It is IR suppressed and its form factor goes to zero at zero-
momentum. Also, this propagator violates positivity and as
such, no physical particle interpretation can be attached to
the gluon field. However, as already discussed in the Intro-
duction, the Gribov—Zwanziger action suffers from IR insta-
bilities and dimension-two condensates are formed. In the
next section we take into account these effects and discuss
their consequences for the gluon propagator.

o pupy ]
p* p?
(45)
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6 Dynamical generation of condensates
6.1 Refinement of the Gribov—Zwanziger action

In the Landau gauge, it was noted that the Gribov—Zwanziger
action suffers from IR instabilities, [55]. In particular, already
at the one-loop level it is possible to obtain a non-vanishing
value for the dimension-two condensates which turn out to
be proportional to the Gribov parameter y. This shows that
the formation of these condensates is deeply related to the
presence of the Gribov horizon. In [35,36], these results were
extended to linear covariant gauges in the non-perturbative
BRST framework. Also, analogous results were obtained for
the maximal Abelian and the Coulomb gauges, [59,60].

For the Curci—Ferrari gauges, we can proceed in full anal-
ogy with the case of the linear covariant gauges. In particular,
both condensates considered in [55], namely,

(ALA) AL () and (@5 ()@l (x) — @ (1)l (X)),
(46)

are dynamically generated. This is easily proved by cou-
pling the aforementioned dimension-two operators to con-
stant sources into the Gribov—Zwanziger action. Therefore,
let us consider the generating functional £(m, J) defined as

CF d ha ph.a d(zab ,ab__ ~ab ab
e VEmD) _ /[Dd>] o (SG5tm [t Al A= [ at (Gt~ ai?))

(47)
with m and J being constant sources. Hence
_ _ oE(m, J)
b, ab b, aby _ ’
(G’ = B0l = =5 |
aEm, J)
Aloaloy = =2 48
A AL om  lm=7=0 (48)

At one-loop order, employing dimensional regularization,

d—1DWN*=1) [ dp
Em,J) = 5 / )i

2y4¢2N
xln<p2+ v +2m)—dy4(N2—1),

p*+J
(49)
which results in
~ac ac _ ~ac,ac\ _ 2.4 2 -1
dip 1 1
@2m)? p? (p* +28y*N)
(50)

and

(ALCALD

dp 1 1

2m)4 p? (p*42g%y*N)’
(51)

From Egs. (50) and (51), we see immediately the presence
of the Gribov parameter as a prefactor. This implies the non-
triviality of the value of such condensates due to the restric-
tion of the path integral domain to the Gribov region, encoded
in y. Also, as discussed in [36,57], the integrals appearing
in (50) and (51) are perfectly convergent for d = 3, 4, while
for d = 2 they develop an IR singularity. This behavior sug-
gests the inclusion of (46) to the Gribov—Zwanziger action
for d = 3, 4, while keeping the action untouched for d = 2.
The absence of refinement of the Gribov—Zwanziger action
in d = 2 can be made more precise; see [36,57]. Essen-
tially, in d = 2 it turns out to be impossible to remain within
the Gribov region by introducing dimension-two condensates
[36,57]. The same argument is easily extended to Curci—
Ferrari gauges.

Taking into account these considerations, for the refined
Gribov—Zwanziger action in d = 3, 4 we obtain

= —2g2y4N(N2—1)(d—1)/(

Slg(F}Z = Sym +/ddx [b’“‘aqu + ‘_'aaMDZbe
o

2
ab
+ / d’x (@;C [ptcah] ™ ot
2 cabe gh —\be m? d.. sha ph
+ gy f* “Al;"(wﬂo),[) +5 /d x Alapha

2 d —ab_ab -ab  ab
M /dx(<p;¢g —w;;wz), (52)

_%bh,abh,a T gfabcbh’aEhCC T %ngahc‘fcdeEaEhcdce}

— a—)zc [M(Ah)]ab wlbf

while in d = 2 the Gribov—Zwanziger action is left unmod-
ified and Eq. (40) is preserved.

