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Proposed space-based gravitational wave antennas involve satellites arrayed either in an equilat-
eral triangle around the earth in the ecliptic plane (the ecliptic-plane option) or in an equilateral
triangle orbiting the sun in such a way that the plane of the triangle is tilted at 60◦ relative to the
ecliptic (the precessing-plane option). In this paper, we explore the angular resolution of these two
classes of detectors for two kinds of sources (essentially monochromatic compact binaries and co-
alescing massive-black-hole binaries) using time-domain expressions for the gravitational waveform
that are accurate to 4/2 PN order. Our results display an interesting effect not previously reported
in the literature, and particularly underline the importance of including the higher-order PN terms
in the waveform when predicting the angular resolution of ecliptic-plane detector arrays.
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I. INTRODUCTION

The era of gravitational astronomy is nearly here.
In the next few years, ground-based laser gravitational
wave detectors will begin to come on line and, it is
hoped, space-based detectors will soon follow. Even if
the ground-based detectors do not succeed in detecting
the waves within the next decade, the space-based detec-
tors will certainly be able to, so the physics goal of the
detection of the new phenomenon will be achieved one
way or the other, and gravitational wave detectors will
then move from being physics experiments to being tools
of observational astronomy.
It can be argued that the frequency band accessible

to the space detectors is the more interesting one, both
experimentally and observationally. It is here, at frequen-
cies between 10−4 Hz and 1 Hz, that identified individual
sources (such as AM CVn) exist, thus guaranteeing the
detection of the phenomenon. But it is also at these fre-
quencies that astronomical objects of the greatest obser-
vational interest are to be found, objects for which only
gravitational astronomy can provide data that bears on
critical astrophysical and cosmological questions. In this
paper, we will investigate the ability of space-based de-
tectors to determine the locations in the sky of two of
these kinds of astronomical sources—close compact bi-
naries in the Galaxy and coalescing massive black hole
binaries in the nuclei of galaxies at high redshift.

A. Gravitational Astronomy Science Goals

There are important questions relative to the statistics
and distribution of close compact binaries in the Galaxy.
Because of their low luminosity, only a few nearby white
dwarf binaries have been observed, and even fewer neu-
tron star binaries have been observed, due mainly to their
narrow beams as radio pulsars. However, these endpoints
of massive close binary evolution are the touchstone for
the binary evolutionary models. Good average density
statistics are needed in order to determine parameters
of the models and to provide the basis for calculation of
the branching ratios between close binary formation and
other possible events such as type I supernovae. Space
gravitational wave detectors are omnidirectional instru-
ments that will provide a complete survey of close bi-
naries. However, determining the statistics depends on
measuring the spatial density, which is determined by
solving for the positions of the objects that are seen grav-
itationally. The ability of a space detector to determine
the position of the binary system it is observing is there-
fore an important aspect of the scientific value of the
detector.
Although more speculative than the close compact bi-

naries, there is another source that is expected to be even
more interesting for physics, astronomy, and cosmology.
Evidence continues to mount for the existence of massive

black holes in the nuclei of most galaxies, including our
own, and there is increasing evidence that most galaxies
have been involved at some time in their past in a col-
lision and merger with another galaxy. If both of these
things are true, then an exciting source of gravitational
waves is predicted—the coalescence of a black hole bi-
nary, formed by the collision of galaxies and the subse-
quent sinking of the black holes to a common center via
dynamical friction. The event rate to be expected is a
few per year for events out to z = 3. These sources will
be so bright, even at this distance, that they will domi-
nate the noise spectrum in the sensitivity window of the
instruments and will be seen for months prior to the fi-
nal coalescence event. In addition, if the massive black
holes themselves initially grew by many small mergers
of this type, then event rates of several tens of visible
events per year would be expected. Observations of coa-
lescences will provide valuable physics, since the observed
waveforms represent ground truth for the computer codes
presently being constructed to model the dynamics of
these strong-field events. They will also provide insight
into galactic merger rates, galactic and protogalactic cos-
mogeny, etc..
Much of the scientific value from the detection of such

an event depends simply on observing the signal and
determining from the waveform what the parameters of
the source are, regardless of where the source is located.
However, an important aspect of the science of the coa-
lescences could also be to detect an optical counterpart
of the galaxy in which the event is taking place, to see
if there are observable effects produced in the galaxy by
such an energetic event in its nucleus. For this goal, a
position for the source would need to be determined. As
we shall see, the predicted angular resolution of the space
detectors will probably not be good enough to identify a
single galaxy associated with the coalescence. However,
it should be possible to identify the correct portion of the
sky well before the final event, so that the region may be
monitored and the galaxy identified by looking for some
other anomoly in it. Finally, if there are many events
seen per year, a knowledge of the spatial distribution of
coalescences would be of value in understanding how they
relate to galaxy formation statistics.
The purpose of this paper is to investigate the posi-

tional sensitivity of space gravitational wave detectors
when observing signals from these two classes of sources.
With signals at the expected levels for realistic sources
and with noise at the levels expected for the instruments,
we perform a least-squares covariance study for the pa-
rameters representing the direction to the source.
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B. Space-Based Gravitational Wave Detectors

The geometry of the detectors is shown in Figure 1.
Three spacecraft1 follow roughly circular orbits at the
vertices of an equilateral triangle inscribed on the circle.
The spacecraft at each of the vertices can function as
the central mirror of a Michelson interferometer, while
the two far spacecraft that it tracks function as the end
mirrors of such an instrument. The passage of a grav-
itational wave changes the curvature of space between
the three spacecraft and affects the phase of the laser
signals passing between them, producing a signal in the
interferometer. Two of the three interferometers are lin-
early independent of each other and provide independent
information on the gravitational waveform.
The response of these detectors to a passing gravita-

tional wave depends on the orientation of the interfer-
ometer relative to the source. We consider two different
orientation scenarios. In the first, the plane of the or-
bit is fixed in space and the triangular geometry simply
rotates in the plane at some orbital period. This is the
geometry of the proposed OMEGA mission in which the
spacecraft orbit the earth in a plane close to the ecliptic.
In the second scenario, the plane of the orbit precesses
and the triangle rotates in the precessing plane with the
same period. This is the geometry that has been studied
for the LISA mission, acheived by placing each space-
craft in a heliocentric orbit that is slightly eccentric and
slightly inclined, so that the spacecraft all remain in a
plane that is inclined 60◦ to the ecliptic. The dynamics
of the heliocentric orbits then cause this plane to precess
about the normal to the ecliptic once per year. Both or-
bits are sensitive to the position of the source as a result
of their motion.

