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Summary. Two related systems of coupled modulation equations are studied and com-
pared in this paper. The modulation equations are derived for a certain class of basic
systems which are subject to two distinct, interacting, destabilising mechanisms. We
assume that, near criticality, the ratio of the widths of the unstable wavenumber-intervals
of the two (weakly) unstable modes is small—as, for instance, can be the case in double-
layer convection. Based on these assumptions we first derive a singularly perturbed
modulation equation and then a modulation equation with a nonlocal term. The reduc-
tion of the singularly perturbed system to the nonlocal system can be interpreted as a
limit in which the width of the smallest unstable interval vanishes. We study and com-
pare the behaviour of the stationary solutions of both systems. It is found that spatially
periodic stationary solutions of the nonlocal system exist under the same conditions
as spatially periodic stationary solutions of the singularly perturbed system. Moreover,
these solutions can be interpreted as representing the same quasi-periodic patterns in the
underlying basic system. Thus, the ‘Landau reduction’ to the nonlocal system has no
significant influence on the stationary quasi-periodic patterns. However, a large variety
of intricate heteroclinic and homoclinic connections is found for the singularly perturbed
system. These orbits all correspond to so-called ‘localised structures’ in the underlying
system: They connect simple periodic patterns atx→±∞. None of these patterns can
be described by the nonlocal system. So, one may conclude that the reduction to the
nonlocal system destroys a rich and important set of patterns.

1. Introduction

In the weakly nonlinear stability theory of the evolution of patterns one classically
considers systems like

ψt = L Rψ + N(ψ), ψ(x, y, t): Rn ×Ä× R+ → RN, (1.1)
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Fig. 1. A critical curve with two local minima, one at(k1, R1) and the
other at(k2, R2). Here,R is fixed at a value aboveR1 and R2: There are
two intervals of ‘unstable waves.’ The small parameterδ corresponds to the
ratio of the widths of these intervals.

whereL R (respectivelyN) is a linear (nonlinear) operator,R is a control, or bifurcation,
parameter, andÄ is a bounded domain⊂ Rm. We refer to the review paper by Eckhaus
[9] for a survey and some of the numerous physical examples. This system is assumed
to have a basic solutionψ0(y). The linearised stability of this solution is determined by
setting

ψ = ψ0+ f (y)eikx+µt ,

and solving, for any pair(k, R), an eigenvalue problem forf (y) with eigenvaluesµ =
µ(k, R). Note thatk is a scalar: We have assumed thatn = 1 in (1.1) (for simplicity,
we will assumen = 1 throughout this paper). The neutral curve is defined as the set
{Reµ0(k, R) = 0}, whereµ0(k, R) is the critical eigenvalue (that is, the eigenvalue with
the largest real part) for a given pair(k, R). The basic solutionψ0 is linearly stable for
R= R0 if Reµ0(k, R0) < 0 for all k. A bifurcation occurs if one increasesR such that
{R = const.} intersects the neutral curve at a minimum(kc, Rc) of this curve: A small
interval of ‘linearly unstable waves’ appears forR > Rc (see Figure 1, where eitherk1

or k2 plays the role ofkc). To understand the behaviour of the solutions to (1.1) forR
close toRc, or R− Rc = r ε2, 0< ε ¿ 1, one first shows that the nonlinear evolution of
solutions close (= O(ε)) to ψ0 is governed by the (complex) amplitudeA(ξ, τ ) of the
linearly ‘most unstable mode’fc(y)ei (kcx+µct), where fc(y) is the critical eigenfunction
at the eigenvalueµ0(kc, Rc) = iµc; ξ andτ are slow spatial and temporal variables.
Then, one derives an equation forA(ξ, τ ), the so-called Ginzburg-Landau equation,

Aτ = rµRA− 1

2
µkkAξξ + cA|A|2, (1.2)

whereµR = ∂µ

∂R(kc, Rc),µkk = ∂2µ

∂k2 (kc, Rc), andc ∈ C is the so-called Landau constant.
Note that ReµR > 0 and Reµkk < 0 since the neutral curve can be approximated near
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the minimum(kc, Rc) by the parabola

R= Rc − 1

2

Reµkk

ReµR
(k− kc)

2. (1.3)

Details of this procedure are, for instance, given in [9]. Recently, a number of papers
on the mathematical validity of the Ginzburg-Landau approximation have appeared; we
refer to [2] for a survey and relevant references. The Landau equation associated with this
nonlinear stability problem can be obtained from (1.2) by settingA(ξ, τ ) = A(τ ). This
‘Landau reduction’ can be interpreted by saying that one neglects the width of the band
of unstable waves centred aroundk = kc for R = Rc + r ε2. Historically, the Landau
equation was derived a decade earlier than the Ginzburg-Landau equation (see [30]).

In this paper we consider a class of physical problems which have two distinct,
interacting instability mechanisms at near-critical conditions. This means, in the above
setting, that the neutral curve{Reµ0(k, R) = 0} has two local minima,(k1, R1) and
(k2, R2), such that|R1−R2| is small (see Figure 1). So, if one choosesRclose to criticality
in this case, one expects two independent, interacting, ‘linearly most unstable waves,’
f1(y)ei (k1x+µ1t) near(k1, R1) with complex amplitudeA(ξ, τ ) and f2(y)ei (k2x+µ2t) near
(k2, R2) with amplitudeB(ξ, τ ). The nonlinear behaviour of patterns near criticality is
then described by a coupled system of Ginzburg-Landau equations.

When a neutral curve has more than one local minimum one does not expect that
those minima occur for (approximately) the same value of the bifurcation parameterR.
However, the relative position of the minima can very often be changed as a second
parameterS is varied. Thus, by changing this second parameterS the neutral curve
transforms from a curve with an absolute minimum in(k1, R1) to a curve with an absolute
minimum(k2, R2) (or vice versa). If(k1, R1) is the absolute minimum then we are in the
above described classical case and the evolution of patterns near criticality is governed
by (1.2); if (k2, R2) is the absolute minimum then the situation is again classical and is
governed by a Ginzburg-Landau equation forB(ξ, τ ). The two unstable modes interact in
the transition region. This situation occurs in many applications and the coupled system
of equations described above has been derived by many authors. We mention here some
physical examples where two unstable modes can interact: double-layer convection [25],
[24], [18]; crystal-growing experiments (where the convective and morphological modes
can interact) [13], [26], [21]; gasless combustion [19]; sand ripple formation [31]. The
coupled system of modulation equations has, for instance, been derived in [19], [17],
[22].

In Section 2 we will give a short sketch of the derivation of the coupled system
in the case of (nonresonantly) interacting instability mechanisms. The model problem
considered in this paper is assumed to have a reflection symmetry in the one-dimensional
unbounded variablex. Therefore, all coefficients in the coupled system of modulation
equations will be real:{

Aτ = r A + Aξξ + A(t1|A|2+ c1|B|2),
Bτ = sB+ DBξξ + B(t2|B|2+ c2|A|2), (1.4)

wherer ands measure the distance betweenR andR1,2 (see Section 2 for more details).
By rescaling, we have simplified the coefficients of the linear terms. Due to the reflec-
tion symmetry—which for instance occurs naturally in convection experiments—the
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ξ -variable is not moving (it is independent oft). This is a consequence of the fact that all
eigenvaluesµ(k, R) are real. If this is not the case, then theA andB amplitudes will be
travelling with the group speed of the linearly unstable waves. This speed is in general
not the same for theA- andB-modes, so the interaction of theA andB patterns cannot
be described by (1.4). In this case one has to apply some kind of averaging formalism in
order to derive a so-called mean field Ginzburg-Landau equation; see for instance [17],
[19], and [23] for a validity result.

Here, we focus on the significance of the diffusion parameterD (> 0) in (1.4):
D measures the relative widths of the bands of unstable modes just above the minima
(k1, R1)and(k2, R2). More precisely, as in (1.2), the diffusion coefficients are determined
by ∂2µ

∂k2 (k1,2, R1,2), which measure the curvature of the neutral curve at the minimum (see
(1.3)). We have rescaled the diffusion coefficient in theA-equation to 1:D measures
the ratio of∂

2µ

∂k2 (k2, R2) and ∂
2µ

∂k2 (k1, R1). Thus,D À 1 means that the neutral curve near
(k2, R2) is much ‘sharper,’ or narrower, than near(k1, R1) (see Figure 1 and Section 2
for more details). This occurs for instance naturally in experiments on double-layer
convection (where the depth of the layers differs significantly) and in experiments on
crystal-growth (see [13], [25], and [22], [18] for a discussion). If this is the case one can
introduce, apart fromε ∼ √|R1− R2|, a second small parameter 0< δ ¿ 1 by setting
D = 1

δ2 and write down asingularly perturbedsystem,{
Aτ = r A + Aξξ + A(t1|A|2+ c1|B|2),
Bτ = sB+ 1

δ2 Bξξ + B(t2|B|2+ c2|A|2). (1.5)

There is another, equivalent, way of interpreting this singular term: Both instability
mechanisms are associated with a natural spatial scale at which the patterns evolve. In
this paper we consider the case in which the magnitudes of these scales differ significantly.
Due to the rescaling we can say that the natural scale associated withA is ξ , while it
is δξ for B: B(ξ, τ ) only varies very slowly on theξ -scale. Returning to the above
interpretation this means that the width of the(k2, R2)-parabola (see (1.3)) isO(δ)
compared to the width of the(k1, R1)-parabola (Figure 1). In this situation it is natural
to apply the above-described Landau reduction forB: B(ξ, τ ) = B(τ ). In Section 2 we
show that (1.5) then reduces to the followingnonlocalsystem:{

Aτ = r A + Aξξ + A(t1|A|2+ c1|B|2),
Bτ = sB+ B(t2|B|2+ c2 limM→∞ 1

2M

∫ M
−M |A|2dξ).