6.2 A remark on the gluon—ghost condensate

In the last decade, many efforts have been made to understand
the QCD vacuum and, in particular, the pure Yang—Mills vac-
uum. Much attention was devoted to the dynamical forma-
tion of condensates which could introduce non-perturbative
effects related to chiral symmetry breaking (in the specific
case of QCD) and color confinement. Also, dimension-two
gluon condensates were on the mainstream of analytical and
numerical approaches to confinement due to the possibility
of giving rise to a possible mechanism for dynamical mass
generation. On the other hand, the dimension-two gluon con-
densate (Aj, Aj)) is not gauge invariant for a generic choice
of a covariant renormalizable gauge and a direct physical
interpretation is unclear. Moreover, a genuine gauge invari-
ant expression is provided by (AZAZ). Albeit gauge invari-
ant, this quantity is highly non-local, with the notable excep-
tion of the Landau gauge, where Arznin reduces to the simple
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expression A} A} This is a very special feature of Landau

gauge. On the other hand, the existence of other dimension-
two condensates is also possible. A particular example is the
ghost condensate (c?c?). Yet, Yang—Mills theories quantized
in Landau gauge display an additional Ward identity, the
anti-ghost equation of motion, which forbids the existence
of (c“c?). The same Ward identity holds for linear covariant
gauges. Therefore, in these cases, just the gluon condensate
is allowed. However, in the Curci—Ferrari gauges, the anti-
ghost equation is not a Ward identity anymore and there is
no a priori reason to exclude the condensate (c“c?). Hence,
we can introduce the general term

Scond = / dx (1 AY A% + k28" c?) (53)

and we require invariance under BRST and the SL(2, R)
symmetry. The latter does not impose any constraint on the
coefficients k1 and k». BRST, however, does:’

$Seond = /ddx (2K1 (8MAZ)C“ + kzb’ac“) ~0 = K
= —2uk1, (54)

where the symbol & denotes that we have used the equa-
tions of motion. Therefore, modulo a prefactor, the (on-shell)
BRST invariant operator is

1
0 = JALAG —adc”. (55)

Some remarks concerning Eq. (55) are in order: (i) The limit
o — 0 corresponds to the Landau gauge. In this case, the
operator (55) reduces to the dimension-two gluon opera-
tor AZAZ and no ghost condensate is included. (ii) As is
well known, the presence of the quartic interaction term of
Faddeev—Popov ghosts is responsible for (eventually) gener-
ating a non-vanishing ghost condensate (c%c?).

Evidence for the existence of the condensate (55) was pre-
sented in [45,46]. In [45] the modification of the OPE for the
gluon and ghost due to the dimension-two condensate (55)
was pointed out, while in [46] an effective potential analysis
was carried out. Unfortunately, the lack of lattice simula-
tions results for Curci-Ferrari gauges does not allow us to
give more conclusive statements concerning the relevance of
the condensate (55).

Nevertheless, within the new non-perturbative BRST
framework, we introduced directly the gauge invariant quan-
tity (AﬁAZ) in the refinement of the Gribov—Zwanziger
action. This condensate, as the gluon—ghost condensate (55),
reduces to (Af, A7) in the Landau gauge. In this sense, the

> There is no difference in making use of the standard BRST or the non-
perturbative one, due to the fact that for (A, c, ¢) these transformations
are identical.

@ Springer

introduction of both condensates seems to be redundant.
Moreover, as will be discussed in Sect. 7, we have a local
set up for (AZAZ), evading the main difficulties that earlier
studies had to deal with this operator. In summary, (AZAZ)
should be responsible to carry all physical information of
(55). A very attractive feature is that the gauge invariance of
(AZAZ) together with the non-perturbative BRST symmetry
gives to us full control of the independence from « of corre-
lation functions of gauge invariant operators. Therefore, the
inclusion of (55) seems to be superfluous, due to the use of
the operator AZAZ.

We remark that the formation of different ghost conden-
sates was also studied in Curci—Ferrari gauges; see [47,73].
In principle, we should take them into account as well. How-
ever, in this work we are concerned with the behavior of the
gluon propagator and, for this purpose, the inclusion of these
extra condensates is irrelevant. Moreover, these condensates
affect the ghost propagator and, again, it would be desirable to
have access to lattice simulations for such propagator in order
to estimate the relevance played by these novel condensates.