II. DIRECTIONAL SENSITIVITY

A. Extracting Directional Information

It is very difficult to determine the direction to a source
that emits only a short burst of gravitational waves.
Since the magnitude of the detected signal depends on
both the amplitude of the wave and its direction of prop-
agation relative to the detector arms, one would need to
know the intrinsic amplitude of the wave (which would
involve, for example, knowing accurately the distance

1The currently proposed LISA mission presently has just
such a configuration, in which each of the three spacecraft
must simultaneously track in two directions. The OMEGA
mission and a previous configuration of the LISA mission use
two separate spacecraft at each vertex of the geometry, so
that each spacecraft can rigidly orient itself to track a single
direction.

to the source) to say much about its direction. Even
then, the direction of the source is underdetermined, as
there are many different propagation directions that yield
the same signal strength. However, the orbiting-binary
sources considered in this paper produce gravitational
wave trains that have predictable (slowly changing) fre-
quency and amplitude and undergo many oscillations
during the course of a year of observation. Over this time
span, two distinct effects modulate the detected signal in
a manner that depends on a source’s position in the sky.
The first of these effects is the Doppler shift due to the

detector’s orbital motion around the sun. The phase of
this Doppler shift depends on the azimuth angle of the
source in the plane of the ecliptic (the azimuthal direction
of the source, that is, the direction of the projection on
the ecliptic plane of a vector pointing toward the source,
is the direction that the detector is moving when the
source is maximally blue-shifted). The amplitude of this
yearly Doppler shift depends on the polar angle of the
source relative to the zenith of the ecliptic (clearly, if the
source were at the zenith, there would be no Doppler shift
at all, while if the source were in the plane of the ecliptic,
the amplitude of the Doppler shift would be maximal).
So measuring the phase and amplitude of the observed
Doppler shift of the wave train allows one to determine
(to some accuracy) the angular coordinates of the source.
If the detectors are deployed in the precessing-plane

configuration, then a second effect comes into play. As
previously discussed, the normal vector to the plane of
the detector array in the precessing-plane case sweeps
around the sky as the array orbits the sun. Since the de-
tected signal depends on the direction of the wave prop-
agation relative to the detector array, its amplitude will
thus be modulated in a distinctive way as the plane pre-
cesses. Monitoring the change in signal amplitude as
a function of time thus gives us additional information
about the angular coordinates of the source. Since the
normal to the detector plane is fixed in the ecliptic-plane
case, one gets no information from this effect in that case.
The quality of the information that can be extracted

from the Doppler-shift effect improves as the frequency
of the source increases (having a larger number of wave
cycles during a given time improves one’s ability to deter-
mine the Doppler shift). The quality of the information
obtained from the second effect, by contrast, is compar-
atively insensitive to frequency (as long as the wave still
undergoes many cycles per year). We will see in Sec-
tion III that our results are consistent with these general
principles.

B. Goals for This Project

The question of how well one can determine the an-
gular coordinates of binary sources using these effects
has been previously examined by Cutler [1] and Cutler
and Vecchio [2,3]. Cutler’s first paper discusses the an-
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gular resolution of precessing-plane (LISA) option only,
while the papers by Cutler and Vecchio mention briefly
the ecliptic-plane (OMEGA) option as well. In all of
these papers, the gravitational wave is analyzed in the
frequency regime, and while the wave phase is modeled
to 3/2 post-Newtonian order (in the first paper) or to
4/2 PN order (in the latter two), the gravitational wave-
form itself is modeled only to lowest PN order (that is,
it includes only a single harmonic). Also in these pre-
vious papers, the parameter space associated with the
angular parameters is sampled randomly, and (in dealing
with very distant events) the universe was assumed to be
empty for the sake of simplicity.
In the work described here, we sought to extend and

improve on this previous work by

1. Extending the approximation to 4/2-PN order for
both the phase and the waveform,

2. Treating the universe as being flat (Ω = 1,Λ = 0)
instead of empty (Ω = Λ = 0),

3. Systematically exploring the parameter space to ex-
pose patterns, and

4. Comparing the precessing-plane and the ecliptic-
plane cases more fully.

We also opted to work in the time domain instead of
the frequency regime and calculate all derivatives ana-
lytically instead of numerically.
Our effort to include higher-order terms in the wave-

form was driven by a desire to more accurately model the
coalescing black-hole scenario, and it turns out (as dis-
cussed in section V below) that including these terms is
especially important in the ecliptic-plane case. Although
it is more complicated, we considered the flat, Friedmann
universe to be a better model of the real universe than
the empty universe (the distinction might be important
for handling black-hole coalescence events at very large
redshifts). We also felt that systematically exploring the
parameter space would help us understand the behavior
of these two detector configurations more physically.

III. METHOD

A. The Received Gravitational Wave to 4/2 Order

Blanchet, et. al. [4] provide a complete description of
the gravitational waves emitted by inspiraling compact
binaries to 4/2-PN order, assuming that the objects have
zero spin, are essentially point masses, and are in a qua-
sicircular orbit. The waveform as observed in the frame
of the detector array can be expressed as follows:

h+,×(t) =
2τcη

5r
ε2

[

H
(0)
+,× + εH

(1/2)
+,× + ε2H

(2/2)
+,×

+ε3H
(3/2)
+,× + ε4H

(4/2)
+,×

]

(3.1)

where r is the geometrical distance to the source, c is the
speed of light,

τ ≡ 5G(m1 +m2)

c3
(3.2a)

expresses the system’s total mass in units of time,

η ≡ m1m2

(m1 +m2)2
(3.2b)

is a unitless expression of the ratio of the objects’ masses
(η = 1/4 when the masses are equal but η → 0 as one of
the masses becomes very large compared to the other),

ε ≡
[

G(m1 +m2)ω

c3

]1/3

=
(τω

5

)1/3

(3.2c)

(where ω is the time-dependent angular frequency of the
binary’s orbit in its own frame) is a time-dependent ex-
pansion parameter that is of the same order of magnitude
as the ratio v/c for the system, and

H
(0)
+ = −(1 + cos2 i) cos 2φr (3.3a)

H
(0)
× = −2 cos i sin 2φr (3.3b)

H
(1/2)
+ = − δ

8
sin i

[

(5 + cos2 i) cosφr

−9(1 + cos2 i) cos 3φr
]

(3.3c)

H
(1/2)
× = −3δ

4
cos i sin i [sinφr − 3 sin 3φr] (3.3d)

etc.

