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Abstract: In this paper, we analyze and compare four image-based visual servoing control laws. Three
of them are classical while a new one is proposed. This new control law is based on a behavior controller
to adjust the movement of the camera. It can also be used to switch between the classical methods. An
analytical study of all control schemes when translationalmotion along and rotational motion around
the optical axis is also presented. Finally, simulation andexperimental results show that the new control
law with a behavior controller has a wider range of success than the other control schemes and can be
used to avoid local minima and singularities.
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1. INTRODUCTION

Visual servoing is a well known approach to increase the
accuracy, the versatility and the robustness of a vision-based
robotic system [11, 5]. Two main aspects have a great impact
on the behavior of any visual servoing scheme: the selection
of the visual features used as input of the control law and
the form of the control scheme. As for the visual features,
they can be selected in the image space (point coordinates,
parameters representing straight lines or ellipses, moments,...
[8, 12, 6, 9, 4]), in the Cartesian space (pose, coordinates of
3D points,... [16, 18]), or composed of a mixture of both kinds
of features attempting to incorporate the advantages of both
image-based and position-based methods [13, 7, 2]. As for the
choice of the control law [8, 14, 5], it affects the behavior of the
selected visual features (local or global exponential decrease,
second order minimization, ...) and may lead, or not, to local
minima and singularities [3].

This paper is not concerned with the choice of the visual
features, but with the analysis of different control schemes. That
is why we will consider the most usual and simple features, that
are the Cartesian coordinates of image points. As for the control
schemes, we consider three classical control laws and we also
propose in this paper a new control law that follows an hybrid
strategy. It is based on a behavior parameter that can be usedto
tune the weight of the current and the desired interaction matrix
in the control law. We will see that in some configurations
where all other control schemes fail, this new control law allows
the system to converge. The paper also includes an analysis
of the control laws with respect to translational motion along
and rotational motion around the optical axis. As we will see, a
singularity of the control law proposed in [14] will be exhibited
thanks to this analysis.

The paper is organized as follows: In Section 2, classical
control schemes are recalled from which the control law with
a behavior controller is proposed. In Section 3, an analysisof
the control laws in the presence of rotation and translationw.r.t.
the camera optical axis is presented. Finally, experimental and
simulation results are presented in Section 4.
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2. NEW CONTROLLER WITH A BEHAVIOR
PARAMETER

Let s ∈ Rk be the vector of the selectedk visual features,s∗

their desired value andv ∈ R6 the instantaneous velocity of the
camera. Most classical control laws have the following form:

v = −λ L̂s

+
(s − s∗) (1)

whereλ is a gain and̂Ls

+
is the pseudoinverse of an estimation

or an approximation of the interaction matrix related tos

(defined such thaṫs = Lsv wherev = (v,ω) with v the
translational velocity andω the rotational one). Different forms
for L̂s have been proposed in the past [8, 14, 5]. For simplicity,
we consider that all values can be computed accurately, leading
to the following choices

1) : L̂s = Ls∗ (2)

2) : L̂s = Ls(t) (3)

3) : L̂s = (Ls∗ + Ls(t))/2. (4)

In the first case,̂Ls is constant during all the servo since it
is the value of the interaction matrix computed at the desired
configuration. In the second case,̂Ls changes at each iteration
of the servo since the current value of the interaction matrix is
used. Finally, in the third case, the average of these two values is
used [14]. These three usual choices forL̂s when used with (1)
define three distinct control laws, that we will denote D, C
and A (for desired, current and average respectively) in the
remainder of the paper.

As explained in [17], it is possible to improve the behavior of
control law A by using:

L̂s = (Ls∗
c∗Tc + Ls(t))/2

wherec∗Tc is the spatial motion transform matrix to transform
velocities expressed in the desired camera frame to the current
camera frame. However, we will not consider this supplemen-
tary control scheme in the following.

