metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(E)-1-Ferrocenyl-3-(2-methoxyphenyl)prop-2-en-1-one

Myrna R. Otaño Vega, Kennett I. Rivero* and Ingrid **Montes González**

Department of Chemistry, University of Puerto Rico, Río Piedras Campus, San Juan, Puerto Rico

Correspondence e-mail: rivero.ken@gmail.com

Received 29 January 2014; accepted 19 February 2014

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.026; wR factor = 0.065; data-to-parameter ratio = 17.5.

The structure of the title compound, $[Fe(C_5H_5)(C_{15}H_{13}O_2)]$, consists of a ferrocenyl moiety and a 2-methoxyphenyl group linked through a prop-2-en-1-one spacer in an E conformation. In the ferrocene unit, the substituted cyclopentadienyl (Cps) ring and the unsubstituted cyclopentadienyl ring (Cp) are almost parallel to one another [dihedral angle = 1.78 (14)°], and the Cp and Cps rings are in a gauche conformation. The benzene ring is twisted by 10.02 (14) and 11.38 (11)° with respect to the Cp and Cps rings, respectively. In the crystal, molecules are linked by weak $C-H \cdots O$ hydrogen bonds into supramolecular chains running along the *b*-axis direction.

Related literature

For the synthesis, see: Attar et al. (2011); Kumar et al. (2012). For related syntheses and background, see: Liu et al. (2001); Wu et al. (2002); Ji et al. (2003); Maree et al. (2008); Jiao et al. (2009); Cardona et al. (2010). For the biological activity of calcones and chalcone derivatives, see: Wu et al. (2002); Arezki et al. (2009); Nabi & Liu (2011); Zhao & Liu (2012). For related structures, see: Lindeman et al. (1997); Wu et al. (2006); Liu et al. (2008).

Experimental

Crystal data

[Fe(C₅H₅)(C₁₅H₁₃O₂)] $M_r = 346.19$ Orthorhombic, $P2_12_12_1$ a = 8.8352 (1) Åb = 11.4047 (1) Å c = 16.1327 (2) Å

Data collection

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.026$	$\Delta \rho_{\rm max} = 0.21 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.065$	$\Delta \rho_{\rm min} = -0.13 \text{ e } \text{\AA}^{-3}$
S = 1.05	Absolute structure: Flack (1983),
3658 reflections	1523 Friedel pairs
209 parameters	Absolute structure parameter:
H-atom parameters constrained	0.004 (14)

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C6-H6···O1 ⁱ	0.93	2.48	3.368 (2)	159
Symmetry code: (i)	$-x, y - \frac{1}{2}, -z +$	<u>3</u> 2.		

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors thank the Pfizer Pharmaceuticals Fellowship Program, the UPR-RP RISE Program (No. 2R25GM61151), and the Materials Characterization Center (MCC)-UPR Río Piedras.

Supporting information for this paper is available from the IUCr electronic archives (Reference: XU5769).

References

Arezki, A., Brulé, E. & Jaouen, G. (2009). Organometallics, 28, 1606-1609.

- Attar, S., O'Brien, Z., Alhaddad, H., Golden, M. & Calderon-Urrea, A. (2011). Bioorg. Med. Chem. 19, 2055-2073.
- Bruker (2007). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cardona, R., Hernández, K., Pedró, L., Otaño, M., Montes, I. & Guadalupe, A. (2010). J. Electrochem. Soc. 157, F104-F110.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Ji, S.-J., Wang, S.-Y., Shen, Z.-L. & Zhou, M.-F. (2003). Chin. Chem. Lett. 12, 1246-1248.
- Jiao, Y., Wilkinson IV, J., Di, X., Wang, W., Hatcher, H., Kock, N., Dagostino, R., Knovich, M., Torti, F. & Torti, S. (2009). Blood, 113, 462-469.
- Kumar, C. K., Trivedi, R., Kumar, K. R., Giribabu, L. & Sridhar, B. (2012). J. Organomet, Chem. 718, 64-73.
- Lindeman, S. V., Bozak, R. E., Hicks, R. J. & Husebye, S. (1997). Acta Chem. Scand. 51, 966-968.