The complete expressions for the higher-order Hs are
found in Blanchet, et. al. [4]. In equations 3.3, i is the
angle of the source’s orbital angular momentum vector
relative to a unit vector pointing from the source to the
detector (i is fixed if there is no spin),

δ ≡ m1 −m2

m1 +m2
(3.4)

is a unitless expression of the difference between the bi-
nary masses (which ranges between −1 and +1), and φr
expresses the gravitational wave phase as a function of
time. In addition to the variables δ, i, and φr, the ex-
pressions for the higher-order Hs also depend on η. Note
that the variables η and δ are not independent of each
other:

η = 1
4 (1− δ2) (3.5)

Since η does not uniquely specify the mass ratio (for ex-
ample, m1 = bm2 and m2 = bm1 yield the same η), it is
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better to treat δ as independent and calculate η from it
using equation 3.5.
In the frame of the source, the emitted gravitational

wave phase φs(ts) is related to the phase φ(t) of the bi-
nary orbit as follows:

φs(ts) = φ(ts)−
2G(m1 +m2)

c3
ln

(

ω

ω0

)

(3.6a)

where ω0 is the orbital frequency at time t = 0 and ts
is coordinate time measured in the source frame. As
discussed on page 579 in Blanchet, et. al. [4], the loga-
rithmic correction term, while it is formally of 3/2 PN
order, is actually of order 8/2 PN relative to the lead-
ing term φ(ts), and thus will be very small when ε ≪ 1.
Therefore, we can safely make the approximation

φs(t) ≈ φ(t) (3.6b)

which significantly simplifies the calculations.
In the frame of the detector, the received wave is

Doppler-shifted due to both the detector’s orbital mo-
tion and the source’s radial motion with respect to the
solar system, which we assumed was entirely cosmologi-
cal. The received wave frequency ωr ≡ dφr/dt depends
on the binary’s orbital frequency ωs ≡ dφ/dts as follows:

ωr ≡ dφr
dt

=
1

1 + z

[

1− ΩR

c
sinΘ sin(Ωt− Φ)

]

ωs (3.7)

Integrating both sides of this expression yields:

φr(t) =
1

1 + z

[

φ(ts)− φ0s −
ΩR

c
sinΘI0(t)

]

+ φ0

(3.8a)

where

I0(t) ≡
∫ t

0

ωs sin(Ωt− Φ) dt (3.8b)

and where z is the cosmological redshift factor, t is co-
ordinate time in the detector frame (note that ts =
[1 + z]−1t), φ0 is the phase of the received wave at time
t = [1+ z]ts = 0, φ0s is the phase of the binary’s orbit at
that instant, ωs = ωs(ts) is the angular frequency of the
binary’s orbit in its own frame at time ts, Θ and Φ are
the source’s angular coordinates relative to the ecliptic,
Ω is the angular frequency of the earth’s orbit around the
sun, and R is the radius of the earth’s orbit. (We treat
both Ω and R as being constant; thus ΩR is the Earth’s
constant orbital speed.) Equations 3.8 implicitly define
Φ = 0 to be the same direction as that of a displace-
ment from the sun of the detector array’s center of mass
at time t = 0. (As mentioned before, the polar angle Θ
corresponds to the zenith of the ecliptic.) Note also that
since the earth’s orbital speed ΩR/c ≈ 10−4 ≪ 1, the
Doppler shift has only been computed to first order in
ΩR/c.

According to Blanchet, et. al. [4], the orbital phase, in
turn, is given by:

φ(ts)− φ0s =
1

η
[F (ts)− F (0)] (3.9a)

where

F (ts) = G5 + η1G
3 − 3π

4
G2 + η2G (3.9b)

G(ts) ≡
[η

τ
(tc − ts)

]1/8

(3.9c)

η1 ≡ 3, 715

8, 064
+

55

96
η (3.9d)

η2 ≡ 9, 275, 495

14, 450, 688
+

284, 875

258, 048
η +

1, 855

2, 048
η2 (3.9e)

where tc is the time to coalescence from ts = 0, as mea-
sured in the source frame. (Specifying tc is equivalent to
specifying the initial separation of the orbiting masses.)
Taking the time-derivative of this function gives the or-
bital angular frequency ωs ≡ dφ/dts in the source frame.
Note that ωs is specified in terms of time ts in the source
frame, so in the integration described in equation 3.8b.
the value of the integration variable t has to be trans-
formed to ts in order to evaluate ωs correctly.

B. Handling Cosmological Distances

When dealing with cosmologically distant sources, it
is more practical to specify the distance to the source
in terms of the luminosity distance RL ≡ [L/4πFob]

1/2

(where L is the source’s intrinsic luminosity and Fob is
the observed flux) or the redshift factor z instead of the
geometrical distance r. In a flat, Friedmann (Λ = 0)
universe, r, RL, and z are related as follows:

r =
RL

1 + z
, RLH = 2

[

1 + z −
√
1 + z

]

(3.10)

where H is the current value of the Hubble constant (we
used H = [14×109 y]−1 in our calculation). We will con-
sider the luminosity distance RL to be the fundamental
distance variable: if in some cases it is more practical to
work with z, one can easily use equation 3.10 to change
variables.
Equations 3.1 to 3.10 therefore allow us to calculate

(to 4/2 PN order) both the plus and cross polarizations
of the received gravitational wave (even if the source is
at cosmological distances) if we know the eight quantities
τ, tc, RL, δ, i, φ0,Θ, and Φ.
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C. The Detected Signal

We work in the low-frequency limit in which the phase
change δφ(t) of the detected laser tracking signal is di-
rectly proportional to the amplitude of the wave:

φ(t)

νT
= h(t) = F+(t)h+(t) + F×(t)h×(t) (3.11)

where ν is the laser frequency and T is the light-travel-
time along the interferometer arm. The time-dependent
functions F+(t) and F×(t) are the beam-pattern func-
tions for the interferometer pair. For both the precessing-
plane case and the ecliptic plane case, the arms in a given
interferometer pair make a 60◦ angle with respect to each
other, and the beam-pattern functions for such a pair are

F+ =
√
3
2

[

1
2 (1 + cos2 θD) cos 2φD cos 2ψD

− cos θD sin 2φD sin 2ψD] (3.12a)