On one hand, near the desired pose where the errors − s∗ is
low, the same behavior is obtained whatever the choice ofL̂s
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since we have in that caseLs(t) ≈ Ls∗ . On the other hand,
as soon ass − s∗ is large, it is well known that the choice of
L̂s induces a particular behavior of the system since we thus
haveLs(t) 6= Ls∗ . This motivates the current research on the
determination of visual features such that the interactionmatrix
is constant in all the configuration space of the camera, but it
is clearly still an open problem, and, as already said, not the
subject of this paper.

From (2), (3) and (4), a general form for̂Ls can easily be written
by introducing a behavior controllerβ ∈ R

L̂s = Lβ = (βLs∗ + (1 − β)Ls(t)). (5)

Using (5) in (1), we obtain a new control law, denoted G in
the following (for “general”). Control laws D, C, and A are
known to be locally asymptotically stable only [5]. The same
is also true for control law G. Of course, ifβ = 1, we find
again control law D, ifβ = 0, we obtain control law C, and if
β = 1/2 we obtain control law A. Control law G could thus be
used to switch between the different control schemes duringthe
execution of the task. Switching strategies have already been
proposed in [10, 1] but, in these works, switching is performed
between image-based and position-based approaches, that is
between different features, while here the features are thesame
but their control would be different.

In this paper, we are not interested in designing a possible
strategy to switch between the different control laws. We are
looking if particular values ofβ provide a better behavior of the
system. Indeed, the main interesting property of control law G
obtained using (5) is that the behavior of the system changes
gradually from the behavior using control law C to the behavior
using control law A whenβ varies from0 to 1/2, and similarly,
the behavior changes gradually from the behavior using control
law A to the behavior using control law D whenβ varies from
1/2 to 1. Hence, this new control scheme allows us to adapt the
behavior of the system based on the selected value ofβ. We
will see in Section 4.1 that particular values ofβ indeed allows
the system to converge while the other control schemes fail for
some configurations.

Let us finally note that in case of modeling or calibration errors,
the matricesLs∗ and Ls(t) have to be respectively replaced

by approximationŝLs∗ and L̂s(t), but that does not change
the general properties of the control schemes as long as the
approximations are not too coarse.

3. MOTION ALONG AND AROUND THE OPTICAL AXIS

This section presents an analytical analysis of the controllaws
described previously when the camera displacement is a com-
bination of a translationtz and a rotationrz w.r.t. the camera
optical axis. As usually done in IBVS, we have considered an
object composed of four points forming a square.

The study includes two cases in which the movement along z-
axis is fromZ to Z∗ and whererz = 90o in the first case and
rz = 180o in the second case. In both cases, the object plane is
parallel to the image plane.

The coordinates of a 3D point in the camera frame are denoted
(X,Y,Z) and the coordinates of that point on the image plane
are given byx = (x, y) with x = X/Z andy = Y/Z. It is well
known that the interaction matrix related tox is given by

Lx =



−1

Z
0

x

Z
xy −(1 + x2) y

0
−1

Z

y

Z
1 + y2 −xy −x




Using four points, the visual feature vectors is s = (x0, x1, x2,
x3, y0, y1, y2, y3) whose desired value iss∗ = (x∗0, x

∗

1, x
∗

2, x
∗

3,
y∗0 , y∗1 , y∗2 , y∗3).

Case 1: rz = 90o & tz = (Z → Z∗) The coordinates of the
four points w.r.t. the camera frame at the initial and the desired
poses are denotedpi0 = (−L,−L,Z), pi1 = (−L,L,Z),
pi2 = (L,L,Z), pi3 = (L,−L,Z), pd0 = (−L,L,Z∗), pd1 =
(L,L,Z∗), pd2 = (L,−L,Z∗) and pd3 = (−L,−L,Z∗).
Let l = L/Z and l∗ = L/Z∗. The initial value ofs is
thensi = (−l,−l, l, l,−l, l, l,−l), the desired value iss∗ =
(−l∗, l∗, l∗,−l∗, l∗, l∗,−l∗,−l∗) andsi − s∗ = (−l + l∗,−l−
l∗, l∗− l, l + l∗,−l− l∗, l− l∗, l + l∗, l∗− l) is the error vector.
Using the analytical form ofLx, it is possible to compute the
analytical form ofLβ defined in (5) and then its pseudoinverse
L+