V = 1625.58 (3) Å³

Mo $K\alpha$ radiation

 $0.22 \times 0.17 \times 0.12 \ \mathrm{mm}$

13238 measured reflections 3659 independent reflections

3242 reflections with $I > 2\sigma(I)$

 $\mu = 0.93 \text{ mm}^{-1}$

T = 296 K

 $R_{\rm int} = 0.022$

Z = 4

- Liu, Y.-H., Liu, J.-F., Jian, P.-M. & Liu, X.-L. (2008). Acta Cryst. E64, m1001–m1002.
- Liu, M., Wilairat, P. & Go, M. L. (2001). J. Med. Chem. 44, 4443-4447.
- Maree, M. D., Neuse, E. W., Erasmus, E. & Swarts, J. C. (2008). *Met. Based Drugs*, pp. 1–10.
- Nabi, G. & Liu, Z.-Q. (2011). Bioorg. Med. Chem. Lett. 21, 944-946.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wu, X., Tiekink, E. R. T., Kostetski, I., Kocherginsky, N., Tan, A. L. C., Khoo, S. B., Wilairat, P. & Go, M. L. (2006). *Eur. J. Pharm. Sci.* 27, 175–187.
- Wu, X., Wilairat, P. & Go, M. L. (2002). Bioorg. Med. Chem. Lett. 12, 2299–2301.
- Zhao, C. & Liu, Z.-Q. (2012). Biochimie, pp. 1-7.

supporting information

Acta Cryst. (2014). E70, m108-m109 [doi:10.1107/S1600536814003912]

(*E*)-1-Ferrocenyl-3-(2-methoxyphenyl)prop-2-en-1-one

Myrna R. Otaño Vega, Kennett I. Rivero and Ingrid Montes González

S1. Comment

Chalcones occur in nature as precursors of flavonoids and exhibit various biological activities such as anti-cancer, antiinflammatory, nitric oxide regulation and anti-hyperglycemic agents (Liu *et al.*, 2001). They are traditionally synthesized in the laboratory, *via* the Claisen–Schmidt condensation carried out in basic or acidic media under homogeneous conditions (Attar *et al.*, 2011). Structural modifications of the chalcone template are readily achieved. Biological activities of chalcones are equally wide ranging, such as: anti-bacterial and anti-hyperglycemic, anti-malarial, anti-HIV, anti-oxidant, and anti-tumor (Wu *et al.*, 2002).

The crystal structure of the title compound reveals that the configuration about the C12=C13 bond corresponds to the (E)-isomer. The majority of the C and O atoms of the substituted cyclopentadienyl ring (Cps) are sp^2 -hybridized and the conjugation is lost at the methoxy substituent of C19. In the ferrocenyl moiety, the planes formed by the Cp (unsubstituted cyclopentadienyl ring) and Cps are almost parallel. The C atoms in these two rings have adopted a *gauche* conformation, and the Fe metal center lies closer to the Cps ring. The Fe—Cg and Fe—Cgs distances are 1.658 (2) and 1.644 (2) Å, respectively, where Cg and Cgs are the centroids of Cp and Cps, respectively. The Cg—Fe—Cgs angle is 178.4 (2)°.

S2. Experimental

The title compound was synthesized according to the literature procedure (Cardona *et al.*, 2010). An aqueous solution of sodium hydroxide (5%, 2 ml) was added slowly with stirring to acetylferrocene (0.456 g, 0.002 mol). Then, 2-methoxybenzaldehyde (0.272 g, 0.002 mol) in ethanol (2 ml). The resulting mixture was stirred at room temperature for 2 h. The dark-orange-red precipitated solid was filtered off, washed with cold water and ethanol, dried and recrystallized from a mixture of acetone:water (yield, 84%; M·P. 144–145 °C). Dark violet crystals, suitable for X-ray diffraction, were obtained by the slow evaporation of a 1:1 (ν/ν) acetone:water solution of the title compound at room temperature over a period of 1 day. NMR analyses were performed on a Bruker AV-500 spectrometer by using CDCl₃ 99.9% pure as a solvent and Me₄Si as external standard.¹H-NMR (δ in p.p.m., CDCl₃): 3.90 (3*H*, s), 4.20 (5*H*, s), 4.60 (2*H*, s), 4.90 (2*H*, s), 7.05 (1*H*, d), 6.95, 7.25, 7.35, 8.10 (4*H*, dd, d, dd), 7.65 (1*H*, d). ¹³C-NMR (δ in p.p.m., CDCl₃): 55.5, 69.7, 70.1, 72.5, 80.9, 111.2, 123.9, 120.7, 124.7, 128.9, 131.2, 136.3, 158.7, 193.5.