F× =
√
3
2

[

1
2 (1 + cos2 θD) cos 2φD sin 2ψD

+cos θD sin 2φD cos 2ψD] (3.12b)

where θD and φD are the instantaneous angular coordi-
nates of the source measured relative to the frame of the
detector and ψD specifies the orientation of the binary’s
principal polarization axes around the fixed line of sight.
The latter variable can be understood as follows. If the
orbital inclination i to the line of sight is not zero or π, the
quasicircular binary orbit will look elliptical to a viewer
at the detector. The angle ψD specifies the orientation
of the major axis of the ellipse as viewed by this observer
measured in the plane perpendicular to the line of sight
and from a reference direction that is perpendicular to
both the line of sight and the normal to the plane of the
detector array. If L̂, n̂, and ẑD are unit vectors parallel to
the binary’s conserved angular momentum, the direction
of the line of sight, and the normal to the detector array,
respectively, then

tanψD =
L̂ · [n̂× (ẑD × n̂)]

L̂ · (ẑD × n̂)
(3.13)

In the ecliptic-plane case, ẑD is constant, so we will
have ψD ≡ ψ, which defines the fixed angle of the binary
orbit’s major axis relative to the plane of the ecliptic. In
the precessing-plane case, ẑD varies with time, so we will
end up having to specify ψD as a function of t, Θ, Φ, and
the fixed angle ψ.
In both the precessing-plane and ecliptic plane case,

the equilateral arrangement of detector satellites means
that the detector array possesses two independent pairs
of interferometer arms, so we will have two independent
signals hk(t) (where k = 1, 2). Because one pair of arms
is rotated 60◦ relative to the other in the plane of the
detector array, the value of φD will depend on the choice
of interferometer pair as well, and so is denoted φD,k.

For the ecliptic plane case, the zenith of the detector
plane is the same as the zenith of the ecliptic, so θD =
Θ and, as we said, ψD = ψ. If the satellites orbit the
Earth with an angular frequency of ωd, then the apparent
azimuth of the source relative to the detector arm will be
given by

φD,k = αk(t) where αk(t) ≡ Φ− ωdt+ α0k (3.14)

Here the constant α0k specifies the orientation of the
interferometer pair at t = 0. While we must have
α02 = α01 + π

3 , the constant α01 ≡ α0 is arbitrary. In
terms of these variables, the beam-pattern functions be-
come

F+,k =
√
3
2

[

1
2 (1 + cos2 Θ) cos 2αk cos 2ψ

− cosΘ sin 2αk sin 2ψ] (3.15a)

F×,k =
√
3
2

[

1
2 (1 + cos2 Θ) cos 2αk sin 2ψ

+cosΘ sin 2αk cos 2ψ] (3.15b)

In the precessing-plane case, the orientation of the de-
tector plane changes with time, making the expressions
for the beam pattern functions more complicated. As
shown in Cutler [1] (and verified by us), to get the beam-
pattern functions for the precessing plane case, we must
substitute into equations 3.12 the quantities

cos θD = 1
2 cosΘ−

√
3
2 sinΘ cosβ (3.16)

φD,k = αk(t) + tan−1

[√
3 cosΘ + sinΘ cosβ

2 sinΘ sinβ

]

(3.17)

where in this case

αk(t) ≡ Ωt+ α0k (3.18)

and β(t) specifies the angular position of the detector
array’s center of mass in the plane of the ecliptic. Tak-
ing account of the way that we have defined Φ = 0, the
quantity β(t) is given by:

β(t) ≡ Ωt− Φ (3.19)

One can also show that ψD in this case is given by

tanψD =
−a cosψ + b sinψ

a sinψ + b cosψ
(3.20)

where

a ≡
√
3 sinβ (3.21a)

b ≡
√
3 cos θ cosβ + sin θ (3.21b)

To summarize, we see that the detected signal from a
inspiralling binary source depends on nine parameters τ ,
tc, RL (or z), η (or δ), i, φ0, ψ, Θ, and Φ, each of which
we would like to determine from the observed signal. In
addition, we have one parameter α0 that we will know in-
dependently of the signal (once the array is launched, we
should know the orientation of the interferometer arms
as a function of time and thus α0 at the given instant we
define to be t = 0).
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D. Statistical Methods

The goal of our analysis is to estimate the accuracy
with which the parameters that determine h(t), espe-
cially the positional parameters Θ and Φ, may be de-
termined from the data. The method we will use is
that of linear least-squares parameter estimation. In this
method, we assume that approximate initial values have
been found for the m parameters qa that determine the
signals. We also assume that n observations hi of the
waveform have been made and that the difference be-
tween the observed waveform and the waveform predicted
by the current approximate values of the parameters is

yi = hi,observed − hi,computed =
∂hi
∂ qa

∆qa + νi (3.22)

where νi is the noise associated with each measurement
and ∆qa is the error in the current value of the parameter
qa. The goal of least squares parameter estimation is to
find the adjustments ∆qa to the parameters that will
minimize the νi errors in a least-squares sense. If we
define

xa ≡ ∆qa and Gia ≡ ∂hi
∂ qa

(3.23)

then the total squared error (also called the variance)
may be written

V ≡ νiνi = (yi −Giaxa)(yi −Gicxc)

= yiyi − 2yiGiaxa +GiaGicxaxc (3.24)

where sums over i from 1 to n and over a and c from
1 to m are implied by the repetition of the subscripts.
The least squares requirement of minimizing the variance
proceeds by requiring that

dV

dxb
= −2yiGib + 2GibGiaxa = 0 (3.25)

If we define an m×m square information matrix

Aab = GiaGib (3.26)

then the information equation 3.25 may be written

Aabxa ≡ yiGib (3.27)

giving a solution for xa of

xa = A−1
ab yiGib (3.28)

where A−1
ab is the matrix inverse of Aab.

The uncertainty in xa that results from such a proce-
dure is related to the uncertainty σy in the observations
yi. It is found by defining the covariance matrix as the
expectation value of the mean-squared deviation of xa
from its expected value:

Cab ≡ 〈[xa − 〈xa〉][xb − 〈xb〉]〉 (3.29)

where 〈...〉 represents the expectation value of the quan-
tity inside the brackets. Since only xa and yi are random
variables, the expectation value of xa is given by

〈xa〉 = A−1
ac Gic 〈yi〉 (3.30)

Combining equations 3.28, 3.30 and 3.29, we get

Cab ≡ A−1
ac GicA

−1
bd Gjd 〈[yi − 〈yi〉][yj − 〈yj〉]〉 (3.31)

If the errors in the observations are uniformly distributed
and uncorrelated (see subsection III F), then the expecta-
tion value of the mean squared error in the observations
is

〈[yi − 〈yi〉][yj − 〈yj〉]〉 = δijσ
2
y (3.32)

where δij is the Kronecker delta. Substituting equation

3.32 into equation 3.31, and remembering that AcdA
−1
bd =

δcb, we can write

Cab = σ2
yA

−1
ab (3.33)

According to equation 3.29 the expected errors σa in the
parameter values are given by the the diagonal elements
of the covariance matrix Cab:

σa =
√

〈[xa − 〈xa〉][xa − 〈xa〉]〉 (3.34)

Therefore, equation 3.33 implies that the expected errors
are equal to

σa = σy
√

A−1
aa (3.35)

(no sum over the index a is implied here).