(1.6)

We shall also show that this reduction is only valid whenA(ξ, τ ) (andB(τ )) satisfy an
extra solvability condition,

c2B
∫ ∞
−∞

(
|A|2− lim

M→∞
1

2M

∫ M

−M
|A|2dξ̂

)
ei K ξdξ = O(ε2) for K = O(δ).

(1.7)
This condition cannot be satisfied by all solutions of (1.6) (see Section 3.2). The idea of
a Landau reduction has also been applied by Metzener and Proctor [22] in their analysis
of the evolution of patterns at ‘disparate scales.’ Note that our approach is not exactly the
same as in [22]: Therek2, instead ofD, has been taken as a small parameter. In Section 2
we relate our approach to the one in [22]. Some fundamental properties of a modulation



Singularly Perturbed and Nonlocal Modulation Equations 375

equation with a nonlocal term, such as the existence, uniqueness, regularity of solutions,
and the dimension of attractors, have been studied in [7].

The main goal of this paper is to understand the impact of this Landau reduction for
B on the patterns described by (1.5). We focus on the analysis of the stationary solutions
of (1.5) and (1.6). First we search for spatially periodic solutions. For both systems,
the analysis is based on the fact that the (stationary) equation forA is integrable when
B is fixed at a constant value (see [4] for references to the stationary problem of the
(uncoupled) ‘real’ Ginzburg-Landau equation). Thus, the stationary problem associated
with (1.5) is a (singularly) perturbed integrable system; periodic orbits in the fast field
can be found by constructing a Poincar´e map. We find that both systems have a similar set
of periodic solutions which exists under the same conditions on the parameters and, most
importantly, which describe—up toO(δ) corrections—the same family of quasi-periodic
patterns in the basic system. The most important difference between the quasi-periodic
patterns described by (1.5) and (1.6) is that|B| is periodic with anO(δ) amplitude
around a certain valueb in (1.5), while the corresponding solution described by (1.6) has
|B| ≡ b. Thus, the above Landau reduction for theB-mode has no significant influence
here.

By introducing polar coordinates forA and B it is possible to write the stationary
singularly perturbed problem as a four-dimensional ODE with two fast directions,x and
y corresponding toA, and two slow directions,z andw corresponding toB:

ẋ = y,
ẏ = −x + x(x2− c1z2),

ż = δw,

ẇ = δ(−sz+ z(z2− c2x2)),

(1.8)

where we have scaled(r, t1, t2) in (1.5) to (1,−1,−1) (thus we choset1,2 < 0, as
occurs most frequently in applications); the ‘dot’ refers to differentiation with respect
to ‘time’ t , wheret is now a rescaled version ofξ . The reduction from the expected
eight-dimensional system to a four-dimensional system is due to the phase invariance
in the equations forA andB and to the fact that there are two integrals,Ä1 andÄ2, in
the full system. These integrals are uncoupled, in the sense that they are identical to the
integrals of the uncoupled equations forA and B (see Section 4 and [4]). In deriving
(1.8) we choseÄ1 = Ä2 = 0: This only simplifies the analysis of the four-dimensional
system. Apart from other solutions, both ‘most stable’ (see [20]) Stokes-wave solutions,
(A = const.,B ≡ 0) and (B = const.,A ≡ 0), satisfyÄ1 = Ä2 = 0 and are thus
described by (1.8). This four-dimensional system can be analysed (for instance) by the
geometric theory for singularly perturbed systems, originally developed by Fenichel
[11]; see also the contribution of Jones to [1]. Using the results of Fenichel we establish
the existence of two so-called slow, invariant manifolds0l and0r . We find a very rich
structure of heteroclinic and homoclinic orbits which ‘jump up and down’ between0l

and0r . More precisely, there are four critical points on the slow manifolds:Pl , Ql ∈ 0l

and Pr , Qr ∈ 0r . For anyN > 0 there areN (N) different ‘N-jump’ heteroclinic or
homoclinic orbits which connect two of the above four points and which consist ofN+1
slow parts near0l or 0r andN jumps through the fast field. The numberN (N) can be
explicitly calculated:N (N) = 4× the (N + 2)-th Fibonacci number (see Theorems 1
and 2 in Sections 5.2 and 5.3). These results are obtained by carefully tracking the three-
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dimensional stable and unstable manifolds of0l ,0r and the two-dimensional stable and
unstable manifolds ofPl ,r , Ql ,r through the fast field and near the slow manifolds. The
Hamiltonian structure of (1.8) (see Section 4) is a key ingredient of the proof of our
results. Based on the methods developed in [6] we are also able to show the existence
of homoclinic orbits which do not jump immediately from0l to 0r (or vice versa), but
remain in the fast field for a ‘longer time’ (see Theorem 3).

These orbits all correspond to so-called ‘localised structures’ in the underlying system:
they connect simple, spatially periodic patterns atx → ±∞. Such localised structures
can be stable in the uncoupled Ginzburg-Landau equation (see for instance [28] for
a survey). However, none of these patterns can be described by the nonlocal reduction
(1.6). There are two reasons for this. The first reason is that the most important ingredient
of the construction of the heteroclinic and homoclinic orbits is the existence of the
slow manifolds0l and0r . These manifolds can (of course) not exist in the Landau
reduction sinceB, and thusz andw in (1.8), cannot evolve slowly. However, there exist
a small number of heteroclinic orbits in the stationary problem associated with (1.6)
which do have a counterpart in (1.8): The orbits only remain near0l ,r for an O(δ)-
distance. These ‘localised patterns’ cannot be described by the Landau reduction due to
a second, independent reason: They do not satisfy the extra solvability condition (1.7);
see Section 3.2.

Thus we conclude that the reduction to a Landau approach forB destroys a rich and
important set of patterns.

We end this introduction with a short sketch of the structure of this paper. In Section 2
we derive equations (1.4), (1.5), and (1.6), with extra condition (1.7). We also pay
some attention to the problem studied by Metzener and Proctor [22] and relate it to our
approach. Section 3 is devoted to the derivation and analysis of the stationary problem
associated with the nonlocal problem (1.6). The stationary problem associated with the
singularly perturbed problem is studied in Sections 4 and 5: In Section 4 we show the
existence of (fast) periodic solutions using a Poincar´e map and in Section 5 we employ the
ideas of geometric singular perturbation theory. We end the paper with a short discussion.

2. The Derivation of the Equations

We consider the following model problem:

∂ψ

∂t
= L R,S,T (ψ)+ N(ψ) whereψ(x, t): R× R+ → R, (2.1)

which is a simplification of (1.1) since we restrict ourselves to a one-dimensional problem
without a boundedy-variable. Furthermore we assume, as in the introduction, that there
is a reflection symmetryx→ −x in (2.1) and that the basic solutionψ0 ≡ 0. Here, the
linear operator depends on three bifurcation-parametersR, S, andT . The ‘eigenvalue’
µ(k, R) as defined in the introduction is in this case equal to the symbol of the linear
operatorL R,S,T :

L R,S,T (e
ikx) = µ(k, R; S, T)eikx. (2.2)

We consider this very simple model in order to simplify the derivation of the modulation
equation as much as possible. Introducing transversaly-dimensions will merely increase
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the technical difficulties. The validity of the Ginzburg-Landau equation (1.2) for systems
like (2.1) has been proved in [12].

As in the introduction, we define the neutral curve{Reµ(k, R) = 0}. Here, we will
study the case that this curve has two minima:(k1, R1) and(k2, R2), with k2 < k1. The
neutral curve near(k1, R1) can be scaled such that

R= 1+ (k− 1)2+ h.o.t., (2.3)

locally; thus(k1, R1) = (1, 1) (compare with the general expression (1.3)). The two
conditional parametersS and T can now be interpreted. By changingT , the relative
position ofR2 with respect toR1 = 1 can be adjusted. The relative width of the critical
curve, or the band of unstable waves, atk1 = 1 and atk2 is changed byS. The neutral
curve near(k2, R2) can be written as

R= R2+ D(k− k2)
2+ h.o.t., (2.4)

and thusD = D(S) measures the relative widths of the(1, 1)- and(k2, R2)-parabolas.
The object of nonlinear (stability) theory is to describe the nonlinear evolution of the

perturbation forR close to the critical valueRc. If O(R−R1) 6= O(R−R2) one derives
a single uncoupled Ginzburg-Landau equation (1.2) in the weakly nonlinear stability
analysis, either near(1, 1) if 1 < R2 or near(k2, R2) if 1 > R2. Coupling occurs if we
assume that

R− 1= r ε2, R− R2 = sε2, 0< ε ¿ 1. (2.5)

This can be seen as follows: One models the perturbation of the basic solution as slow
modulations of the critical waves,eix andeik2x, and their complex conjugates,

ψ(x, t) = εA(ξ, τ )eix + εB(ξ, τ )eik2x + c.c.+ O(ε2),

whereA andB are unknown ‘amplitudes’ of the slow space and time variablesξ = εx
andτ = ε2t . The nonlinear terms in (2.1) will generate harmonics of these simple linear
waves. Thus, theε2, ε3-terms are constructed from a product of the two most unstable
waves,eix andeik2x,

ψ(x, t) = eix [εA+ ε2φ12+ ε3φ13+ · · ·]
eik2x[εB+ ε2ψ12+ ε3ψ13+ · · ·]

ε2φ02+ · · ·
e2i x [ε2φ22+ · · ·] +c.c.

e2ik2x[ε2ψ22+ · · ·]
eix(1+k2)[ε2812+ · · ·]
eix(1−k2)[ε2912+ · · ·]

(2.6)

Here theA, B, φi j , ψi j , 8i j , and9i j are functions ofξ andτ for every i, j ∈ N. All
scalings are classical; see for instance [9]. The validity of this expansion is proven in
[10] for the case that there is one minimum.