S3. Refinement

H atoms were placed in calculated positions with C—H = 0.93–0.96 Å and refined in riding mode with $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms and $1.2U_{eq}(C)$ for the others.

Figure 1

The molecular structure of the title compound.

(E)-1-Ferrocenyl-3-(2-methoxyphenyl)prop-2-en-1-one

Crystal data

 $[Fe(C_5H_5)(C_{15}H_{13}O_2)]$ $M_r = 346.19$ Orthorhombic, $P2_12_12_1$ Hall symbol: P 2ac 2ab a = 8.8352 (1) Å b = 11.4047 (1) Å c = 16.1327 (2) Å V = 1625.58 (3) Å³ Z = 4F(000) = 720

Data collection

Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2007) $T_{\min} = 0.821, T_{\max} = 0.896$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.026$ $wR(F^2) = 0.065$ S = 1.053658 reflections 209 parameters 0 restraints $D_x = 1.415 \text{ Mg m}^{-3}$ Melting point: 417 K Mo *Ka* radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 6681 reflections $\theta = 2.9-26.8^{\circ}$ $\mu = 0.93 \text{ mm}^{-1}$ T = 296 KPrism, red $0.22 \times 0.17 \times 0.12 \text{ mm}$

13238 measured reflections 3659 independent reflections 3242 reflections with $I > 2\sigma(I)$ $R_{int} = 0.022$ $\theta_{max} = 27.5^{\circ}, \theta_{min} = 2.2^{\circ}$ $h = -10 \rightarrow 11$ $k = -14 \rightarrow 14$ $l = -20 \rightarrow 20$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0341P)^2 + 0.0721P]$ where $P = (F_o^2 + 2F_c^2)/3$

$(\Delta/\sigma)_{\rm max} = 0.002$	Absolute structure: Flack (1983), 1523 Friedel
$\Delta \rho_{\rm max} = 0.21 \text{ e } \text{\AA}^{-3}$	pairs
$\Delta \rho_{\rm min} = -0.13 \text{ e } \text{\AA}^{-3}$	Absolute structure parameter: 0.004 (14)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.4177 (3)	0.4890 (3)	0.63912 (15)	0.0776 (7)	
H1	0.3408	0.4925	0.5999	0.093*	
C2	0.4854 (3)	0.5845 (2)	0.6769 (2)	0.0889 (10)	
H2	0.4622	0.6629	0.6673	0.107*	
C3	0.5963 (3)	0.5420 (3)	0.7327 (2)	0.0943 (9)	
Н3	0.6584	0.5869	0.7668	0.113*	
C4	0.5945 (3)	0.4190 (3)	0.72679 (18)	0.0851 (8)	
H4	0.6566	0.3679	0.7561	0.102*	
C5	0.4835 (3)	0.3867 (2)	0.66940 (16)	0.0754 (7)	
H5	0.4582	0.3106	0.6542	0.091*	
C6	0.2005 (2)	0.39864 (16)	0.80793 (12)	0.0476 (4)	
H6	0.1503	0.3369	0.7822	0.057*	
C7	0.3176 (2)	0.3888 (2)	0.86594 (13)	0.0581 (5)	
H7	0.3582	0.3188	0.8854	0.070*	
C8	0.3639(2)	0.5015 (2)	0.88996 (12)	0.0623 (5)	
H8	0.4399	0.5188	0.9279	0.075*	
C9	0.2754 (2)	0.58371 (17)	0.84677 (12)	0.0496 (4)	
H9	0.2831	0.6648	0.8510	0.060*	
C10	0.17163 (19)	0.52116 (16)	0.79522 (10)	0.0414 (4)	
C11	0.06791 (18)	0.57653 (15)	0.73633 (12)	0.0437 (4)	
C12	-0.00329 (19)	0.50151 (17)	0.67329 (12)	0.0499 (4)	
H12	0.0185	0.4217	0.6729	0.060*	
C13	-0.0981 (2)	0.54437 (16)	0.61665 (11)	0.0456 (4)	
H13	-0.1167	0.6246	0.6188	0.055*	
C14	-0.17574 (19)	0.47877 (17)	0.55157 (10)	0.0442 (4)	
C15	-0.1691 (3)	0.35727 (18)	0.54580 (13)	0.0583 (5)	
H15	-0.1111	0.3156	0.5838	0.070*	
C16	-0.2464 (3)	0.2974 (2)	0.48517 (15)	0.0749 (7)	
H16	-0.2408	0.2160	0.4829	0.090*	
C17	-0.3305 (3)	0.3563 (2)	0.42873 (15)	0.0774 (7)	
H17	-0.3814	0.3152	0.3874	0.093*	
C18	-0.3413 (3)	0.4771 (2)	0.43210 (14)	0.0698 (6)	