E. Calculating the Derivatives

In order to construct the information matrix for the
uncertainty calculation, we need to calculate the par-
tial derivatives of the hypothetical observed signal hk(t)
with respect to each of the nine unknown parameters
τ, tc, RL, δ, i, φ0, ψ,Θ, and Φ. We evaluated all of these
derivatives analytically to get specific expressions for
∂hk/∂q (where q is any one of the nine variables) as
a function of time. This is mostly a matter of sim-
ple (though tedious) differential calculus. The following
notes give an overview of the calculations.
Consider the derivative with respect to an arbitrary

variable q. According to equation 3.11,

∂hk
∂ q

=
∂F+,k

∂ q
h+ + F+,k

∂h+
∂ q

+
∂F×,k

∂ q
h× + F×,k

∂h×
∂ q

(3.36)

Of the partials of the beam-pattern functions F , only
∂F/dΘ, ∂F/dΦ, and ∂F/dψ are nonzero, so evaluating
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these partials is relatively straightforward. If we look at
equation 3.1, we see that

∂h+,×

∂q
=
∂h0
∂q

[

ε2H
(0)
+,× + ε3H

(1/2)
+,× + . . .+ ε6H

(4/2)
+,×

]

+ h0

[

2εH
(0)
+,× + 3ε2H

(1/2)
+,× + . . .+ 6ε5H

(4/2)
+,×

] ∂ε

∂q

+ h0

[

ε2
∂H

(0)
+,×

∂q
+ . . .+ ε6

∂H
(4/2)
+,×

∂q

]

(3.37)

where h0 ≡ 2τcη/5r.
Now, many of the quantities appearing in this equation

are written in terms of the variable η, but the more fun-
damental variable describing the difference between the
masses involved in the binary is δ. Since η is a simple
function of the fundamental variable δ alone, we can use
the chain rule to evaluate partial derivatives with respect
to δ as follows:

∂f(η, . . .)

∂δ
=
∂f(η, . . .)

∂η

dη

dδ
=
∂f(η, . . .)

∂η

(

− δ
2

)

(3.38)

Similarly, note that h0 is stated in terms of the geometric
distance to the source r, but we are taking the fundamen-
tal distance variable to be the luminosity distance RL, so
we evaluate the partial derivative of h0 with respect to
RL as follows:

∂h0
∂RL

=
∂h0
∂r

∂r

∂RL
=
∂h0
∂r

1

1 + z
(3.39)

The expansion parameter ε explicitly depends on t,
and (through the angular frequency ω) on the variables
tc and η (or δ), so the only partials we need to evaluate
the second line of equation 3.37 are:

∂ε

∂τ
=

ε

3τ
+

ε

3ωs

∂ωs

∂τ
(3.40a)

∂ε

∂δ
=

ε

3ωs

∂ωs

∂δ
(3.40b)

∂ε

∂tc
=

ε

3ωs

∂ωs

∂tc
(3.40c)

The greatest challenge in equation 3.37 is evaluating
the partials of the Hs. These functions, which in the
higher-order cases can become quite complex, depend
only on i and δ and/or η explicitly, but also depend on the
received phase φr, which in turn depends on τ, tc, δ, φ0,Θ
and Φ. Therefore, generally we have to evaluate, for each
of the ten H terms,

∂H

∂i
,
∂H

∂δ
, and

∂H

∂q
=
∂H

∂φr

∂φr
∂q

(3.41)

for q = τ, tc, δ, φ0,Θ, and Φ.

Evaluating the derivatives of φr is complicated by the
fact that one cannot easily evaluate the Doppler-shift in-
tegral in equations 3.8 analytically because of the com-
plicated time-dependence of the source-frame orbital fre-
quency ωs. Therefore, we expressed each of the partial
derivatives of φr in terms of an integral equation: for
example

∂φr
∂τ

=
1

1 + z

[

∂φ

∂τ
− ΩR

c
sinΘ

∫ t

0

∂ωs

∂τ
sin(Ωt− Φ) dt

]

(3.42a)

∂φr
∂Θ

=
1

1 + z

[

−ΩR

c
cosΘ

∫ t

0

ωs sin(Ωt− Φ) dt

]

(3.42b)

We then evaluated these integrals at each time step using
a fourth-order Runge-Kutta integration scheme. Since
ωs is a fairly slowly-varying function of time (except in
the final stages of coalescence, where the whole post-
Newtonian power-series approximation breaks down any-
way), the Runge-Kutta approach should yield excellent
estimates for the values of these integrals.

F. Noise Curves

Ultimately, the detector’s position sensitivity is deter-
mined by the σy noise in the detector. We took the total
noise for the covariance study to be

σ2
y = Sn(f) ∆f (3.43)

where the bandwidth ∆f = 1/2dt (dt being the time be-
tween samples), and Sn(f) is the spectral noise density.
The total rms noise in the detectors, sampled at intervals
dt, would of course be the integral of Sn(f) over the band-
width. By taking instead the simple product of ∆f and
Sn(f) at the primary signal frequency, we account for the
temporal correlations created in the sampled data by the
larger low-frequency noise components (see Appendix for
details).
To estimate the spectral noise density Sn(f), we have

taken the published noise curves for the proposed space
missions. For the ecliptic-plane scenario, we used the
noise curve for OMEGA; for the precessing-plane case,
we use the noise curve for LISA. The instrumental noise
curves for both missons are dominated by two sorts of
noise, acceleration noise and position noise. The genera-
tion of sensitivity curves with these types of noise present
is discussed in Larson, Hiscock, and Hellings [5]. In addi-
tion, all instruments in the low-frequency band will have
to contend with a background of clutter formed by un-
resolvable close compact binaries in the Galaxy [6]. The
total spectral noise density function is thus given by