7 Gluon propagator

In the last section we discussed non-trivial dynamical effects
generated in Curci—Ferrari gauges. As it happens in the
Gribov—Zwanziger theory in the gauges already studied in
the literature, the presence of the Gribov horizon contributes
to the formation of dimension-two condensates. The refined
Gribov—Zwanziger action in Curci—Ferrari gauges is given
by (52), where such condensates are taken into account from
the beginning through the presence of the dynamical param-
eters (M2, m?). Hence, we can easily compute the gluon
propagator from (52), namely

(A% (P)AY(=P))a=3.4
— gab [ p*+ M?
B (p? + m?)(p? + M?) + 2g%y*N

Pupv) o pupv:|
x (8, — 21} L & : (56)
(”V p? p* p?

while in d = 2, we use the Gribov—Zwanziger action (40),
(A% (P)AY(=p))a=

_ 5o [P_Z (5 B pupu) N gpupv]
) .
p4+2g2y4N I p2 p2 pZ

(57)

Several remarks are in order. For d = 3, 4:

e The form factor of the transverse part of the propaga-
tor is IR suppressed, positivity violating and attains a
finite non-vanishing value at zero-momentum, a property
which follows from the inclusion of the dimension-two



Eur. Phys. J. C (2016) 76:528

Page 11 of 15 528

condensate of the auxiliary fields (pp—ww). Also, at tree-
level, this form factor is independent from «. Hence, the
transverse component of the gluon propagator displays
the so-called decoupling/massive behavior.

e The limit « — 0 brings us back to the gluon propagator
for the refined Gribov—Zwanziger action in the Landau
gauge.

e In the linear covariant gauges, the longitudinal part of
the gluon propagator does not receive non-perturbative
corrections. It remains as in perturbation theory, which
is known to be just the tree-level result without quan-
tum corrections. However, in Curci—Ferrari gauges, non-
linearity jeopardizes this property as follows, for exam-
ple, from the existence of the b—c—c interaction vertex.
Therefore, here we expect that loop corrections will affect
the longitudinal sector, although an explicit verification
is far beyond the scope of this work.

In the case of d = 2:

e Since in d = 2 the Gribov—Zwanziger action does not
suffer from refinement, the gluon propagator is of the
Gribov type i.e. the transverse part is IR suppressed, pos-
itivity violating and vanishes at zero-momentum. This
characterizes the so-called scaling behavior.

e Asind = 3, 4, the Landau propagator is easily obtained
for « — 0, giving the scaling Gribov gluon propagator
ind =2.

From these comments we can conclude that, for d = 3, 4, the
transverse gluon propagator displays a decoupling/massive
behavior while in d = 2 itis of scaling type. This is precisely
the same behavior obtained in the Landau gauge and reported
by very large lattice simulations. As pointed out in [36,59,
60], this feature is more general than a particular property of
the Landau gauge, being also present in the linear covariant,
maximal Abelian and Coulomb gauges. Inhere, we provide
evidence that this property should also hold in Curci—Ferrari
gauges. The novelty here with respect to the gauges already
studied is the non-triviality of the longitudinal part which, due
to the very non-linear character of the Curci—Ferrari gauges,
might very well acquire corrections from higher loops.

8 Local refined Gribov—-Zwanziger action in
Curci-Ferrari gauges

In this section we present a localization procedure to cast the
action (40) and the transformations (42) in a suitable local
fashion. This puts the (refined) Gribov—Zwanziger action
in Curci—Ferrari gauges within the well-developed realm of
local quantum field theory. Before starting the description
of the procedure, we emphasize the already mentioned fea-

ture that the original formulation of the Gribov—Zwanziger
action in the Landau gauge (5) relies on the introduction of a
non-local horizon function, displaying thus a non-local char-
acter. As shown previously, this non-locality can be handled
through the introduction of suitable auxiliary fields which
provide a local and renormalizable framework.

Nevertheless, as soon as we introduce the gauge invari-
ant field A", we introduce a new source of non-locality; see
Eq. (15). Hence, even after the introduction of the auxiliary
fields introduced in the standard construction, the resulting
action is still non-local due to the explicit presence of A”.