This expansion is valid as long as there are no low-order resonances betweenk1 = 1
andk2. It is clear that fork2 6= 1

2 all above interaction terms are different. Fork2 = 1
2

some of these terms coincide. As a consequence one has to choose other temporal and
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spatial scales and quadratic terms will appear in the governing evolution equations (see
[24] and [31] for physical examples). This is called ‘resonance’; we will not discuss this
in more detail in this paper. Resonance also occurs fork2 = 1

3 on theO(ε3)-level. Since
the dominant terms of the modulation equations are determined at theO(ε3)-level there
are no other resonant values ofk2.

The idea behind the derivation of the modulation equation is simple: One substi-
tutes the expansion forψ into (2.1), and one expands and then gathers terms of the
form εaeix(b1+b2k2),a, b1, b2 ∈ N. The equations at thea = 2-level can be solved: The
functions in expansion (2.6) can all be expressed in terms ofA and B. The solvability
conditions forφ13 andψ13 at the levelsa = 3, b1 = 1, b2 = 0, anda = 3, b1 = 0,
b2 = 1 yield, after some trivial rescalings, the coupled system (1.4) forA andB given
in the introduction.

In this paper we study the situation in which the local parabola near(k2, R2), (2.4),
is very narrow with respect to (2.3) (see the introduction and Figure 1); thus we assume
that

D = 1

δ2
with 0< δ ¿ 1. (2.7)

This automatically yields thesingularly perturbedsystem (1.5) given in the introduction.
The appearance of the singular term1

δ2
∂2B
∂ξ2 can also be understood directly from the

derivational point of view: The width of the(k2, R2)-parabola atR = R2 + O(ε2) is
O(εδ), so the natural spatial scale associated with theB-mode isξ2 = εδx = δξ . Thus,
B evolves on a slow spatial scale, compared toA. Therefore, it is natural to assume a
‘Landau ansatz’ forB: B = B(τ ), that is,B is independent ofξ , as has been done in
[22]. This Ansatz means that we approximate the(k2, R2)-parabola by a line. Repeating
the above derivation process we see that this Landau reduction has no influence on the
equation forA. However, the equation forψ13 (see expansion (2.6)) now reads

L R,S,T (ψ13e
ik2x) =

[
α1
∂B

∂τ
− (α2B+ α3B|B|2+ α4B|A|2)

]
eik2x, (2.8)

where theα1, . . . , α4 are the nonscaled counterparts of the constants in (1.4). This
equation can be written as

L R,S,T (ψ13e
ik2x)e−ik2x = f (ξ, τ )+ g(τ ), (2.9)

where f (ξ, τ ) = −α4B|A|2 is the only term which depends onξ . We define the averages

ψ13(τ ) = lim
M→∞

1

2M

∫ M

−M
ψ13(ξ, τ )dξ,

f (τ ) = lim
M→∞

1

2M

∫ M

−M
f (ξ, τ )dξ,

and separatef andψ13 into a part which only depends onτ and a part which still depends
on bothξ andτ :

ψ13(ξ, τ ) = ψ13(τ )+9(ξ, τ ),
f (ξ, τ ) = f (τ )+ F(ξ, τ ).
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Note that although we of course assume thatψ13 and f are bounded onR, these
averages do not automatically exist for allψ13 and f . However, we shall see thatψ13 and
f exist for the functions studied here (see Section 3.2). We substitute these expressions
into (2.9) and obtain

L R,S,T (ψ13e
ik2x)e−ik2x + L R,S,T (9eik2x)e−ik2x = ( f + g)+ F(ξ, τ ). (2.10)

Becauseψ13 only depends onτ , the first term of this expression can be calculated as

L R,S,T (ψ13e
ik2x)e−ik2x = µ(k2, R2)ψ13 = 0.

Thus we get

L R,S,T (9eik2x)e−ik2x = ( f + g)+ F . (2.11)

Taking the above-defined average on both sides leads to the following solvability
equation:

α1
∂B

∂τ
= α2B+ α3B|B|2+ α4B lim

M→∞
1

2M

∫ M

−M
|A|2dξ.

This equation follows from (2.11); however, it is not a sufficient condition to solve (2.11):
The equation for9 is still left. Writing9 andF as (formal) Fourier integrals, we have∫ ∞

−∞

(
µ(k2+ εK , R)9̂(K )− F̂(K )

)
ei K ξdK = 0, (2.12)

in the sense of distributions. Now we note thatµ(k2 + εK , R) = O(ε2) if |K | = O(δ)
(since the local neutral(k2, R2)-parabola is only ofO(δ)width). Thus we see that (2.12)
cannot be solved for a boundedO(1) solution9 if F̂(K ) 6= O(ε2) for |K | = O(δ).
This yields asecond solvability conditionon F = f − f = α4B|A|2− f ,

f2B
∫ ∞
−∞

(
|A|2− lim

M→∞
1

2M

∫ M

−M
|A|2dξ̂

)
ei K ξdξ = 0+ h.o.t., (2.13)

for |K | ≤ O(δ). Observe that (2.11) can now be solved. After rescaling, the above
analysis leads to thenonlocalsystem (1.6) given in the introduction, where againt1, t2,
r , s, c1, andc2 have exactly the same values as in (1.5); extra condition (2.13) coincides
with (1.7). In [3] a proof has been given of the asymptotic validity of a Ginzburg-Landau
equation with an extra nonlocal term combined with some additional conditions for a
certain version of the Poiseuille flow problem. Note that intuitively the relation between
the singularly perturbed system and the nonlocal system is quite simple:δ has become so
small that one is forced to assume thatB cannot be a function ofξ (at the highest order).
This has no influence on the equation forAτ in (1.5). However, theBξξ has to disappear
in the Bτ -equation, and one has to eliminate theξ -dependence of the|A|2-term.

Remark 2.1. The above derivation of the nonlocal system (1.6) is not completely rig-
orous. In order to improve this, one should work with the Fourier transformψ̂ of ψ , the
solution of (2.1), and interpret it as a distribution; see for instance [12] and [3].
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Remark 2.2. In their analysis of pattern evolution with disparate scales, Metzener and
Proctor [22] do not use the relative width of the local parabolas as small parameter, but
the second critical wavenumberk2: k2 = σ ¿ 1 = k1. If this is the case, it is easy to
show that the width of the(k2, R2)-parabola must also be small, so the above derivation
covers this case. Note that we assume—as in [22]—that the(k2, R2)-parabola yields a
classical Ginzburg-Landau equation if we omit theA-mode (see the introduction); in
other words, we assume thatµ(0, R1) > 0 andO(1) (see [18] for a short discussion).
In this remark we sketch the extra complications encountered by takingσ small. If one
derives the coupled system in this case, one finds that, ifσ À ε,{

∂A
∂τ
= r A + ∂2 A

∂ξ2 + A(t1|A|2+ c̃1
σ 2 |B|2),

∂B
∂τ
= sB+ d

σ 2
∂2B
∂ξ2 + B(t2|B|2+ c̃2

σ 2 |A|2).
(2.14)

Thus, the coupling termsA|B|2 and B|A|2 must also be large,O( 1
σ 2 ). This is due

to the fact that the termsei (1±σ)x in the expansion ofψ (see (2.6)) are now close to
the critical waveeix . Thus, solving the equations for812, 912, (2.6), yields terms like

AB,AB
µ(1±σ,1) = O( 1

σ 2 ). This case is much harder to study than the case above. Therefore, we

focus in this paper on the assumption thatk2 = O(1), D = 1
δ2 , δ ¿ 1.

Moreover, one encounters many other complications in deriving and studying the
appropriate equations as the relative magnitudes ofε andσ change. For instance, for
ε = O(σ ) the system becomes (at leading order){

∂A
∂τ
= r A + ∂2 A

∂ξ2 + cA(Bei L ξ + Be−i L ξ ),
∂B
∂τ
= sB+ a1 limM→∞ 1

2M

∫ M
−M |A|2e−i L ξdξ,

(2.15)

wherek2 = σ = εL. In the derivation of these last equations the magnitude of the
perturbation had to be taken of orderε2 instead ofε. Solutions of the above system can
be found explicitly and it can be checked that these solutions are unstable. From this it
follows that although one first has to take the perturbations of magnitudeO(ε2), they
will grow to a magnitude ofO(ε). This leads to a rather complicated system. The above
example (2.15) is just included to indicate the complications caused by decreasingσ

further. Deriving and analysing the full set of equations for every possible combination
of the magnitude ofε relative to that ofσ is a task we will not pursue in this paper. We
refer to [29] in which such a complete nonlinear stability analysis has been performed
for what is, in a sense, a simpler case: a weakly, periodically driven, system. There, five
essentially different types of modulation equations have been derived.

In [22] a different system has been proposed to describe the weakly nonlinear evolution
of patterns at ‘disparate scales.’ This system is in some sense a combination of (1.6) and
(2.15), {

∂A
∂τ
= µA− |A|2A+ ∂2 A

∂X2 + A(Bei X + B∗e−i X ),
∂B
∂τ
= νB− c|B|2B− s limM→∞ 1

2M

∫ M
−M |A|2e−i X d X.