Sn(f) = [Sa(f)f
−4 + Sx(f)](1 + 2πfT )2 + Sc(f) (3.44)
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where Sa(f) is the strain noise produced by accelera-
tion noise, Sx(f) is the strain noise produced by position
noise, and T is the light-travel time between detectors.
The (1 + 2πfT )2 factor arises because the sensitivity of
the instrument to gravitational waves is reduced when
the gravitational wave wavelength is less than the base-
line distance between spacecraft. The values of the terms
in equation 3.44 are given in Table I. In addition, in both
missions we are assuming that we are looking at clutter
noise of

Sc(f) =

{

(2.07× 10−43 Hz0.9)f−1.9

(4.73× 10−61 Hz6.5)f−7.5

(1.41× 10−47 Hz1.6)f−2.6

f < f1
f1 < f < f2
f > f2

(3.45)

where f1 = 7.1× 10−4 Hz and f2 = 1.8× 10−3 Hz. The
total spectral noise curves resulting from equations 3.44
and 3.45 are shown in Figure 2.

G. Summary of the Algorithm

To perform the actual calculations, we wrote a FOR-
TRAN program that does the following:

1. The program reads values for the fundamental pa-
rameters m1 +m2, tc, RL (or z), δ, i, φ0, ψ,Θ, and
Φ for a hypothetical source from an input file. In
addition, the input file also specifies the size of the
time step dt to be used and the detector array’s
initial orientation angle α0. (We generally used dt
= 60 s in our runs so that dt was somewhat smaller
than the shortest period for waves that either de-
tector can easily register.)

2. The program then uses the specified values to set up
a number of constants used in the calculation, and
initializes the Runge-Kutta scheme used to evaluate
the integrals in the expressions for φr and its partial
derivatives.

3. It then executes a loop that at each time step (in-
cluding t = 0)

• calculates the noise level Sn at the current ob-
served gravity wave frequency,

• calculates values of φr and its partial deriva-
tives,

• calculates hk(t) and its partial derivatives for
each detector,

• adds the information from the current time
step to matrix A∗

ab = Aab/σ
2
y (where Aab is as

defined in equation 3.26) as follows:

A∗
ab(t) = A∗

ab(t− dt)

+
dt

Sn(f)

∑

k = 1,2

∂hk(t)

∂qa

∂hk(t)

∂qb
(3.46)

where qi corresponds to the i-th fundamental
parameter.

• evaluates the Doppler-shift integrals needed
for the next time step.

The loop ends when the time to coalescence is
smaller than 10 times the current orbital period or
after one full year of observation, whichever occurs
sooner.

4. The program then uses a standard matrix-inversion
package to invert the matrix A∗

ab to get Cab =

σ2
yA

−1
ab = (A∗

ab)
−1 (see equation 3.33). According

to equation 3.35, the diagonal elements of this in-
verted matrix correspond to the uncertainties in the
values of the fundamental parameters that we could
determine from the wave train generated by the hy-
pothetical source in question. If the matrix cannot
be inverted, the program eliminates the parame-
ter causing the problem and computes uncertainties
for the remaining parameters. Where possible, the
program simultaneously estimates uncertainties for
all nine of the fundamental parameters, not just
the angular position parameters.

5. It then displays the calculated results for the un-
certainties, including the solid-angle uncertainty in
the angular position of the source.

Running this program repeatedly with different param-
eter values allows us to learn about how the parameter
uncertainties might depend on the characteristics of the
source.
We tested the program by making certain that in the

low-mass limit, its results agreed completely with a much
simpler program we had written earlier to handle the case
of strictly monochromatic waves from low-mass binaries.
Even though significant differences between our assump-
tions and those of Cutler [1] and Cutler and Vecchio [2,3]
made exact comparisons difficult, we also tested our pro-
gram by comparing its results to their published results
for the precessing-plane case, and found agreement typi-
cally within a factor of three.

IV. RESULTS

The results in principle depend on ten parameters: the
nine fundamental (unknown) parameters and the pre-
sumably known initial orientation parameter α0. Ob-
viously, it is difficult to sample such a large parameter
space and display its results meaningfully. We did find
that in spot checks the uncertainty in the source’s an-
gular position seemed to be generally insensitive to the
parameters φ0, ψ, α0, and Φ, and that the results were
basically the same for polar angles Θ above and below
the ecliptic that made the same angle with the ecliptic.
In this paper, we will focus primarily how the angular
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position uncertainty depends on the total mass of the
source, or its frequency, and the polar angle Θ.
Figure 3 shows the base-ten logarithm of the angular

position uncertainty (expressed in steradians) as a func-
tion of Θ for essentially monochromatic compact binaries
at selected frequencies ranging from 0.1 mHz to 100 mHz.
The masses were chosen so that tc was long compared to
a year, the distance was chosen so that the signal-to-
noise ratio in the ecliptic case was roughly 10, and the
inclination was chosen so that cos i was about 0.8.
Note that in the ecliptic-plane case (solid curves), there

is a monotonic improvement in angular position resolu-
tion with increasing frequency, as the Doppler shift be-
comes easier to track. Indeed, in the strictly monochro-
matic limit, the angular position uncertainty should fall
strictly as f−2 (see page 99 of [2]), and our results are
consistent with this. Note also that the angular position
uncertainty increases as one approaches Θ = 90◦ (that is,
the plane of the ecliptic). This is because in the ecliptic
plane case, the only source of information for Θ comes via
the Doppler shift (see equation 3.8a). Since this effect is
proportional to sinΘ the partial derivative with respect
to Θ is proportional to cosΘ which goes to zero at Θ =
90◦. There is thus no Θ information in the information
matrix at Θ = 90◦.
In the precessing-plane case (the dotted curves), there

is moderately good angular resolution even at low fre-
quency because of the extra information provided by the
precession of the array plane. The angular resolution im-
proves as frequency increases because of the additional
information provided by the Doppler shift. The angular
resolution in this case proves to be relatively independent
of Θ (the precession of the array plane means that the
ecliptic plane is not as special as it is in the ecliptic case).
Figure 4 shows the angular uncertainty as a function of

Θ for various large-mass coalescing sources. All of these
sources have equal-mass partners (at 107, 106, 105, and
104 solar masses respectively), are located at redshift z
= 1, have an inclination whose cosine is 0.8, and are ob-
served for the last year before coalescence. Note that in
the precessing-plane case (the dotted curves) the angu-
lar resolution is fairly good even for the lowest-frequency
cases (the cases with the largest masses). The resolution
stays relatively constant as the mass decreases, because
even as the signal strength drops, the noise curve also
drops. Again the angular position uncertainty is rela-
tively independent of Θ.
In the ecliptic-plane case, the angular resolution again

improves as the frequency increases (as expected), but
curiously, and in sharp contrast to the monochromatic
case, the angular resolution improves significantly as Θ
approaches 90◦. We will discuss this further in the next
section.
Figure 5 shows graphs for middle-mass black holes

falling into supermassive black holes. One can see that
the results are qualitatively similar to the equal-mass
black-hole mergers shown in Figure 4.