The localization of the transverse gauge invariant field A”
is performed by the introduction of a Stueckelberg type field
&% in the form

h o= el88T", (58)
With (58), we rewrite the A" field as

Al = 1Ak + élﬁaﬂh, (59)

where a matrix notation has been employed. Equation (59)
is local albeit non-polynomial. For a SU(N) element v, A"
is left invariant under the gauge transformations

A;L = vaAMv + ;%vTauv, W =v'h and n'T =h'v,
(60)

ie.

(Al) < AL 61)

Although gauge invariance of A" is guaranteed by (60), we
still have to impose the transversality condition of A”. This is
done by means of a Lagrange multiplier 7%, which enforces
this constraint, namely, we introduce the following term:

S, = / dlx T8, Al (62)

Solving the transversality condition A" = 0 for &, we obtain
the non-local equation (15) for Al see, for example, the
appendix of [1]. Then the Gribov—Zwanziger action in Curci—
Ferrari gauges can be expressed in local form as follows:

o
SI9¢ — Syn + [ dx (bha, a7 = Sphephe
4@ 8MDZbCh + %gfahcbaahcc + %ngath('deEaEhche>
ab ab
— / ddx ((/_7:16 [M(Ah)] (p’lic _ C?)ZC I:M(Ah)] ch
Fer fralt o) + [alx e, ale(63)

with A" given by (60).
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The non-perturbative BRST transformations, which cor-
respond to a symmetry of (63), are also non-local. As shown
in [37], the localization of these transformations is achieved
through the introduction of extra auxiliary fields. Before
doing this, we note that the BRST transformations for  and
& (written implicitly in terms of /) are
sh=—igch and st%=0. (64)
Proceeding with the localization of the non-perturbative
BRST transformations, we make use of the following trick:
We rewrite the horizon function H (A") in the path integral
as

A ah X goany vt poan
eV HWAM _ B H(AM) o~ G H Al (65)
Now, employing the same localization procedure as used in
the standard Gribov—Zwanziger framework, we obtain

vt gak - -
e” T = / [Dg] [D¢][Dw] [Dav]
—fddx(—(,EZCMM’(Ah)(pzc+£)ﬁcMab(Ah)wZC+g%fabCAZ'a((p—‘r@)Zc)
Xe
(66)

and

4 ~ ~
51 — [ Dp1[DA)1De1[2E]
_fddx(_Bﬁ(»Mah(Ah)ﬁﬁ(»+gﬁ¢-M(zb(Ah)€ﬁLv_g%j-ubL»Aﬁ,a(ﬁ+5)ﬁ¢-)
xe .
(67)

In (66), the fields (¢, ¢, w, ®) are Zwanziger’s localizing
fields, (B8, B) are commuting ones, while (¢, ¢) are anti-
commuting and play the same role as Zwanziger’s fields.
The resulting Gribov—Zwanziger action is given by

ngolg = SYM +/ddx <bh’aaMAZ _ %bh,ahh,a
+ 0y DZbe + %gf”bcbaébcc + %ngabCdeeE“Ebcdce>
_ /ddx (@ZCMah(Ah)wac _ C?)ZCMah(Ah)a)ZC

)’2 be 4 h b
— 7fa L‘AH,a((p +¢)HC)

/2
- / d’x (ﬁgcwb(Ah)ﬁfi” = gemet g

2
+ g%f&b(‘Aﬁ.a(ﬂ +IB)ZL> +/ddx TuaﬂAﬁ,a.

V2
(68)

The local Gribov—Zwanziger action written as (68) is invari-
ant under the following local non-perturbative BRST trans-
formations:
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ab

a ab b ab .
s1Ay, = =D,’c”, sip)” =w,’, sth=—igch,
b b
siBy = oy,
s;ct = %f“bccbcc, sla)zb =0, SIAZ"Z =0, szfzb =0,

st = bh’a, Sl@Zh = @ﬁb + ﬂﬁb, sit¢ =0, S[(Zh =0,

sib" =0, 5¢i" =0, spi=0. (69)

It is an immediate check that s; is nilpotent, sl2 = 0. Integra-
tion over (B, B, ¢, ) gives back the non-local BRST trans-
formations (42).