supporting information

H18	-0.3999	0.5173	0.3936	0.084*	
C19	-0.2647 (2)	0.53742 (19)	0.49291 (12)	0.0556 (5)	
C20	-0.3610 (4)	0.7215 (2)	0.44401 (18)	0.1102 (12)	
H20A	-0.3270	0.7087	0.3882	0.165*	
H20B	-0.3554	0.8036	0.4568	0.165*	
H20C	-0.4638	0.6953	0.4493	0.165*	
01	0.04308 (17)	0.68202 (11)	0.74047 (9)	0.0631 (4)	
O2	-0.2676 (2)	0.65768 (14)	0.49974 (10)	0.0782 (5)	
Fe1	0.38821 (3)	0.48092 (2)	0.764458 (16)	0.04441 (8)	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0711 (15)	0.106 (2)	0.0554 (13)	0.0059 (15)	0.0217 (11)	0.0055 (13)
C2	0.095 (2)	0.0698 (16)	0.102 (2)	-0.0105 (15)	0.055 (2)	0.0035 (15)
C3	0.0524 (14)	0.127 (3)	0.103 (2)	-0.0362 (15)	0.0215 (18)	-0.0322 (19)
C4	0.0488 (13)	0.115 (2)	0.0920 (19)	0.0237 (13)	0.0192 (17)	-0.0047 (16)
C5	0.0735 (17)	0.0777 (16)	0.0751 (17)	0.0027 (13)	0.0224 (15)	-0.0200 (13)
C6	0.0461 (11)	0.0452 (9)	0.0514 (11)	-0.0029 (8)	0.0027 (9)	0.0070 (8)
C7	0.0579 (12)	0.0656 (12)	0.0507 (12)	0.0123 (10)	-0.0015 (10)	0.0139 (10)
C8	0.0543 (12)	0.0874 (16)	0.0454 (10)	0.0093 (11)	-0.0110 (9)	-0.0073 (10)
C9	0.0504 (11)	0.0512 (10)	0.0473 (10)	0.0025 (9)	0.0012 (9)	-0.0115 (8)
C10	0.0353 (8)	0.0479 (9)	0.0409 (8)	-0.0001 (8)	0.0049 (7)	0.0008 (8)
C11	0.0371 (9)	0.0465 (9)	0.0474 (10)	0.0036 (6)	0.0046 (8)	0.0028 (8)
C12	0.0429 (10)	0.0527 (11)	0.0540 (10)	0.0055 (8)	-0.0043 (8)	0.0021 (8)
C13	0.0378 (9)	0.0516 (10)	0.0475 (10)	0.0007 (8)	0.0034 (8)	0.0074 (7)
C14	0.0371 (8)	0.0533 (9)	0.0423 (9)	-0.0015 (8)	0.0048 (7)	0.0031 (8)
C15	0.0647 (13)	0.0588 (12)	0.0514 (12)	-0.0030 (10)	0.0029 (10)	0.0065 (9)
C16	0.101 (2)	0.0594 (13)	0.0644 (15)	-0.0176 (12)	0.0059 (15)	-0.0008 (11)
C17	0.0956 (19)	0.0832 (17)	0.0535 (13)	-0.0280 (14)	-0.0101 (14)	-0.0068 (12)
C18	0.0681 (13)	0.0886 (16)	0.0525 (12)	-0.0038 (13)	-0.0143 (10)	0.0043 (12)
C19	0.0510(11)	0.0675 (13)	0.0484 (11)	0.0012 (10)	-0.0038 (9)	0.0011 (9)
C20	0.152 (3)	0.0934 (19)	0.0852 (19)	0.040 (2)	-0.044 (2)	0.0080 (15)
01	0.0719 (9)	0.0497 (7)	0.0677 (9)	0.0134 (6)	-0.0116 (8)	0.0000 (7)
O2	0.1015 (14)	0.0633 (9)	0.0698 (10)	0.0214 (9)	-0.0350 (10)	-0.0010 (7)
Fe1	0.03514 (12)	0.04845 (13)	0.04965 (14)	-0.00074 (10)	0.00249 (11)	-0.00507 (10)

Geometric parameters (Å, °)