β . Using Z = l∗Z∗/l, we obtain after computations and
simplifications

L
+

β
=




−c0 −c0 −c0 −c0 −c1 c1 −c1 c1
−c1 c1 −c1 c1 −c0 −c0 −c0 −c0
−c3 c4 c3 −c4 c4 c3 −c4 −c3
−c5 c5 −c5 c5 0 0 0 0

0 0 0 0 c5 −c5 c5 −c5
c7 c6 −c6 −c7 c6 −c7 −c6 c7




where, whenβ ∈ [0; 1],

c0 =
l∗Z∗

4(βl∗ + (1 − β)l)

c1 =





0 if βl∗2 = (1 − β)l2

c0
β(1 + l∗2) + (1 − β)(1 + l2)

(βl∗2 − (1 − β)l2)
else.

c3 =
l∗Z∗(βl∗ + (1 − β)l)

8((1 − β)2l3 + β2l∗3)
, c4 =

l∗Z∗(βl∗ − (1 − β)l)

8((1 − β)2l3 + β2l∗3)

c5 =





0 if βl∗2 = (1 − β)l2

−1

4(βl∗2 − (1 − β)l2)
else.

c6 =
βl∗2 + (1 − β)l2

8((1 − β)2l3 + β2l∗3)
, c7 =

βl∗2 − (1 − β)l2

8((1 − β)2l3 + β2l∗3)

Using the value ofsi − s∗, the initial velocity vi is easily
deduced from (1) as

vi = (0, 0, vz, 0, 0, ωz) (6)

where

vz =
λZ∗l∗(βl∗2 − (1 − β)l2)

β2l∗3 + (1 − β)2l3
, ωz =

λll∗(βl∗ + (1 − β)l)

β2l∗3 + (1 − β)2l3

As expected, the initial camera motion consists in performing a
translation combined with a rotation whose value only depends
on image data and on the chosen value forβ andλ. We can
note thatLβ is singular ifβl∗2 = (1− β)l2. For instance, such
a singularity occurs whenl = l∗ (i.e. Z = Z∗) andβ = 1/2,
which is very surprising. The control law A proposed in [14]
is thus singular for a pure rotation of90o, which had not been
exhibited before as far as we know. In fact, the only way to
avoid this singularity whatever the value ofl andl∗ is to select
β = 0 or β = 1. As can be seen on (6), this singularity has
no effect on the computed velocity in perfect conditions, but, as
we will see in Section 4.1, a quite unstable behavior is obtained
in the presence of image noise or for configurations near that



singularity (such that for instance the object plane is almost
parallel to the image plane).

WhenZ = Z∗ thenl = l∗ and the initial velocityvi becomes

vi =

(
0, 0,

λZ∗(2β − 1)

2β2 − 2β + 1
, 0, 0,

λ

2β2 − 2β + 1

)
.

In that classical case, the velocityvi contains an unexpected
translation whose direction depends on the value ofβ (vz < 0
if β < 1/2 andvz > 0 if β > 1/2). The only way to avoid
this nonzero translation is to selectβ = 1/2 as already shown
in [14], butLβ is singular in that case...

Coming back to the more general case and settingβ = 1 in L+
β ,

the initial velocityvi using control law D is given by

vi =

(
0, 0, λZ∗, 0, 0,

λl

l∗

)
. (7)

Whatever the value ofZ, that is even whenZ < Z∗ in which
case the camera has to move backward, the initial camera
motion contains a forward translational term. This surprising
result extends the same property obtained whenZ = Z∗ [5].