(2.16)

In order to give a foundation to this system one has to assume relations between the
parameters of (1.6) and (2.15) andε (see [18]): That is the only way to have quadratic and
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cubic terms of the same magnitude. Since these parameters are in principle completely
independent ofε this assumption will be violated in general. Therefore, one will not
find this system if one pursues the above-sketched task of deriving all relevant ‘generic’
equations.

3. The Nonlocal System

From now on we focus on the analysis of nonlocal system (1.6) and singularly perturbed
system (1.5). We will study and compare the solutions of these systems. System (1.6)
can be considered as a limit of (1.5); thus we expect that some classes of solutions
represent similar patterns in the underlying basic system. The most simple solutions are
the stationary solutions, which we will study here. The stationary solutions are certainly
of a physical relevance, for instance in the convection context where stable stationary
patterns exist (see Section 6). We first determine the ODE associated with the stationary
solutions of (1.6),{

∂2 A
∂ξ2 = −r A − A(t1|A|2+ c1|B|2),

0 = B(s+ t2|B|2+ c2 limM→∞ 1
2M

∫ M
−M |A|2dξ).

(3.1)

Thus, there are two possible values forB:

1. B = 0,

2. |B|2 = −s

t2
+ −c2

t2
C(A), whereC(A) = lim

M→∞
1

2M

∫ M

−M
|A|2dξ.

The first case leads to the stationary uncoupled Ginzburg-Landau equation forA (which
is integrable; see below and [4]). The second case leads to the following equation forA:

∂2A

∂ξ2
=
(
−r + c1

t2
(s+ c2C(A))

)
A− t1A|A|2.

To reduce the number of unknown variables we introduce polar coordinates. Let

A = ρ1ei θ1, (3.2)

whereρ1 andθ1 depend onξ . We insert these expressions into the equation forA, separate
the real and complex parts and find{

∂2ρ1

∂ξ2 − ρ1(
∂θ1
∂ξ
)2 = (−r + c1

t2
(s+ c2C(ρ1)))ρ1− t1ρ3

1,

2∂ρ1

∂ξ
∂θ1
∂ξ
+ ρ1

∂2θ1
∂ξ2 = 0.

(3.3)

Because

1

ρ1

∂

∂ξ

(
ρ2

1
∂θ1

∂ξ

)
= 2

∂ρ1

∂ξ

∂θ1

∂ξ
+ ρ1

∂2θ1

∂ξ2
,

we find that
∂

∂ξ

(
ρ2

1
∂θ1

∂ξ

)
= 0
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and therefore introduce the integralÄ1,

ρ2
1
∂θ1

∂ξ
= Ä1.

Substituting this into (3.3) leads to

∂2ρ1

∂ξ2
=
(
−r + c1

t2
(s+ c2C(ρ1))

)
ρ1− t1ρ

3
1 +

Ä2
1

ρ3
1

. (3.4)

To simplify the calculations, we set in system (3.4)r = 1, t1 = −1, t2 = −1. Note
that this can be obtained by straightforward rescalings with additional assumptions on
the signs ofr, t1, t2. These assumptions are so that the equation is directly related to
the single Ginzburg-Landau equation mostly studied in the literature. Furthermore we
assume thatÄ1 = 0. TakingÄ1 = 0 simplifies the analysis. However, forÄ1 6= 0 the
analysis is in essence the same. BecauseÄ1 = ρ2

1
∂θ1
∂ξ

,Ä1 = 0 implies that∂θ1
∂ξ
= 0. This

yields thatθ1 does not depend onξ ; thusθ1 is a constant. Therefore, due to the phase
shift invariance in (1.6), one can say that we restrict ourselves to studying real solutions
of this system. We refer to [4] for a detailed discussion of the relation betweenÄ = 0
andÄ 6= 0 in the single real Ginzburg-Landau case.

3.1. Stationary Solutions of the Nonlocal Equations

We introducex = ρ1 in (3.4) withÄ1 = 0, r = 1, t1 = −1, andt2 = −1,

ẍ = −(1+ c1(s+ c2C(x)))x+ x3 with C(x) = lim
M→∞

1

2M

∫ M

−M
x2 dt, (3.5)

where the dot means differentiating with respect to ‘time’t = ξ . We are only interested
in bounded solutions of these equations sinceA, where|A| = ρ1 = x, must remain
bounded. MoreoverC(x) is only defined for boundedx. First we setC(x) = C, where
C is a fixed constant. System (3.5) then becomes

ẍ = −ax+ x3 where a = 1+ c1(s+ c2C). (3.6)

We will describe the phase portrait of this equation in some detail, because later on
we will come across this equation again. Fora < 0, (3.6) has only one critical point,
(0, 0), which is a saddle point. This shows that there are no bounded solutions, except
for the trivial critical point. Fora > 0, the system has three critical points:(0, 0) and
(±√a, 0). In this case(0, 0) is a centre point and(±√a, 0) are saddle points. There exist
two heteroclinic connections between the two saddle points. Inside this heteroclinic loop
there are bounded periodic solutions and outside all orbits are unbounded. This means
that bounded solutions of (3.6) will always lie inside the heteroclinic cycle formed by the
two connections. These solutions are periodic (see Figure 2). System (3.6) is integrable
with integral or energyk:

k = 1

2
y2+ 1

2
ax2− 1

4
x4, wherey = ẋ. (3.7)
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y

x

Fig. 2. The phase portrait for the equationẍ = −ax+ x3

wherea > 0.

It is possible to determineC(x) explicitly for a periodic solution of (3.6), with period
T0. Note that

C(x) = lim
M→∞

2M

2MT0

∫ T0

0
x2 dt = 1

T0

∫ T0

0
x2 dt (3.8)

for a periodic solutionx. Hence

C(x) =
∫ T0

0 x2dt∫ T0

0 dt
=
∫ x1

−x1

x2

G(x,k) dx∫ x1

−x1

1
G(x,k) dx

, (3.9)

by changing variables, whereG(x, k) =
√

2k− ax2+ 1
2x4. Here−√a < −x1 < 0 <

x1 <
√

a are the intersection points of the solutionx, on the energy level setk, with
y = 0. IntroduceX = x2 andX1 = x2

1, then

C(x) = T1(k)

T0(k)
, whereTi (k) =

∮
Xi d X√

2kX− aX2+ 1
2 X3

. (3.10)

This is a contour integral in the complex plane around the interval [0, X1] on the real
axis. We define

χ(k) = T1(k)

T0(k)
. (3.11)

Becausex is a periodic solution which lies inside the heteroclinic cycle, thek-value of
x lies between 0 and14a2. Below we will show thatχ is a monotonic function ofk, so
we can conclude that 0< χ < a (sinceχ(0) = 0 and limk↑ 1

4 a2 χ(k) = a). Although
this result is a special case of a more general result proved in [4], we will sketch the
derivation of the monotonicity result:χ(k) is an important quantity which will also
appear in subsequent sections. Note that

∂χ

∂k
= ∂

∂k

T1

T0
= T0

∂T1
∂k − T1

∂T0
∂k

T2
0

.
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We defineG1(k, X) =
√

2kX− aX2+ 1
2 X3 and define

Ji (k) =
∮

Xi d X

(G1(k, X))3
,

which yields that

∂χ

∂k
= −T0J2+ T1J1

T2
0

. (3.12)

RewritingTi (k) into theseJi (k)’s leads to the following relation for everyi ≥ 0:

Ti = 2k Ji+1− a Ji+2+ 1

2
Ji+3. (3.13)

Since ∮
d

d X

Xi d X

(G1(k, X))
= 0

for everyi ≥ 1, we also find

k(2i − 1)Ji + (1− i )a Ji+1+
(

1

2
i − 3

4

)
Ji+2 = 0. (3.14)

Setting in (3.13)i = 0, 1 and in (3.14)i = 1, 2 leads to a system of four equations from
which J1 andJ2 can be solved. Substitution of these expressions into (3.12) gives

∂χ

∂k
= 1

4k(a2− 4k)
(aχ2− 8kχ + 4ka).

We define f (k) = 4k(a2 − 4k) andP(χ) = aχ2 − 8kχ + 4ka, and see thatf (k) > 0
for 0< k < 1

4a2, which is exactly the interval we are studying. There are no solutions of
P(χ) = 0 and so, becausea > 0, P(χ) > 0 for everyχ . Combining this finally results
in ∂χ

∂k > 0. This yields that 0< χ(k) < a, whereχ(k) = 0 corresponds to the centre
point(0, 0) andχ(k) = a to the heteroclinic orbit. SinceC(x) = χ(k) one observes that
bounded solutions can only exist if 0< C(x) < a. We can now explicitly solve (3.5):
For a given value ofa = 1+ c1(s+ c2C) in (3.6) we see that the bounded orbits have
values ofC ranging from 0 toa; thus if

C(x) ∈ (0, 1+ c1(s+ c2C(x))), (3.15)

we see that one bounded orbit of system (3.6) is selected as the solution of system (3.5).
Again C(x) = 0 corresponds to the selection of the centre point(0, 0) andC(x) =
1+ c1(s+ c2C(x)), i.e.,C(x) = 1+c1s

1−c1c2
, to the selection of a heteroclinic orbit. Recall

that|B|2 = s+ c2C(x), which relates the value of|B| to everyC(x). Thus, the nonlocal
system (1.6) only has bounded stationary solutions(A(ξ), B) with ‘average’C(A) if
0< C(A) < 1+ c1(s+ c2C(A)) and|B|2 = s+ c2C(A) > 0.
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3.2. Applying the Solvability Condition