C1—C2	1.385 (4)	C9—Fe1	2.0326 (18)
C1—C5	1.391 (3)	С9—Н9	0.9300
C1—Fe1	2.041 (2)	C10—C11	1.463 (3)
C1—H1	0.9300	C10—Fe1	2.0294 (17)
С2—С3	1.416 (4)	C11—O1	1.225 (2)
C2—Fe1	2.032 (3)	C11—C12	1.470 (3)
С2—Н2	0.9300	C12—C13	1.332 (2)
C3—C4	1.406 (4)	C12—H12	0.9300
C3—Fe1	2.032 (2)	C13—C14	1.460 (3)

supporting information

С3—Н3	0.9300	C13—H13	0.9300
C4—C5	1.398 (3)	C14—C15	1.390 (3)
C4—Fe1	2.047 (2)	C14—C19	1.400 (3)
C4—H4	0.9300	C15—C16	1.374 (3)
C5—Fe1	2.053 (2)	C15—H15	0.9300
С5—Н5	0.9300	C16—C17	1.354 (3)
C6—C7	1.399 (3)	C16—H16	0.9300
C6—C10	1.435 (3)	C17—C18	1.382 (3)
C6—Fe1	2.0306 (18)	C17—H17	0.9300
С6—Н6	0.9300	C18—C19	1.376 (3)
C7—C8	1404(3)	C18—H18	0.9300
C7—Fe1	2.043(2)	C19-O2	1 376 (3)
С7—Н7	0.9300	C_{20}^{-02}	1.570(3) 1 421(3)
C_{8}	1406(3)	C20-H20A	0.9600
C8 Fe1	2.0406(10)	C_{20} H20R	0.9600
	0.0300	C20_H20C	0.9000
$C_0 = C_{10}$	1,420(3)	020-11200	0.9000
09-010	1.429 (3)		
C2—C1—C5	109.0 (2)	C15—C14—C13	122.62 (17)
C2-C1-Fe1	69.79 (15)	C19—C14—C13	120.33 (17)
C5-C1-Fe1	70.60 (14)	C16—C15—C14	121.5 (2)
C2-C1-H1	125.5	C16—C15—H15	119.3
C5-C1-H1	125.5	C14—C15—H15	119.3
Fe1—C1—H1	125.7	C17—C16—C15	120 3 (2)
C1 - C2 - C3	1080(2)	C17—C16—H16	119.8
C1 - C2 - Fe1	70 46 (14)	C15-C16-H16	119.8
$C_3 - C_2 - F_{el}$	69 58 (15)	C16-C17-C18	120.4(2)
C1 - C2 - H2	126.0	C16-C17-H17	119.8
C_{3} C_{2} H_{2}	126.0	C18 - C17 - H17	119.8
Fe1 - C2 - H2	125.5	C19 - C18 - C17	119.5 (2)
C4 - C3 - C2	125.5 106.9(2)	C19-C18-H18	120.3
$C4 - C3 - Ee^1$	70.41(14)	C17-C18-H18	120.3
$C_2 = C_3 = F_{e1}$	69 63 (13)	$0^{2}-0^{19}-0^{18}$	120.5
$C_4 = C_3 = H_3$	126.6	$O_2 = C_{10} = C_{10}$	125.00(17) 115.64(17)
C^2 C^3 H^3	126.6	$C_{18} C_{19} C_{14}$	113.04(17) 121.3(2)
Ee1 C3 H3	125.0	$O_2 C_{20} H_{20A}$	121.5 (2)
$C_5 C_4 C_3$	125.0 108.4.(3)	$O_2 = C_2 O_1 = H_2 O R$	109.5
$C_5 = C_4 = C_5$	70.30(13)	$H_{20A} C_{20} H_{20B}$	109.5
$C_3 = C_4 = re1$	70.30(13)	Ω_{2}^{2} Ω_{2}^{2} Ω_{2}^{2} Ω_{2}^{2} Ω_{2}^{2} Ω_{2}^{2}	109.5
$C_5 = C_4 = 1C_1$	125.8	$H_{20}^{-0.20}$	109.5
$C_3 = C_4 = H_4$	125.8	$H_{20}P_{-}C_{20} H_{20}C_{-}$	109.5
$C_3 - C_4 - H_4$	125.0	$H_{20}B_{}C_{20}$ $H_{20}C_{}$	109.5
$\frac{1}{1} = \frac{1}{1} = \frac{1}$	120.2	C19 - C2 - C20	110.09 (19)
C1 = C5 = C4	107.7(3)	C10 Fe1 $C2$	41.40(7)
$C_1 - C_2 - re_1$	(0.82)(13)	$C_1 \overline{C} \overline{C} \overline{C} \overline{C} \overline{C} \overline{C} \overline{C} \overline{C}$	140.83(11)
C4 - C5 - rei	09.82 (13)	$C_{10} = F_{21} = C_{2}$	109.90 (12)
$CI = C_3 = H_3$	120.1	C_10 —Fe1— C_2	115.91 (10)
C4-C5-H5	126.1	C_{0} FeI C_{2}	148.66 (12)
геі—С5—Н5	126.0	C3—Fe1—C2	40.79(11)