Settingβ = 0, the initial velocityvi using the control law C is
now

vi =

(
0, 0,

−λl∗Z∗

l
, 0, 0,

λl∗

l

)
. (8)

In that case, the initial camera motion contains a backward
translational term whatever the value ofZ, that is even when
Z ≥ Z∗. We can even note that, morel is small, i.e. more
Z is large, more the initial backward motion is large, which is
even more surprising than the result obtained forβ = 1. These
results extend thus largely the property exhibited in [6] when
Z = Z∗. By comparing (7) and (8), we can also note that the
amplitude of the rotational motion using control laws D and C
is surprisingly not the same as long asl 6= l∗, that is as soon as
Z 6= Z∗.

Settingβ = 1/2, the velocityvi using control law A is

vi =

(
0, 0,

2λZ∗l∗(l∗2 − l2)

l∗3 + l3
, 0, 0,

2λll∗(l + l∗)

l3 + l∗3

)
.

In that case, a good behavior is obtained since the translational
motion is always in the expected direction (vz < 0 whenl∗ < l,
that is whenZ < Z∗, vz > 0 whenl∗ > l (Z > Z∗), and, as
already said,vz = 0 when l = l∗ (whereZ = Z∗ but where
Lβ is singular).

Case 2: rz = 180o & tz = (Z → Z∗) We now consider
the more problematic case where the camera displacement is
composed of a translation and of a rotation of180o around the
camera optical axis. In that case,si−s∗ = (l+ l∗,−l− l∗,−l−
l∗, l + l∗,−l − l∗,−l − l∗, l + l∗, l + l∗) andL+

β is given by

L
+

β
=




−c0 −c0 −c0 −c0 −c1 c1 −c1 c1
−c1 c1 −c1 c1 −c0 −c0 −c0 −c0
−c3 c3 c3 −c3 c3 c3 −c3 −c3
−c4 c4 −c4 c4 0 0 0 0

0 0 0 0 c4 −c4 c4 −c4
c5 c5 −c5 −c5 c5 −c5 −c5 c5




where, whenβ ∈ [0; 1],

Fig. 1. Afma6 robot

c0 =
l∗Z∗

4(βl∗ + (1 − β)l)

c1 = c0
β(1 + l∗2) + (1 − β)(1 + l2)

βl∗2 + (1 − β)l2

c3 =





0 if βl∗2 = (1 − β)l2

l∗Z∗

8(βl∗2 − (1 − β)l2)
else

c4 =
1

4(βl∗2 + (1 − β)l2)

c5 =





0 if βl∗ = (1 − β)l
1

8(βl∗ − (1 − β)l)
else

Proceeding as before, we obtain using the value ofsi − s∗

vi = (0, 0, vz, 0, 0, 0)

wherevz =





0 if βl∗2 = (1 − β)l2

λZ∗l∗(l + l∗)

βl∗2 − (1 − β)l2
else.

In all cases, no rotational motion is produced while a trans-
lational motion is generally obtained, but whenβl∗2 = (1 −
β)l2 in which caseLβ is singular, leading to a repulsive local
minimum wherevz = 0. Such a case occurs for instance when
Z = Z∗ (i.e. l = l∗) andβ = 1/2, which corresponds to the
control law proposed in [14]. Another singularity occurs when
βl∗ = (1−β)l, which is also the case whenl = l∗ andβ = 1/2.

Of course, whenZ = Z∗, we find again the results given in [3]:
a pure forward motion is involved whenβ = 1 and a pure
backward motion is involved whenβ = 0. More generally, for
β = 1 andβ = 0, the direction of motion is the same (i.e.
forward or backward) whatever the value ofl and l∗, that is
whatever the value ofZ with respect toZ∗. For any other value
of β, the direction of motion depends on the relative value ofZ
with respect toZ∗, but unfortunately, there does not exist any
value ofβ that will give a good behavior in that case since no
rotational motion is computed by the control law.