V. DISCUSSION OF THE RESULTS

In the ecliptic plane case, the angular position uncer-
tainty decreases significantly as we approach the eclip-
tic plane in the massive black hole cases shown in Fig-
ure 4, but the uncertainty increases significantly in the
monochromatic case shown in Figure 3. What could be
so different about the two cases? It turns out that the
crucial difference in determining this effect is that in the
massive black hole case, the higher-order post-Newtonian
corrections to the waveform amplitude are significant
(because the expansion parameter ε in the power series
is large), while in the monochromatic case, they are not.
Figure 6 clearly shows that when we artificially turn off
the higher-order terms, the angular position uncertainty
increases with Θ for the massive black-hole case, just
as it does for the monochromatic case. Our runs show
that virtually all of the difference comes from the lowest-
order nonzero harmonic above the fundamental: adding
only this term to the fundamental produces essentially
the same curve we get when we include all higher-order
terms.
Why is this? We may consider the waveforms seen at

each of the two detectors as depending on three effects.
The first effect is the monotonic increase in the frequency
of the source, as given by equations 3.9. If this increase
is written by expanding the frequency in a Taylor se-
ries, then the behavior can be expressed in terms of the
derivatives ω0, ω̇0, ω̈0, etc. As seen in equations 3.9, these
derivatives are linked to the basic variables η, τ , and tc.
Observation of the time series will thus determine the fre-
quency derivatives and thus η, τ , and tc independently of
any other features of the waveforms. The second effect
is the variation of the waveform with orientation of the
detector, as given by equations 3.15. These form factors
depend explicitly on Θ, Φ (through αk), and ψ. The
form factors may not be seen directly in the waveform,
but only in convolution with the third effect, the ampli-
tudes of the two polarizations of the waves, as given by
equation 3.1. These h-functions are determined by the
already- known τ , η, and ω, and by the unknown parame-
ters r, i, and φ0. There are thus six unknown parameters
that must be determined from the time series alone, with-
out any help from the change in frequency with time. If
only the fundamental frequency of the gravitational wave
were present (equations 3.3a and 3.3b), then each detec-
tor would see only a single gravitational wave frequency
whose amplitude and phase would be the only observ-
ables. For two detectors, there would be two amplitude
observables and two phase observables, but this would
not be enough to determine the six unknown parameters,
Θ, Φ, ψ, r, i, and φ0. However, if a second harmonic of
the wave is included (the harmonics H(1/2) of equations
3.3c and 3.3d), then a Fourier analysis of the detected
signals would determine amplitudes and phases for both
harmonics. Since the mix of phases and amplitudes be-
tween the two harmonics depends on i and φ0, there will
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be nontrivial information in these additional amplitudes
and phases, and all six gravitational wave parameters can
be determined from these eight signal response parame-
ters. The ability of the higher harmonics to add informa-
tion, however, is quenched as Θ → 0, because the form
factors depend on Θ only through cosΘ and also because
Φ and ψ become degenerate near the pole of the ecliptic.
In any case, Figure 6 makes it clear that including the

higher-order terms makes a huge difference for values of
Θ close to the ecliptic plane. It is worth noting in this
context that if massive-black hole sources are distributed
evenly about the sky, half will lie within ±30◦ of the
ecliptic plane, where the effect of including the higher-
order terms is most significant.
This result has not been previously reported in the

literature. Cutler [1] and Cutler and Vecchio [3] only
model the gravitational waveform itself to lowest post-
Newtonian order, leading them to conclude (appropri-
ately, considering the limitations of that model) that
a detector array in ecliptic-plane configuration “has es-
sentially no angular and distance resolution” for mas-
sive black hole mergers (see page 105 of [3]). However,
the results reported here indicate that we need not be
so pessimistic: indeed, for Θ very near the ecliptic, the
angular resolutions in the ecliptic-plane and precessing-
plane cases are quite comparable as long as we include
the higher-order terms.
It is interesting to note that we do not observe any-

thing comparable for the precessing-plane case: we find
that artificially suppressing the higher-order terms in the
waveform does not change the angular uncertainties very
much. In the precessing plane case, the fact that the nor-
mal to the detector plane moves around the sky means
that θD and ψD depend on time in a characteristic way
even though Θ and ψ are fixed. This provides informa-
tion that allows one to disentangle the effects of the latter
parameters from those of i and RL even without the ex-
tra information provided by the higher-order terms in the
wavefunction.

VI. CONCLUSIONS

While in the main the results from this study validate
much the work that has already been done on the an-
gular position resolution of space-based detectors, this
work underlines the unexpected but critically important
role that higher-order post-Newtonian corrections play
in determining parameters in massive black-hole mergers,
particularly for a detector array in the ecliptic-plane con-
figuration. This suggests that future research into how
one determines parameters of massive black-hole mergers
from an observed wave train should definitely take ac-
count of these higher-order post-Newtonian corrections,
at least if one is considering an ecliptic-plane detector
configuration.
It is also worth noting that our results indicate that

neither detector configuration is able to yield an angular
position uncertainty much less than about 10−4 stera-
dians for massive black-hole mergers (see Figures 4 and
5). For comparison, the full moon occupies a solid an-
gle of about 6 × 10−5 sr. This means that even though
either kind of detector can easily register massive-black-
hole mergers at cosmological distances, neither will be
able to locate the source precisely enough (by several
orders of magnitude) to indicate the galaxy where the
merger is taking place. One can therefore only locate the
merger if one can also observe the electromagnetic sig-
nature of such an event. To our knowledge, little is yet
definitively known about what the electromagnetic sig-
nature of a merger might look like. Using the position
information provided by either kind of detector in prac-
tice (or even knowing whether the information has any
practical use at all) will thus require more research into
the astrophysics of black-hole mergers.
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APPENDIX: HANDLING RED NOISE

