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Hawking radiation is corpuscular

Wolfgang Mück1,2,a

1 Dipartimento di Fisica “Ettore Pancini”, Università degli Studi di Napoli “Federico II”, Via Cintia, 80126 Naples, Italy
2 Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, Via Cintia, 80126 Naples, Italy

Received: 13 June 2016 / Accepted: 24 June 2016 / Published online: 5 July 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract The total number of Hawking quanta emitted dur-
ing the evaporation of a Schwarzschild black hole is propor-
tional to the square of the initial mass or, equivalently, to the
Bekenstein entropy. This simple, but little appreciated, fact
is interpreted in terms of the recent discovery of black hole
soft hair.

1 Estimate of the number of Hawking particles

In 1974, Hawking discovered that black holes emit radiation
with a thermal power spectrum [1,2]. Soon after, Page gave
an estimate of the life-time of a black hole from the knowl-
edge of the emitted power [3]. In a simplified version of this
calculation, one assumes that the black hole, at any value of
the temperature, can be considered as an ideal black body
emitting radiation in the form of massless bosons. As the
black hole evaporates, its temperature is assumed to increase
adiabatically as a function of the remaining mass. This sim-
plification omits the gray-body factors [4], superradiance,
and much of the backreaction of the radiation on the geom-
etry.

The purpose of this short note is to provide an estimate of
the total number of quanta emitted by the black hole. That
number turns out to be proportional to the square of the black
hole’s initial mass in Planck units, which is reminiscent of
the proposed graviton number in the black hole quantum N -
portrait [5,6]. The simplicity of the calculation suggests that
the result may be known, but I am not aware of it in the
literature.1

a e-mail: wolfgang.mueck@na.infn.it

The spectral luminosity density of an ideal black body is
derived from Planck’s formula [8] and reads2

dL

dω
= gA

8π2

ω3

eω/T −1
, (1)

where A is the surface area, T the temperature and g the
number of radiating degrees of freedom.3 The luminosity is
obtained integrating (1) over the energy ω,4

L = gπ2

120
AT 4 . (2)

Instead of the luminosity, one may also consider the emis-
sion rate (number flux) of the emitted quanta. The number
flux density is related to the luminosity density by

d�

dω
= 1

ω

dL

dω
= gA

8π2

ω2

eω/T −1
. (3)

Integrating (3) over the energy, one finds the emission rate

� = gζ(3)

4π2 AT 3 , (4)

where ζ(x) denotes the Riemann zeta function.
Now consider a Schwarzschild black hole of mass M , with

Hawking temperature and horizon area given by

T = κ

2π
= 1

8πM
, A = 4πr2

s = 16πM2, (5)

1 While the manuscript was under revision, I learned from Alonso-
Serrano that the calculation was performed recently [7].
2 Units are such that h̄ = G = kB = c = 1.
3 E.g., g = 1 for a spinless boson, while g = 2 for photons and
gravitons.
4 For photons, this is the Stefan–Boltzmann law.
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respectively. Because the emitted power corresponds to the
mass loss rate, (2) and (5) can be combined into

dM

dt
= −L = − g

15 · 211πM2 , (6)

and one easily obtains the estimate for the evaporation time
of the black hole,

tev = 5 · 211π

g
M3

0 . (7)

where M0 is the initial mass.
The emission rate of Hawking quanta is found by substi-

tuting (5) into (4),

� = gζ(3)

128π4

1

M
. (8)

Since Page’s paper, the emission rate has appeared repeat-
edly in the literature; see, e.g., the recent references [9,10]
and references therein. It is very surprising that the total
number of Hawking quanta emitted during the evaporation
appears to have never been considered. Combining (8) with
(6), one finds

dN

dM
= �

dM
dt

= −240ζ(3)

π3 M. (9)

A simple integration yields the total number of Hawking
quanta

N = 120ζ(3)

π3 M2
0 , (10)

which is equal, up to a numerical factor, to the initial Beken-
stein entropy

N = 30ζ(3)

π4 S , (11)

independently of the number of radiating degrees of freedom.
The semi-classical analysis remains valid as long as M �

1. The quantum regime may be modeled by an ultraviolet cut-
off on the energy and mass integrals and gives rise to 1/N
corrections. Hence, for a macroscopic black hole, the final
stage of the evaporation, which happens in a quantum gravity
regime, appears to be irrelevant in terms of the emitted Hawk-
ing quanta and of the information they carry. The inclusion of
gray-body factors will likely affect the numerical prefactor
in (10) and (11).

2 Conclusions

The above results appear to be relevant for recent develop-
ments on the physics of black holes and, in particular, for the
information paradox. First, (10) is recognized as the proposed
number of gravitons in the black hole quantum N -portrait
[5,6]. In this proposal, a black hole is pictured as a Bose–
Einstein condensate of a very large number, N ∼ M2, of
gravitons at the verge of a quantum phase transition. Hawk-
ing radiation is the result of the depletion of the condensate
caused by 2-body interactions and contains non-thermal fea-
tures of order 1/N , which resolve the information paradox
[11,12]. The results (10) and (11) provide direct evidence in
support of the quantum N -portrait, in the sense that a semi-
classical black hole may be considered as a bound state of
the N Hawking particles it dissolves into. Interpreting each
emitted Hawking particle as an information-carrying unit,
(11) is indeed the expected relation between the entropy and
the particle number. This indicates that it is more appropri-
ate to give Hawking radiation, which is sparse in the semi-
classical regime [10], a corpuscular interpretation instead of
an undulatory one.

Second, the results should be interpreted in the light of
recent developments on the infrared structure of quantum
gravity, which revived results of Bondi, van der Burg, Met-
zner and Sachs (BMS) [13,14] from the early 1960s. Soft
symmetries, or better, the supertranslations of the extended
BMS symmetry group [15,16], give rise to conserved charges
[17–21] of the gravitational S-matrix. These soft supertrans-
lation charges constitute what has been known as gravita-
tional memory. Extending these results to the asymptotic
symmetries of the black hole horizon [22–24], it has been
discovered that black holes carry ‘soft hair’ [25], which
retains the information as regards the state before the black
hole formation and imprints that information, as the black
hole evaporates, on the outgoing Hawking radiation. Clas-
sically, the information storage capacity of the horizon is
infinite, but it is physically impossible to excite soft quanta
that are smaller than the Planck area on the horizon, giv-
ing rise to an effective pixelization in agreement with the
Bekenstein entropy–area law. Equations (10) and (11) pro-
vide evidence for this in the evaporation process. The infor-
mation as regards the final state is measurable by the gravi-
tational memory effect, i.e., the soft supertranslation charges
at future null infinity that are carried by the outgoing Hawk-
ing quanta. This points again at the importance of the cor-
puscular point of view of Hawking radiation. The effective,
semi-classical, gravitational memory capacity used by the
Hawking quanta is of order N ∼ M2

0 . Hence, it appears that
unitarity is preserved, after all, when a gravitational system
of total mass M0 collapses into a black hole and evaporates
subsequently.
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