4. RESULTS

In this section, experimental and simulation results are given.
They have been obtained using the ViSP library [15] in which
the new control schemes have been implemented.

4.1 Experimental results : Singularities

The experimental results have been obtained on a six degrees
of freedom robot as shown in Fig. 1. They allow to validate
the analysis presented in the previous section about the motion
along and around the optical axis. Note that the velocities are
saturated to forbid the application of too high values which
may be computed near a singularity. More precisely, all velocity
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Fig. 2. Experimental results. Case A (rz = 170o andtz = 0.5 m) in (a), (b) and (c); case B (rz = 180o andtz = 0.5 m) in (d). Top
line: camera velocity components (in m/s and rad/s), middleline: visual features error components and global error, bottom
line: image points trajectories.

components are normalized when needed so that the maximal
one is not more than 10 cm/s or 10 deg/s.

Case A In this first case, the required camera motion is com-
posed of a rotation of170o around the optical axis combined
with a translation of 0.5 m along the optical axis toward the
object (a square once again). As usual, gainλ has been set
to 0.1. As expected unfortunately, control law D makes the
points leave the camera field of view due to a forward motion,
while control law C makes the robot reach its joints limits
due to a backward motion. As can be seen in Fig. 2.a, control
law A starts with high value ofvz toward the object, whileωz

increases until the translational motion is almost finished. As
demonstrated in the analytical study, since the pure rotation
rz = 90o corresponds to a singularity of control law A, the
behavior of the system is quite unstable near this configura-
tion, that is from iterations 800 to 1200, as can be observed
in Fig. 2.a. As can be seen in Fig. 2.b, using control law G
with β = 0.45 enables to decrease significantly the effect
of the singularity nearrz = 90o, while its effect completely
disappears forβ = 0.35 (see Fig. 2.c).

Case B In this second case, the task is still to perform
a translation of 0.5 m toward the object but combined now
with a rotation of180o. Figure 2.d shows the results obtained
for control law A (that is G withβ = 0.5). The velocity
components show that the motion of the camera starts with
a pure translation towardZ∗. From the analytical study, no
rotational motion should occur. However, due to small image
noise and to the use of a real robot, that is a non perfectly
calibrated system, the robot moves away from the repulsive
local minimum and starts to rotate. The effect of the singularity
at 90o is clearly visible, but after its crossing, the system
converges to the desired pose.

4.2 Simulation Results : Optical Axis Studies

A general description of the camera behavior when the required
movement is along the optical axis with all possible values
of rz is now given. It has been obtained through extensive
simulations. As for the experimental results, we have setL =
0.1, the initial camera pose is(0, 0, 1, 0, 0, rz), and the desired
camera pose is(0, 0, 0.5, 0, 0, 0) so that the square appears as
a centered square in the image withl∗ = 0.2 and l = 0.1.
We have also setλ = 0.1 and saturation terms on the velocity
components have been introduced.

Applying control law D, the camera rotates and translates
toward the desired pose without any additional movement as
soon asrz ≤ 78o. Whenrz > 78o, the camera continues its
translational motion after reachingZ = Z∗ and then moves
back toward the desired pose. The translation increases asrz

increases (see Fig. 3.a). Whenrz ≥ 155o, the control law fails
since the camera reaches the object plane whereZ = 0. Finally,
vz reaches its saturated maximal value at the first iteration of
the control scheme whileωz reaches its saturated value after
several iterations (see Fig. 3.a).

Applying control law C, the camera rotates and translates cor-
rectly as long asrz ≤ 61o. Whenrz > 61o, the camera starts
moving backward and then translates forward. The backward
translation increases asrz increases (see Fig. 3.b). We can note
on Fig. 3.b that the maximal rotational velocity is reached and
saturated when the translational motion changes from back-
ward to forward. The number of iterations required to reach
the desired pose increases rapidly whenrz > 150o. Finally,
whenrz ≥ 178.6o, the backward translation is so large that the
camera is not able to reach the desired pose.