The gravitational wave sources we have considered in
this paper are all found at frequencies on the left of Fig-
ure 2, where the noise spectrum is falling roughly like
f−4. Noise such as this, where there is more power
at low Fourier frequencies than at high frequencies, is
termed“red noise”. It is generally known that param-
eter estimation, including spectral estimation, produces
biased estimates when the background noise is not white.
[7,8] The solution to this bias problem lies in a pro-
cess called “prewhitening”. In this process, the data are
passed through a filter that generates a new time series
whose noise spectrum is flat, and the parameter estima-
tion is performed using this filtered data. The estimates
will then be bias-free. In this appendix, we show how
to calculate the signal-to-noise ratio (SNR) for such a
process, assuming the signal is dominated by a single
frequency.
Let us consider a time series y(t) = h(t) + n(t), where

h(t) is the signal and n(t) is the red noise. To prewhiten
the data, the time series is passed through a liner filter
to produce:

x(t) = F (t) ∗ y(t) ≡
∫ T

0 F (t− τ)y(τ)dτ (A1)

We write the effect of this filter on the signal h(t) as
g(t) = F (t) ∗ h(t) and on the noise as m(t) = F (t) ∗n(t).
The filter F is chosen so that the power spectrum ofm(t)
will be flat. Since the filter is a convolution integral, the
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effect of the filter in frequency space yields simple prod-
ucts, g(f) = F (f)h(f) and m(f) = F (f)n(f), where
F (f) is called the transfer function of the filter. [For
example, if the power spectrum of the detector noise
Sn(f) = n(f)2 were exactly proportional to f−4, then
the linear filter would be F (t) = d2/dt2 whose transfer
function is F (f) = 4π2f2. The power spectrum of m(t)
would therefore be flat.]
The SNR for the filtered data is given by (SNR)2 =

〈g2(t)〉/〈m2(t)〉, where the angular brackets denote a
time average. The mean squared signal and noise
strengths may be written in terms of their spectral den-
sities to give

(SNR)2 =

∫ fH
fL

Sg(f)df
∫ fH
fL

Sm(f)df

=

∫ fH
fL

F 2(f)Sh(f)df

Sm(fH − fL)
(A2)

where, in the last step, the fact that Sm(f) = const has
been used to complete the integral in the denominator
and the fact that g(f) = F (f) ∗ h(f) has been used to
expand the numerator.
Now let us assume that the signal h(t) is essentially

monochromatic, at frequency f0, so that in the numera-
tor we will have Sh(f) = δ(f−f0)Sh(f0). We also assume
that the data have been previously high-pass filtered with
cutoff at fL = f0. In the denominator, because Sm(f)
is constant, its relation to Sn(f) may be worked out at
any frequency desired. If we choose f0 as that frequency,
then we have

(SNR)2 =
F 2(f0)

∫ fH
f0

δ(f − f0)Sh(f0)df

F 2(f0)Sn(f0)(fH − f0)

=
〈h(t)2〉

Sn(f0)(1/2∆t)
(A3)

where, in the last step, we have recognized 〈h(t)2〉 as the
integral of the spectral density Sh and fH = 1/2∆t as
the Nyquist frequency, assumed to be much higher than
f0. This is the formula we use for noise in our detector,
as given in equation 3.43.
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FIG. 1. Spacecraft configurations for the ecliptic-plane and
precessing-plane options. Figure 1a shows top and side views
of the three detector spacecraft in the ecliptic-plane option.
The arrow shows the normal vector to the plane of the orbit,
which is fixed in this case. Figure 1b shows top and side
views of the three detector spacecraft in the precessing-plane
option. In this case, the spacecraft do not orbit the earth but
rather orbit the sun in such a way that the satellites form
an apparently rigid equilateral triangle that rotates clockwise
around the array’s center, which in turn orbits the sun. The
plane of the array is tilted 60◦ from the plane of the ecliptic
(which is why the circular trajectories of the satellites look
elliptical in the top view). The projection on the ecliptic of
the array’s normal vector always points toward the sun.

FIG. 2. Graph of the noise spectral density Sn(f) that was
used in the covarance analysis. The solid curve is for the
ecliptic-plane case (using OMEGA noise estimates) while the
dashed curve is for the precessing-plane case (using LISA noise
estimates).

FIG. 3. Angular uncertainty as a function of Θ for a com-
pact binary emitting gravitational waves with various differ-
ent (but essentially constant) frequencies. The stellar masses
were chosen in each case so that tc was much longer than one
year, and the distance was chosen so that the signal-to-noise
ratio was about 10 in the ecliptic-plane case (the signal am-
plitudes are specified in each picture). The other parameters
were set somewhat arbitrarily as follows: α0 = 0, i = 36.9◦

(cos i = 0.8), Φ = 268.5◦ = 4.69 rad, ψ = 114.6◦ = 2.0 rad.

FIG. 4. Angular uncertainty as a function of Θ for various
equal-mass pairs of supermassive black holes undergoing co-
alescence. In each case, the coalescing pair was assumed to
be at redshift z = 1 and the time to coalescence tc was cho-
sen to be one year. The initial gravitational wave frequency
shown in each graph is the frequency at the beginning of the
one-year observational period, and the final frequency is the
frequency when the calculation ended roughly 10 orbits be-
fore coalescence. The other parameters were set as in Figure
3.
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FIG. 5. Angular uncertainty as a function of Θ for two
situations where a medium-mass black hole coalesces with a
supermassive black hole. Other parameters were set as spec-
ified in Figure 4.

FIG. 6. Angular uncertainty as a function of Θ for coa-
lescing massive black holes, each with a mass of 106 solar
masses (this is the same situation shown in Figure 4b). This
illustrates that the higher-order terms in the post-newtonian
approximation for the gravitational waveform have a large ef-
fect on the angular resolution in the ecliptic-plane for values of
Θ near the ecliptic plane: artificially suppressing these terms
leads to very poor resolution near the ecliptic plane, while in-
cluding them leads to an angular resolution that is nearly the
same as for the precessing-plane case when Θ is close to the
ecliptic. It turns out that virtually all of the difference is due
to the lowest-order nonzero harmonic term above the funda-
mental: adding this term alone produces a curve essentially
identical to the lower curve shown here.

TABLE I. Table showing the magnitudes of the spectral
noise constants in equation 3.44 for the OMEGA and current
LISA detector configurations.

Term OMEGA LISA

Sa(f) 5.8× 10−51 Hz3 2.3× 10−52 Hz3

Sx(f) 1.26× 10−41 Hz−1 1.26 × 10−41 Hz−1

2πT 21 s 100 s
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