The two boundaries of the interval given by (3.15) determine, in a sense, the bifurcations
at which the periodic solutions of (3.5) (dis)appear. As already noted above, the periodic
solution shrinks into a critical point atC(x) = 0. The other boundary, atC(x) = 1+c1s

1−c1c2
,

determines a global bifurcation at which the periodic orbit merges with a heteroclinic
cycle of (3.5). From the derivation of the system we also obtained an extra condition
(1.7) which the solutions have to satisfy. As can be easily seen, the critical points of the
system do satisfy the condition. This is also true for the periodic solutions as long as their
period is not too large. This can be seen as follows. Note that (1.7) determines the Fourier
transform of the (periodic) function|A|2 − C(A). This is of course a discrete spectrum
with ‘peaks’ atK = 2πn

T0
, n = ±1,±2, . . . , whereT0 is the period of|A|2. Observe that

there is no peak atK = 0 due to the subtraction ‘−C(A)’. SinceT0 becomes unbounded
ask ↑ 1

4a2 (see [4]), we see that then = ±1 peaks approach theK = O(δ) region if
k approaches14a2. In other words, the periodic orbits satisfy the extra condition (1.7) as
long asT0 6= O( 1

δ
). The periodic orbits with a very long period do not satisfy (1.7). The

same is true for the heteroclinic orbits: They do not satisfy (1.7) (this can be checked
by using the explicit expression (5.3) given in Section 5.1). Thus, we conclude that the
only stationary solutions described by the Landau reduction are the solutions with|A| =
constant or|A| is periodic withO(1) period. All other solutions of system (1.6) do not
satisfy solvability condition (1.7).

Furthermore, we note that the ‘average’ described in Section 2 is defined for all
solutions of the stationary problem associated with (1.6).

4. The Singularly Perturbed System: Periodic Solutions

In this section we will study the stationary solutions of the singularly perturbed system.
The stationary problem associated with the singularly perturbed system reads{

∂2 A
∂ξ2 = −r A − A(t1|A|2+ c1|B|2),
∂2B
∂ξ2 = δ2(−sB− B(t2|B|2+ c2|A|2)).

(4.1)

As in Section 3, we introduce polar coordinates forA andB,

A = ρ1ei θ1, B = ρ2ei θ2.

Then the system becomes
∂2ρ1

∂ξ2 = −rρ1− ρ1(t1ρ2
1 + c1ρ

2
2)+ Ä2

1

ρ3
1
,

∂2ρ2

∂ξ2 = δ2(−sρ2− ρ2(t2ρ2
2 + c2ρ

2
1)+ Ä̃2

2

ρ3
2
),

(4.2)

whereÄ1 andÄ̃2 are integrals, similar toÄ1 in Section 3:Ä1 = ρ2
1
∂θ1
∂ξ

andδÄ̃2 = Ä2 =
ρ2

2
∂θ2
∂ξ

. Note that∂B
∂ξ
= O(δ); thus ∂θ2

∂ξ
has to be ofO(δ), which implies thatÄ2 is O(δ):

Ä2 = δÄ̃2. We will study the bounded solutions of singularly perturbed system (4.2)
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where, as for the nonlocal system, we set for simplicityÄ1 = Ä̃2 = 0 (andr = 1,
t1 = t2 = −1). This implies that∂θ1

∂ξ
= ∂θ2

∂ξ
= 0 and thus thatθ1 andθ2 are constants.

Note that the Stokes waves, (A = constant,B = 0) and (A = 0, B = constant), are on
theÄ1 = Ä̃2 = 0 level set.

Next we introducex = ρ1 andy = ∂ρ1

∂ξ
= ẋ where the dot means differentiation with

respect to ‘time’t = ξ ; equivalently we writez= ρ2 andδw = ż,
ẋ = y,
ẏ = −x + x(x2− c1z2),

ż = δw,

ẇ = δ(−sz+ z(z2− c2x2)).

(4.3)

Thus,x andy can be considered as the fast (=O(1)) moving coordinates andz andw as
the slow (=O(δ)) coordinates. The system contains a lot of useful symmetries: (4.3) is
equivariant under

{x→−x, y→−y}, {x→−x, t→−t, w→−w}, {x→−x, t→−t, z→−z},
{z→−z, w→−w}, {y→−y, t→−t, w→−w}, {y→−y, t→−t, z→−z}.

(4.4)
System (4.3) can be considered as a Hamiltonian system. We introduce the arbitrary
rescalingsx = αx̃, y = α ỹ, z= β z̃, andw = βw̃, for α, β > 0. This gives

˙̃x = ỹ,
˙̃y = −x̃ + x̃(α2x̃2− c1β

2z̃2),
˙̃z = δw̃,
˙̃w = δ(−sz̃+ z̃(β2z̃2− c2α

2x̃2)).

(4.5)

The HamiltonianH which could belong to this system must be of the form

H = 1

2
(x̃2+ ỹ2+ δsz̃2+ δw̃2)− 1

4
α2x̃4− 1

4
β2z̃4+mx̃2z̃2,

wherem still has to be determined. This implies that we must impose thatc1β
2 = δc2α

2,
which yields that

β2

α2
= δc2

c1
, when sign(c1) = sign(c2).

Thus, it is possible to rescale (4.3) so that it becomes a Hamiltonian system. This rescaling
has to satisfyβ

2

α2 = O(δ), which means thatO(1) solutions in the Hamiltonian system
correspond to solutions of (4.3) of which either the pair(x, y) or the pair(z, w) (or both)
is not O(1). However, amplitudeA in (1.5) corresponds to(x, y) and B to (z, w) and
both A andB must beO(1), due to the structure of the derivation process. Therefore we
will not write (4.3) as a Hamiltonian system, but we will use that the energy is conserved.
Note that the expression for the energy contains only even powers ofx, y, z, andw. In
the case that sign(c1) = − sign(c2) it is also possible to rescale (4.3) to a Hamiltonian
system.
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Before we study the perturbed system we are interested in the dynamics of the un-
perturbed system. Settingδ = 0 leads to{

ẋ = y,
ẏ = −x + x(x2− c1z2

0).
(4.6)

Herez = z0 andw = w0 wherez0 andw0 are constants of motion, because setting
δ = 0 implies thaṫz= 0 andẇ = 0. The above system can also be written as

ẍ = −(1+ c1z2
0)x + x3. (4.7)

This is the same as equation (3.6) witha = 1 + c1z2
0, which we already studied in

Section 3.1. Therefore the same results as for (3.6) can be obtained.
Next we consider the critical points of the perturbed system. Here the critical points

are given with their characterisation, where the first part is the characterisation in the
fast directions and the second in the slow directions (that is, the first pair of eigenvalues
is O(1), the second pairO(δ)).

(0, 0, 0, 0) for s> 0 centre/centre,
for s< 0 centre/saddle,

(0, 0,±√s, 0) for sc1+ 1< 0 saddle/saddle,
for sc1+ 1> 0 centre/saddle,

(±1, 0, 0, 0) for c2+ s< 0 saddle/saddle,
for c2+ s> 0 saddle/centre,

(±
√

c1s+1
1−c1c2

, 0,±
√

s+c2
1−c1c2

, 0) for 2(c2+s)(1+c1c2)

1−c1c2
< 0 saddle/centre,

for 2(c2+s)(1+c1c2)

1−c1c2
> 0 saddle/saddle.

These critical points only exist when the expressions under the square root are positive.
So the second two critical points only exist fors > 0 and the last four critical points
only exist for c1s+1

1−c1c2
> 0 and s+c2

1−c1c2
> 0. These critical points give rise to solutions of

the original system. The first critical point gives the trivial solution, the second gives the
Stokes waveA = 0 andB±√sei θ2 whereθ2 is a constant; the third gives another Stokes
waveA = ±ei θ1 andB = 0 with θ1 a constant. The last four critical points correspond to

the mixed patternsA ≡ ±
√

c1s+1
1−c1c2

ei θ1 andB ≡ ±
√

s+c2
1−c1c2

ei θ2 with θ1 andθ2 constants.

The heteroclinic and homoclinic orbits of Section 5 will have their origins and destinies
at one or two of these four points.

4.1. Periodic Solutions

The singularly perturbed system possesses two time scales:(x, y) are the fast variables
and (z, w) are the slow variables. In the nonlocal system there is no slow behaviour.
When studying behaviour which is dominated by the fast field in the singularly perturbed
system, we have to takėz andẇ almost 0, which implies thatB is ‘almost’ independent
of ξ . Recall that this is exactly the condition which is imposed onB when deriving the
nonlocal system. Therefore we expect to observe approximately the same behaviour for
solutions which remain in the fast field of the singularly perturbed system as for the
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solutions of the nonlocal system. In this subsection we will study the solutions of (4.3)
which are dominated by the fast field. We will focus on the periodic solutions. We expect
to find approximately the same existence conditions (and solutions) as for the nonlocal
system. In the next section we will study solutions to (4.3) which consist of fast and slow
parts. These solutions cannot exist in the nonlocal system.