In local fashion, the refinement of the Gribov—Zwanziger
action is obtained by the introduction of the following term
to (68):

a M ha g 2
Scond = /d X [?AM’GAM’Q + M
% (Cbzbwzb _ @ﬁb(pﬁb _ Bzhﬁzh + Elcjh Zb):| )
(70)

The resulting refined Gribov—Zwanziger action, written in
local form and invariant under (69), is

SROZ Sy + / dx (B0, A7 = ToPb 469, Dy
+ %gfabcbuéhcc + %nguthcdeEaEbcdce)

— / ddx ((ﬁztrMub(Ah)(prf _ CZ)ZCMab(Ah)wZC

)/2

_ ﬁfﬂbCAZ,a(w + @)ZL‘) _ /ddx (BZCMab(Ah)ﬁﬁc
- 2 —
_ ;gCMab(Ah)CZC + g%fabCAZ,a(ﬂ + ,B)ZC>

2
+fddx 9, Al —I—/ddx [%Aﬁ'“AZ’“

+ M2 (et — gulet — B BL + Tt I,‘j”)] Y

The refined Gribov—Zwanziger action (71) is an effective
action which takes into account the presence of Gribov copies
in the standard Faddeev—Popov procedure in Curci—Ferrari
gauges. Moreover, this action also incorporates further non-
perturbative dynamics effects as the formation of dimension-
two condensates. All these settings are written in local fash-
ion and enjoy non-perturbative BRST symmetry (69), which
ensures gauge parameter independence of correlation func-
tions of gauge invariant composite operators; see [37] for a
purely algebraic proof of this statement.

For completeness, we exhibit the Slavnov—Taylor identity
associated with the local non-perturbative invariance of the
refined Gribov—Zwanziger action in Curci—Ferrari gauges.
To do so, we introduce the following source action to control
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the non-linearity of the non-perturbative BRST transforma-
tions:

Ssources = /ddx (_QZDZbe‘f‘%fabcLaCbCC-f-KaSlga) s
(72)

with SIQZ = 5;1L% = 5K = 0. The resulting action X,
defined as

Y= g}gz + SsourceSs (73)

satisfies the following Slavnov-Taylor identity:

83X 0%
S :fd"x( wsar T
SAf 8Q

8% 8%
Sc® §Le

8%X 6%
sga §Ka

> L
h, b
+b1a86a + oy, sy

~ap 8% 3%
+ @+ P = + o m):&
nes a)uh L) ﬂ;;,l

(74)

As is well known, the external sources (Qﬁ, L%, K%) play
exactly the same role of the so-called anti-fields of the
Batalin—Vilkovisky formalism. As shown recently in the case
of the linear covariant gauges [37], the Slavnov—Taylor iden-
tity (73) can be employed to extract non-perturbative prop-
erties related to the physical content of the theory. In partic-
ular, the construction outlined in detail in [37], see Sects. 3
and 4, can be immediately repeated in the present case. This
shows that the correlation functions of composite opera-
tors belonging to the cohomology of the non-perturbative
BRST nilpotent operator turn out to be independent from the
gauge parameter entering the gauge-fixing condition. Fur-
ther, examples of non-trivial composite operators exhibiting a
Kaillén—Lehmann representation with a positive spectral den-
sity can be worked out by means of the use of the i-particle
formalism developed in [75]. Due to the positiveness of the
spectral density, these operators can be directly linked with
the physical spectrum of a confining Yang—Mills theory, as
shown in the case of the glueball states [69,70].

9 Conclusions

In this paper we have addressed the issue of the quantiza-
tion of Yang—Mills theories in a class of non-linear gauges,
the Curci—Ferrari gauges, by taking into account the exis-
tence of Gribov copies. By exploiting the formal similar-
ity with the Gribov problem in linear covariant gauges, the
non-perturbative BRST transformations recently introduced
in [1] have been used to achieve a non-perturbative BRST
quantization scheme in the Curci—Ferrari gauges, resulting
in an action akin to the Gribov—Zwanziger action in linear
covariant gauges [1,36].