C7—C6—C10	107.77 (18)	C10—Fe1—C9	41.18 (7)
C7—C6—Fe1	70.39 (12)	C6—Fe1—C9	68.92 (8)
C10—C6—Fe1	69.26 (10)	C3—Fe1—C9	114.23 (10)
С7—С6—Н6	126.1	C2—Fe1—C9	109.02 (10)
С10—С6—Н6	126.1	C10—Fe1—C1	110.65 (9)
Fe1—C6—H6	125.8	C6—Fe1—C1	117.87 (10)
C6—C7—C8	109.06 (18)	C3—Fe1—C1	67.62 (11)
C6—C7—Fe1	69.43 (11)	C2—Fe1—C1	39.76 (11)
C8—C7—Fe1	70.19 (12)	C9—Fe1—C1	133.16 (10)
С6—С7—Н7	125.5	C10—Fe1—C7	68.43 (8)
С8—С7—Н7	125.5	C6—Fe1—C7	40.18 (8)
Fe1—C7—H7	126.5	C3—Fe1—C7	130.91 (13)
C7—C8—C9	108.18 (17)	C2—Fe1—C7	170.14 (12)
C7—C8—Fe1	69.69 (12)	C9—Fe1—C7	67.87 (8)
C9—C8—Fe1	69.21 (11)	C1—Fe1—C7	148.88 (10)
С7—С8—Н8	125.9	C10—Fe1—C4	171.98 (10)
С9—С8—Н8	125.9	C6—Fe1—C4	132.11 (11)
Fe1—C8—H8	126.8	C3—Fe1—C4	40.33 (12)
C8—C9—C10	108.20 (17)	C2—Fe1—C4	67.53 (12)
C8—C9—Fe1	70.51 (11)	C9—Fe1—C4	146.05 (11)
C10-C9-Fe1	69.29 (10)	C1—Fe1—C4	66.89 (11)
С8—С9—Н9	125.9	C7—Fe1—C4	109.43 (10)
С10—С9—Н9	125.9	C10—Fe1—C8	68.51 (7)
Fe1—C9—H9	125.9	C6—Fe1—C8	68.04 (8)
C9—C10—C6	106.80 (16)	C3—Fe1—C8	107.73 (11)
C9—C10—C11	124.36 (17)	C2—Fe1—C8	131.63 (11)
C6—C10—C11	128.62 (17)	C9—Fe1—C8	40.28 (8)
C9-C10-Fe1	69.53 (10)	C1—Fe1—C8	170.76 (11)
C6-C10-Fe1	69.35 (11)	C7—Fe1—C8	40.11 (9)
C11—C10—Fe1	121.96 (12)	C4—Fe1—C8	115.22 (10)
O1—C11—C10	120.04 (18)	C10—Fe1—C5	133.45 (9)
O1—C11—C12	122.19 (17)	C6—Fe1—C5	110.56 (10)
C10—C11—C12	117.77 (15)	C3—Fe1—C5	67.68 (11)
C13—C12—C11	121.99 (18)	C2—Fe1—C5	67.16 (10)
C13—C12—H12	119.0	C9—Fe1—C5	172.29 (10)
C11—C12—H12	119.0	C1—Fe1—C5	39.73 (10)
C12—C13—C14	126.90 (18)	C7—Fe1—C5	117.05 (11)
C12—C13—H13	116.6	C4—Fe1—C5	39.88 (10)
C14—C13—H13	116.6	C8—Fe1—C5	147.23 (10)
C15—C14—C19	117.04 (18)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
C6—H6···O1 ⁱ	0.93	2.48	3.368 (2)	159

Symmetry code: (i) -x, y-1/2, -z+3/2.