We will construct solutions to (4.3) by using the fact that the unperturbed limitδ = 0
is completely integrable: 

ẋ = y,
ẏ = −x + x(x2− c1z2),

ż = 0,
ẇ = 0,

(4.8)

with the three integrals

k = 1

2

(
y2+ x2− 1

2
x4+ c1x2z2

)
, k1 = z, k2 = w. (4.9)

The behaviour of fast periodic solutions of (4.3) is dominated by the unperturbed system,
since the solutions to (4.3) remainO(δ) close to solutions of (4.8) forO(1) time. Thus,
a fast periodic solution to (4.3) will beO(δ) close to a periodic solution of (4.8): We
can study the existence of periodic solutions of the singularly perturbed system by
constructing and approximating a Poincar´e map which measures the changes in thek, z,
andw-values for a solution of the perturbed system. This Poincar´e mapping is defined
as follows:

P(k, k1, k2) = (k+1K (k, k1, k2), k1+1K1(k, k1, k2), k2+1K2(k, k1, k2))

= (k+1K (k, z, w), z+1K1(k, z, w),w +1K2(k, z, w)). (4.10)

The quantities1K (k0, z0, w0),1K1(k0, z0, w0), and1K2(k0, z0, w0)measure the accu-
mulated change in the slow variablesk, z, andw from a solution of the perturbed system.
Due to reasons which will become clear later on we define the Poincar´e map in a some-
what nonstandard way. The Poincar´e map is defined by a solution which consists of two
parts which are joined together. The first part starts on the cross section{x = 0, y > 0},
travels forwards in time and ends by intersecting the cross section{x = 0, y < 0}. The
time it takes this solution to intersect with the cross section{x = 0, y < 0} is denoted
by Tδ. The other part travels backwards in time and ends by intersecting{x = 0, y < 0}
(see Figure 3). The time it takes this solution to intersect with{x = 0, y < 0} is denoted
by T−δ. Here(k0, z0, w0) is the initial value of these solutions; hencek0 is so thatx0 = 0
andy0 > 0. The accumulated change of the integralk over this orbit is given by

1K (k0, z0, w0) =
∫ Tδ

−T−δ
k̇(xδ, yδ, zδ, wδ) dt,

where(xδ(t), yδ(t), zδ(t), wδ(t)) is the above-constructed solution of the perturbed sys-
tem. The quantities1K1 and1K2 can be expressed in the same way. Substituting the
expression fork, (4.9), gives

1K (k0, z0, w0) = δ
∫ Tδ

−T−δ
c1x2

δ wδzδ dt.
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y

x

(x0; y0)

Fig. 3. The construction of the Poincar´e map. The thin
lines represent solutions to the unperturbed problem (4.6)
in the plane{z = z0, w = w0}. The thick line is the
projection of a solution of (4.1) on the plane{z= z0, w =
w0}.

The solution(xδ(t), yδ(t), zδ(t), wδ(t)) can be approximated withO(δ)-error by the so-
lution(x0(t), y0(t), z0, w0)of the unperturbed system with energyk = k0 which starts on
the cross section{x = 0, y < 0}with the same initial data as(xδ(t), yδ(t), zδ(t), wδ(t));
T±δ can be approximated by± 1

2T0, the period of the solution(x0(t), y0(t), z0, w0).
Therefore

1K (k0, z0, w0) = δ
∫ 1

2 T0

− 1
2 T0

c1x2
0w0z0 dt + O(δ2).

We defineG(k, z, x) =
√

2k− x2+ 1
2x4− c1x2z2. Note that this is nearly the same

function as defined in Section 3.1. Transforming the coordinates leads to

1K (k0, z0, w0) = 2δc1w0z0

∫ x1

−x1

x2 dx

G(k0, z0, x)
+ O(δ2).

Here−
√

1+ c1z2
0 < −x1 < 0< x1 <

√
1+ c1z2

0 are the intersection points withy = 0

of the solution withk = k0. We setX = x2 andX1 = x2
1; then,

1K (k0, z0, w0) = δc1w0z0T1(k0, z0)+ O(δ2), (4.11)

where

Ti (k, z) =
∮

Xi d X√
2kX− X2+ 1

2 X3− c1X2z2
.

This contour integral around the interval [0, X1] is again very similar to the one defined
in Section 3.1. In the same way we obtain

1K1(k0, z0, w0) = δw0T0(k0, z0)+ O(δ2),

1K2(k0, z0, w0) = −δz0((s− z2
0)T0(k0, z0)+ c2T1(k0, z0))+ O(δ2).

(4.12)
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A solution is periodic if1K = 1K1 = 1K2 = 0. SinceT0(k, z) andT1(k, z) are strictly
positive, this yields

c1w0z0+ O(δ) = 0,

w0+ O(δ) = 0, (4.13)

z0((s− z2
0)T0(k0, z0)+ c2T1(k0, z0))+ O(δ) = 0.

This seems to lead to two possibilities:

1. z0 = O(δ) andw0 = O(δ),
2. w0 = O(δ) and(s− z2

0)T0(k0, z0)+ c2T1(k0, z0) = O(δ).

However, (4.13) is a singular system in the limitδ → 0. Thus we cannot solve this
system forδ = 0 by applying the implicit function theorem and concluding that there
is a solution to the perturbed systemO(δ) near theδ = 0 solution. On the contrary:
one must expect that the solution of the full problem will be much more complicated.
Nevertheless, we will now show that the above two ‘singular’ solutions are correct.

Approximating the solution of the perturbed system by a solution of the unperturbed
system throws away too much of the dynamics of the system; thus we have to look at the
expressions without approximating the solution. The exact expressions for1K , 1K1,
and1K2 are

1K (k0, z0, w0) = δ

∫ Tδ

−T−δ
c1x2

δ wδzδ dt,

1K1(k0, z0, w0) = δ

∫ Tδ

−T−δ
wδ dt,

1K2(k0, z0, w0) = δ

∫ Tδ

−T−δ
(−szδ + z3

δ − c2x2
δ zδ) dt.

We note thatwδ(t) ≡ 0 and zδ(t) ≡ 0 if z0 = w0 = 0. Thus1K (k0, 0, 0) =
1K1(k0, 0, 0) = 1K2(k0, 0, 0) = 0. Therefore periodic solutions exist. This can also
be seen by noting that ifz= w = 0, the dynamics of (4.3) are described by

ẍ = −x + x3.

This leads to periodic solutions in the(z, w) = (0, 0)-plane. These solutions are also
solutions of the unperturbed system.

We now consider the second possible solution to (4.13). On the cross section we have
x0 = x(0) = 0. Let’s again considerw0 = w(0) = 0; thusż(0) = 0. It can be shown for
a solution(xδ, yδ, zδ, wδ) of (4.3) with these initial conditions thatxδ(t) (resp.zδ(t)) is
an odd (resp. even) function oft . This can be done by inductively checking thatx(0) = 0
andż(0) = 0 in (4.3) yields thatx(2n)(0) = 0, z(2n+1)(0) = 0 for everyn. From the fact
thatx is odd it follows thatT−δ = Tδ. Becausez is even,w = ż is odd. Thus

1K (k0, z0, w0) = δ
∫ 1

2 Tδ

− 1
2 Tδ

c1x2
δ wδzδ dt ≡ 0,
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sincex2
δ wδzδ is an odd function oft . Analogously, sincewδ is odd,

1K1(k0, z0, w0) ≡ 0.

We still have to use the solution of the unperturbed system to approximate1K2; see
(4.12). Thus, a periodic solution with initial datax0 = z0 = 0 must satisfy

z0 = 0 or (z2
0 − s)T0(k0, z0)− c2T1(k0, z0) = 0.

This is equivalent toχ(k0, z0) = z2
0−s
c2

whereχ is in essence the function defined in (3.11).
In Section 3.1 we showed thatχ ∈ [0,a], wherea in (3.6) corresponds to 1+ c1z2 in
(4.7), and thatχ is a monotonically increasing function ofk from 0 toa = 1+ c1z2.
Sinces, c1, andc2 are known from the equations, an interval forz0 can be determined

so thatχ(k0, z0) = z2
0−s
c2

holds,

0≤ z2
0 − s

c2
≤ 1+ c1z2

0. (4.14)

As in the case for the existence of solutions of the nonlocal system, there are, for different
values of the coefficients, different intervals forz0 where periodic solutions exist.

4.2. The Relation with the Nonlocal System

Since we expected similar conditions for the existence of periodic solutions for the
singularly perturbed system as for solutions of the nonlocal system, we are now going
to compare the conditions for this existence. Recall that in the nonlocal system bounded
solutions exist forB = 0 and for|B|2 = s+ c2C(x) whereC(x) ∈ (0, 1+ c1(s+
c2C(x))). In the singularly perturbed system there exist periodic solutions forz= 0 and
for z with 0 ≤ z2−s

c2
≤ 1+ c1z2. In Section 4 we setB = ρ2ei θ2 and we introducedz

by ρ2 = z. This implies thatB = 0 is the same asz= 0. Thus the first possibilities for
the existence of the periodic solutions coincide, which of course is not surprising since
the nonlocal system (1.6) and the singularly perturbed system (1.5) are exactly the same
for the subcaseB = 0. The other two cases are somewhat more difficult to compare but
finally these appear to be essentially the same. Since|B| = z in the singularly perturbed
case and|B|2 = s+ c2C(x) in the nonlocal case, both existence conditions (3.15) and
(4.14) can be compared by substitutingz2

0 = s+ c2C(x) into (4.14) to obtain

0≤ s+ c2C(x)− s

c2
(= C(x)) ≤ 1+ c1(s+ c2C(x)).

This is exactly the condition (3.15) for the existence of bounded periodic solutions for
the nonlocal system. This yields that bounded solutions of the nonlocal system and
fast periodic solutions of the singularly perturbed system exist exactly under the same
conditions.

Moreover, there is a direct relation between these two families of periodic solutions.
The construction of the periodic solutions in the nonlocal case of Section 3.1 shows that
these solutions are exactly the same as the uniquely defined periodic solutions of the
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unperturbed system of the singularly perturbed case which survive the perturbation. In
other words, for any periodic solution of the nonlocal system there is a fast periodic
solution of the singularly perturbed system which isO(δ) close. The difference can be
seen most clearly by comparingB in both cases:B = constant in the nonlocal case,
while |B| varies periodically with anO(δ) amplitude around that same constant in the
singularly perturbed case.