As is well known, the Gribov problem entails modifi-
cations on the IR behavior of the theory due to its non-
perturbative nature. The so-called Gribov—Zwanziger frame-
work enables us to take into account the effects of the Gribov
copies within the realm of a local Euclidean quantum field
theory. Further, taking into account the dynamical genera-
tion of dimension-two condensates, gives rise to the refined
Gribov—Zwanziger framework. As discussed previously, the
introduction of such novel effects is not consistent in d = 2.
An immediate consequence of this fact is the difference of
the gluon propagator behavior in different dimensions: in
d = 3,4, the dimension-two condensate of the auxiliary
Zwanziger field yields a decoupling/massive behavior for the
transverse part of the propagator, while in d = 2 this con-
densate cannot be consistently introduced and the transverse
component is of the scaling type. Remarkably, this different
behavior of the transverse component of the gluon propagator
has been also observed in other gauges, namely the Landau,
linear covariant, maximal Abelian, and Coulomb gauges; see
[36,57,59,60]. It strongly suggests a kind of universal behav-
ior for the transverse component of the gluon propagator, as
far as space-time dimensions are concerned.

Nevertheless, unlike the case of the Landau and lin-
ear covariant gauges, the non-linearity of the Curci—Ferrari
gauges might introduce non-trivial effects in the longitudinal
sector which cannot be anymore protected from higher loop
corrections.

The construction of the non-perturbative BRST invariant
(refined) Gribov—Zwanziger action in Curci—Ferrari gauges
relies on the use of the non-local variable A”. In this work
we provided a procedure which allows the localization of
the action as well as of the non-perturbative BRST trans-
formations. The resulting local refined Gribov—Zwanziger
action in Curci—Ferrari gauges provides then a suitable arena
to apply standard local quantum field theories techniques
which might open new future investigations such as: (1)
the study of the all-order renormalizability of the action
(40), (2) gaining a better understanding of the longitudi-
nal sector of the gluon propagator when higher orders effect
are taken into account, (3) a detailed investigation of the
ghost two-point function and its possible relationship with
the ghost condensates already observed in the Curci—Ferrari
gauges [73]. Although this gauge is not yet well exploited
from the lattice point of view, we hope that our results will
stimulate future investigations in this direction, providing
an interesting interplay between analytical and numerical
results.
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Appendix: On the SL(2, R) symmetry

As pointed out in Sect. 3, the symmetry generated by § is
crucial for the proof of the perturbative renormalizability of
Yang-Mills theory quantized in Curci—Ferrari gauges. This
symmetry is part of a SL(2, R) invariance. In this appendix,
we exhibit the full Nakanishi—Ojima algebra, which contains
the SL(2, R) algebra as a subalgebra. We refer the reader to
[44,47] for further details.

The nilpotent perturbative BRST operator s acts on the
fields (A, ¢, c, b) as in Eq. (29). Nevertheless, it is possible
to define the anti-BRST transformations generated by the
nilpotent operator s as

—aa __ ab =b

SAM =-D,’c

5% = —p@ +gfabCChEC

Ec:a — gfabCEbEC (75)
2

b4 = —gfahcbbfc.

Likewise, the operator ¢ acts as in Eq. (30) and we can define
an operator § which acts on the (A, ¢, ¢, b) as

St =¢c°
Sba — %fabthEc (76)
5AY =5¢" = 0.

The operators s, s, §, 8 with the addition of the Faddeev—
Popov ghost number operator Sgp form the so-called
Nakanishi—Ojima algebra, given by

{s,5} =0, [8,8]=pp,

[8, Skp] = —28, [8, Spp] = 23,

[s, 0gp] = —s, [5,dpp] =5, (77
[s,8]=0, [5,6]=0,

[5,8] = —5, [5,8] = —s.

From (77), it is clear that the operators &, 5, and Spp generate
a SL(2, R) algebra. For this reason, the symmetry generated
by 8, defined by Eq. (30), is known as the SL(2, R) symme-
try, although one should keep in mind the existence of the
aforementioned algebraic structure.

@ Springer
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