Control law A converges with a perfect behavior (that is without
any supplementary translation) as long asrz < 180o (see
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Fig. 3. Simulation results for optical axis studies obtained whentz = 0.5 m andrz = 120o.

Fig. 3.c). As discussed before, control law A has a singularity
when rz = 180o, that is why the velocity components are
saturated at the beginning of the servo for large values ofrz.

Applying the new control law G, different behaviors are ob-
tained based on the value selected forβ. When the value of
β is near to0, 1 and 1/2, the behavior of the control law
approaches the behavior of control laws C, D and A respec-
tively. Best selection ofβ leads to enhance the behavior of
the control law for a given displacement. For example, when
rz = 120o, control law G allows the camera to reach its desired
pose whenβ ∈ [−0.08, 1.19] with the best behavior obtained
when β = 0.285 (see Fig. 3.d). In that case, the rotational
velocityωz reaches its maximum value at the first iteration. The
error on each point coordinates starts also to decrease at the first
iteration. Whenrz = 170o, the camera reaches its desired pose
as long asβ ∈ [0.33, 0.85] with best behavior obtained whenβ
is between 0.35 and 0.4.

4.3 Simulation results : Local Minima

Now, we consider a difficult configuration and compare the
results obtained with the different control schemes described
previously. A pose is denoted asp = (t, r) wheret is the
translation expressed in meter andr the roll, pitch and yaw
angles expressed in degrees. The desired camera pose is given
by (0, 0, 1, 45,−30, 30) which means that the desired position
of the image plane is not parallel to the object. The initial
camera pose is given by(0, 0, 1,−46, 30, 30). As can be seen
on Fig. 4.a, using control law D, the camera is first motionless,
as in a local minimum, and then starts to diverge so that the
points leave the camera field of view. Even if we do not consider
this constraint (we are here in simulation where an image plane
of infinite size can be assumed), the camera then reaches the
object plane whereZ = 0, leading of course to a failure. From
the results depicted in Fig. 4.b and 4.c, we can see that control
laws C and A both fail in a local minimum. As for control

law A, it is the first time, as far as we know, that such a local
minimum problem is exhibited. Finally, control law G is the
only one to converge to the desired pose as soon as0.515 <
β < 0.569 (see Fig. 4.d). The oscillations observed in the
camera velocity and in the points coordinates allow the camera
to go out from the workspace corresponding to the attractive
area of the local minimum for the other control schemes.

5. CONCLUSIONS

The control laws used in image-based visual servoing have their
respective drawbacks and strengths. In some cases, a control
law is not able to converge while the others succeed. In other
cases, all classical control laws may fail. Different behaviors
may explain these failures. For example, the camera moves
to infinity, the camera moves to be too near to the object, the
camera reaches a local minimum or a singular configuration. In
this paper, new configurations have been exhibited, for the first
time as far as we know: a local minimum for all classical control
schemes, especially for the control law proposed in [14]. A
singularity of the control scheme proposed in [14] has also
been exhibited and its effects have been emphasized through
experiments obtained on a 6 dof robot. New surprising results
have also been obtained for the other classical control schemes
for motion combining translation along and rotation aroundthe
optical axis. Finally, a new control law based on a behavior con-
troller has also been proposed. Settingβ = 0, 1, or 1/2 would
allow to switch between the three most classical schemes but
we have prefered to analyse the behavior of the control scheme
for all possible values of this parameter. In all consideredcases
(difficult configurations subject to local minima for all classical
schemes, motion along and around the optical axis), it has
always been possible to determine values of this parameter
that provide a satisfactory behavior of the control scheme.In
fact, the suitable values of the behavior controller rely onthe
displacement that the camera has to realize. Future work will
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Fig. 4. Simulation results for local minima situation

thus be devoted to determining how to select automatically the
value of the behavior controller to obtain a good behavior inall
cases. Modifying on line the value of the behavior controller
during the task execution will be also studied.
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