5. Heteroclinic and Homoclinic Orbits

In this section we will focus on heteroclinic and homoclinic orbits. From the analysis
in the fast field we might expect that there exists a heteroclinic cycle for the extreme

value
z2

0−s
c2
= 1+ c1z2

0, similar to the heteroclinic orbits found for the nonlocal system
in Section 3.1. However, we have to be careful here: Using the Poincar´e map (4.10) we
can only hope to connect the one-dimensional strong unstable/stable manifolds of the

critical points(±
√

c1s+1
1−c1c2

, 0,±
√

s+c2
1−c1c2

, 0). Simple geometric counting arguments sug-

gest that such connections can only exist as codimension 3 phenomena. However, using
the Hamiltonian character and the symmetries (4.4) we will see in this section that these
orbits always exist forc2 = 0. Forc2 6= 0 there also are heteroclinic orbits; this is neces-
sary since the periodic orbit has to disappear into some kind of heteroclinic/homoclinic
structure, but these orbits will consist of fast and slow parts.

We focus on solutions of (4.3) which do consist of distinct slow and fast parts. A
solution evolves slowly if it is close to a so-called slow manifold of the system. A slow
manifold is an invariant manifold on which the flow isO(δ)-slow. The existence of these
manifolds follows from the theory originally developed by Fenichel (see [11] and refer-
ences there, or [1]). There it is shown that a manifold of critical points of the unperturbed
limit δ → 0, with a normally hyperbolic structure persists under the perturbation as a
slow manifold. These slow manifolds play an important role in the organisation of the
total flow induced by the singularly perturbed system. In this section we will construct
various families of heteroclinic and homoclinic orbits which are (exponentially) close to
these slow manifolds except for a number of ‘jumps’ through the fast field. These hete-
roclinic and homoclinic solutions are especially important as solutions of the full PDE
(4.3) since they correspond to so-called ‘localised structures’ such as fronts or pulses.
These localised structures are again very important for understanding the dynamics of
the solutions of the PDE. We refer to [28] and the references given there for an extensive
discussion of the existence and stability of these solutions in the single Ginzburg-Landau
equation.

5.1. The Slow Manifolds0l and0r

Before we apply the theory of Fenichel we note that we can find another explicit slow
manifold just by settingA = 0 in (1.5) or, equivalently,x = y = 0 in (4.3). This is
also an invariant manifold on which the flow is slow; however, its existence cannot be
deduced from the general theory. By (4.6) we find that the eigenvalues of the critical
point (0, 0) are given byλ± = ±i

√
1+ c1z2. Thus, the manifoldx = y = 0 can never
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Fig. 4.The flow on the slow manifolds for (a)s+ c2 > 0 and (b)s+ c2 < 0.

be globally normally hyperbolic ( it can be normally hyperbolic for certain values of
z if c1 < 0). However, the slow manifold exists since we have an explicit expression:
{x = y = 0}. The flow on this manifold is given by

z̈= δ2(−sz+ z3).

Thus we note that there are two slow heteroclinic orbits between the fixed points
(0, 0,±√s, 0) if s > 0. There is another trivial but nonslow invariant manifold which
will play a role in the forthcoming analysis:B = 0, or z = w = 0 in (4.3). We already
encountered this manifold in the previous section.

Settingδ = 0 in the singularly perturbed system leads to two globally normally
hyperbolic manifolds of critical points defined byx2 = 1+ c1z2 andy = 0; see (4.6).
Note that the eigenvalues of the critical points(±

√
1+ c1z2, 0) in (4.6) are given by

λ± = ±
√

2(1+ c1z2), and thus the invariant manifolds are globally normally hyperbolic,
but only forc1 > 0 are they unbounded. Thus, by the work of Fenichel [11] we know
that forδ 6= 0, sufficiently small, there are nearby (=O(δ)) invariant slow manifolds on
which the flow isO(δ). We denote these slow manifolds by0l , for x < 0, and by0r , for
x > 0. The highest order approximation of the flow on the slow manifolds is given by{

ż = δw,

ẇ = δ(−(s+ c2)z+ (1− c1c2)z3),
(5.1)

sincex2 = 1+c1z2+O(δ) (see also [1]). There are several possibilities for the structure
of the phase space on0l and0r . The system has the following critical points:(0, 0) and

(±
√

s+c2
1−c1c2

, 0) for s+c2
1−c1c2

> 0. The critical point(0, 0) is for s+ c2 > 0 a centre point

and fors+ c2 < 0 a saddle point while fors+ c2 > 0 the(±
√

s+c2
1−c1c2

, 0) are saddle

points and fors+ c2 < 0 the points are centre points. One is tempted to conclude that
the possible phase space is as in Figure 4. However (5.1) only gives an approximation of
the flow up toO(δ) (in fact, the highest order correction turns out to beO(δ2)). On the
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other hand, we know that the system has a Hamiltonian structure; thus there are only a
limited number of possibilities for the exact, integrable behaviour of the flow on the slow
manifold. We use two ingredients to conclude that the topological structure of the flow
on the slow manifold must be exactly as in Figure 4. First we see that the critical points
on0l ,r cannot undergo any local bifurcations (since “new” critical points on0l ,r are also
critical points of the full system and we already found all critical points). Second, we
use the symmetry{z→−z, w→−w} to establish the character of the heteroclinic and
homoclinic connections. We focus in this section on the cases+ c2 > 0. However, this
choice is not at all essential; we will summarise the analogous results fors+ c2 < 0 at
the end of Section 5.3 in Remark 5.1. We denote the saddle point on0l (resp.0r ) with
z> 0 by Pl (resp.Pr ) and withz< 0 by Ql (resp.Qr ),

Pl ,r , Ql ,r =
(
±
√

c1s+ 1

1− c1c2
, 0,±

√
s+ c2

1− c1c2
, 0

)
. (5.2)

As a direct consequence of the structure of the flows on0l ,r (Figure 4), we conclude that
there exist two distinct slow heteroclinic connections betweenPl and Ql and between
Pr andQr (for s+ c2 > 0).

The slow manifolds0l and0r possess stable and unstable manifolds,Ws(0l ) and
Wu(0l ), resp.Ws(0r ) andWu(0r ) (see again [11] and[1]). These manifolds consist of
points(x0, y0, z0, w0) such that the orbitsγ0(t) through these points satisfy

lim
t→±∞dist(0l ,r − γ0(t)) = 0,

where the+ (resp.−) corresponds to the stable (resp. unstable) manifold. Note that
Wu,s(0l ,r )merge with the manifold of stable and unstable manifolds of the (degenerate)
critical points(±

√
1+ c1z2, 0, z, 0), z ∈ R, of the unperturbed limit (4.6). In this paper

we restrict our attention to those parts ofWu,s(0l ,r ) which merge with the heteroclinic
cycles which exist in the unperturbed limit (see Figure 5). In other words, we do not
pay attention to those parts ofWu,s(0l ,r ) which are unbounded in the limitδ ↓ 0. Thus
Wu(0l ) = Ws(0r ) andWu(0r ) = Ws(0l ) in the limit δ ↓ 0. These identities fail to hold
as soon asδ 6= 0. However, since allWu,s(0l ,r ) are three-dimensional (and the space
is four-dimensional) we expect to find two-dimensional intersectionsWu(0l )∩Ws(0r )

andWu(0r ) ∩Ws(0l ).
By using the Melnikov method for slowly varying systems, the separation and thus

the intersection of these stable and unstable manifolds can be calculated. See for example
[27], [32]. The method is derived for the case that the unperturbed limit has homoclinic
orbits, but the extension to the heteroclinic case is straightforward. Assuming thatδ 6= 0,
sufficiently small, the distance betweenWu(0l ) andWs(0r ) is calculated at the cross
section{x = 0, y > 0}. We defineyu

δ and ys
δ as the intersection points of orbits on

Wu(0l ), resp.Ws(0r ), with {z = z0, w = w0} on {x = 0}. The solutionsγ u
δ (t) =

(xu
δ (t), yu

δ (t), z
u
δ (t), w

u
δ (t)) in Wu(0l )andγ s

δ (t) = (xs
δ (t), ys

δ (t), z
s
δ(t), w

s
δ(t)) in Ws(0r )

of (4.3) are determined by the initial conditionγ u,s
δ (0) = (0, yu,s

δ , z0, w0); γ0(t) =
(x0(t), y0(t), z0, w0) is the heteroclinic solution of the unperturbed system withγ0(0) =
(0, 1

2

√
2a, z0, w0) wherea = 1+ c1z2

0. There is an explicit expression for this solution:

(x0(t), y0(t)) = (
√

2b tanh(bt),
√

2b2(1− tanh2(bt))), (5.3)
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Fig. 5. A three-dimensional sketch of the four-dimensional phase space of the unper-
turbed system. The two-dimensional slow manifolds0l and0r are represented by curves.
The positions of the critical points of the perturbed system are also indicated.

whereb = 1
2

√
2(1+ c1z2

0). As usual in Melnikov theory, we define the following time-
dependent distance function:

1(t, z0, w0) =
(

∂
∂δ
(xu
δ (t)− xs

δ (t))
∂
∂δ
(yu
δ (t)− ys

δ (t))

)
∧
(

y0(t)
−x0(t)+ x3

0(t)− c1x0(t)z2
0

)
,

where the wedge product represents the scalar cross-product in the plane. The distance
betweenWu(0l ) andWs(0r ) in the {z = z0, w = w0}-plane is given by1(0, z0, w0).
Similar to the derivation of the Melnikov function for periodically driven systems, one
shows (see [27]) that for (4.3),

1(0, z0, w0)
def= 1(z0, w0)

=
∫ ∞
−∞

(
0

−2c1x0(t)z0
∂z
∂δ
(t)

)
∧
(

y0(t)
−x0(t)+ x3

0(t)− c1x0(t)z2
0

)
dt,

where ∂z
∂δ
(t) is a solution of d

dt
∂z
∂δ
= w0 with ∂z

∂δ
(0) = 0; thus ∂z

∂δ
= w0t . The separation

is then given by

1(z0, w0) = −2c1w0z0

∫ ∞
−∞

t x0(t)y0(t) dt, (5.4)

where(x0(t), y0(t)) is the heteroclinic solution of the unperturbed system. Substituting
this expression into (5.4) results in

1(z0, w0) = −4c1w0z0b3
∫ ∞
−∞

t tanh(bt)(1− tanh2(bt)) dt. (5.5)

Since ∫ ∞
−∞

t tanh(bt)(1− tanh2(bt)) dt = 1

b2
,
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Fig. 6. The intersection of the two-dimensional man-
ifolds Wu(0l ) ∩ {x = 0, y > 0} andWs(0r ) ∩ {x =
0, y > 0} for c1 < 0 andc2 < 0. Parts of the one-
dimensional curvesWu(Pl , Ql ) ∩ {x = 0, y > 0} ⊂
Wu(0l ) ∩ {x = 0, y > 0} andWs(Pr , Qr ) ∩ {x =
0, y > 0} ⊂ Ws(0r )∩{x = 0, y > 0}are also shown.

we obtain (in leading order)

1(w0, z0) = −2c1w0z0

√
2(1+ c1z2

0). (5.6)

This yields thatWu(0l )∩Ws(0r )∩{x = 0, y > 0} is O(δ) close to either the{w0 = 0}-
plane or the{z0 = 0}-plane. See Figure 6 for a sketch of this intersection. Using the
symmetries (4.4) one derives a similar expression forWs(0l )∩Wu(0r )∩ x = 0, y < 0.

So far, we have found a number of trivial heteroclinic connections, such as those found
in the invariant planes{x = y = 0} and{z= w = 0}. Note that the former pair between
the points(−1, 0, 0, 0) ∈ 0l and(1, 0, 0, 0) ∈ 0r corresponds to the zeros of (5.6) atz0 =
w0 = 0 for Wu(0l )∩Ws(0r )∩{x = 0} andWs(0l )∩Wu(0r )∩{x = 0}. Two additional
pairs of heteroclinic orbits are found in0l and0r . These orbits connectPl to Ql , resp.
Pr to Qr ; we denote these orbits asγ (0)Pl Ql

(t), γ (0)Ql Pl
(t) ∈ 0l , where limt→∞ γ

(0)
Pl Ql

(t) (resp.

γ
(0)
Ql Pl

(t)) = Ql (resp.Pl ), and analogouslyγ (0)Pr Qr
(t), γ (0)Qr Pr

(t) ∈ 0r . The flow on these
orbits is, of course, everywhereO(δ).

5.2. The Fundamental Heteroclinic Orbits

Next, we will construct heteroclinic orbits between the pointsPl ,r , Ql ,r which consist
of distinct slow and fast parts. Based on these orbits we will construct multijump orbits.
We will do that by analysing the intersections of the stable and unstable manifolds of
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these points with the{x = 0}-plane. These manifolds are subsets ofWs,u(0l , 0r ). The
‘toffee’-like structure in0l formed by the unstable manifolds ofPl andQl will be mapped
by the flow onWu(Pl )∪Wu(Ql ) to a topologically similar structure which is contained
in Wu(0l )∩{x = 0} (moreover, thez- andw-coordinates are onlyO(δ)modified by the
fast field). Thus, by (5.6), there will be four intersection points withWs(0r ) ∩ {x = 0}
(two nearz0 = 0 and two nearw0 = 0). Note that all four intersections are transversal.
These intersection points correspond to orbits which are biasymptotic to0l and0r . By
construction, they satisfy limt→−∞ = Pl or Ql . These orbits are all on the same energy
level set asPl and Ql . Thus, by the Hamiltonian structure of the flow, they can only
be asymptotic to orbits on0r with that same energy: the stable and unstable manifolds
of Pr and Qr . This indicates that the four orbits are heteroclinic connections between
Pl , Ql andPr , Qr . A similar argument yields four connections which travel from0r to
0l . However, we have to use the symmetries (4.4) of the system to get a more precise
result:

Theorem 1. For any s, c1, and c2 which satisfy

1+ c1s> 0, 1− c1c2 > 0, and s+ c2 > 0, (5.7)

eight heteroclinic orbits of the following type exist (in (4.3)):

γ
(1)
L R(t) with limt→−∞ γ

(1)
L R(t) = L , limt→∞ γ

(1)
L R(t) = R

and L= Pl , Ql ; R= Pr , Qr .

γ
(1)
RL(t) with limt→−∞ γ

(1)
RL(t) = R, limt→∞ γ

(1)
RL(t) = L

and L= Pl , Ql ; R= Pr , Qr .

All eight orbits consist of three parts: two slow parts near either0l or 0r and one ‘jump’
through the fast field.

Note that condition (5.7) just ascertains the existence of the critical pointsPl ,r , Ql ,r in
the cases+ c2 > 0. Schematic sketches of all eight orbits are given in Figures 7, 8,
and 9.

Proof. First we prove the existence ofγ (1)Pl Qr
(t). The existence of the three orbitsγ (1)Pr Ql

(t),

γ
(1)
Ql Pr

(t), and γ (1)Qr Pl
(t) follows from the symmetries{x → −x, y → −y}, {z →

−z, w → −w}, and{t → −t, y → −y, w → −w}. Second, we turn our attention
to proving the existence ofγ (1)Pl Pr

(t). The remaining three orbits follow from this one by
using the symmetries.

Let γp(t) = (xp(t), yp(t), zp(t), wp(t)) be a solution of (4.3) onWu(Pl ) which is
exponentially close to0l between the pointsPl and p = (px, py, pz, pw) ∈ Wu(Pl ) ∩
Ws(Ql ) ∩ 0l (thus,γp leaves0l O(δ) nearp). Note thatWu(Pl ) ∩Ws(Ql ) ∩ 0l is the
above-defined ‘trivial’ heteroclinic orbitγ (0)Pl Ql

. We denote byγp(0) the (first) intersection
of γp with the {x = 0}-plane:γp(0) = (0, yp(0), zp(0), wp(0)). Using the symmetries
(4.4) we define the orbitsγ z

p(t) = (−xp(−t), yp(−t),−zp(−t), wp(−t)) andγ wp (t) =
(−xp(−t), yp(−t), zp(−t),−wp(−t)). Note that limt→∞ γ z

p(t) = Qr , limt→∞ γ wp (t) =
Pr , and thatγ z

p(0) = (0, yp(0),−zp(0), wp(0)), γ wp (0) = (0, yp(0), zp(0),−wp(0)).
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Fig. 7. A schematic sketch of the four one-jump orbitsγ (1)Pl Qr
, γ (1)Pr Ql

, γ (1)Ql Pr
, andγ (1)Qr Pl

.
The slow parts are exponentially close to the heteroclinic cycles on0l ,r (the thin lines).
The fast parts ‘jump’ through the full four-dimensional phase-space,O(δ) close to
the{z= 0}-hyperplane. These orbits exist for everyc2.

Pl

zz

Ql
Qr

Pr

�r�l


(1)
QlQr


(1)
PrPl

x
y

z; w

w w

Fig. 8. A schematic sketch of the four one-jump orbitsγ (1)Pl Pr
(t), γ (1)Pr Pl

(t), γ (1)Ql Qr
(t),

andγ (1)Qr Ql
(t) for c2 > 0 which ‘jump’ O(δ) close to the{w = 0}-hyperplane.
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Fig. 9. A schematic sketch of the four orbitsγ (1)Pl Pr
(t), γ (1)Pr Pl

(t), γ (1)Ql Qr
(t), andγ (1)Qr Ql

(t) for
c2 < 0 which ‘jump’ O(δ) close to the{w = 0}-hyperplane.

Thus, the symmetries of (4.3) yield a heteroclinic solution betweenPl andQr (resp.Pr )
if we can choosep such thatzp(0) = 0 (resp.wp(0) = 0), since thenγ z

p (resp.γ wp )
coincides withγp at t = 0.

The fast field betweenpand(0, yp(0), zp(0), wp(0))only has anO(δ) influence on the
slow(z, w)-coordinates ofγp: zp(0) is O(δ) close to thez-coordinatepz of p ∈ 0l . Since
pz can be varied between thez-coordinates ofPl andQl (5.2), we see that there must be a
p∗z such thatγp∗ = γ z

p∗ is a heteroclinic solution betweenPl andQr of the type described
by the Theorem. By the symmetries{x → −x, y → −y}, {z→ −z, w → −w}, and
{t → −t, y → −y, w → −w}, three distinct, symmetric counterparts ofγp∗ can be
constructed. Thus, we have proved the existence of the solutionsγ

(1)
Pl Qr

, γ (1)Pr Ql
, γ (1)Ql Pr

, and

γ
(1)
Qr Pl

described in the Theorem (see Figure 7).
One has to be more careful in constructing the other four orbits. First we have to

construct a connection betweenPl andPr by determining ap such thatγp(t) andγ wp (t)
can be identified. Thus, we have to find ap ∈ Wu(Pl )∩Ws(Ql )∩0l such thatwp(0) = 0.
However, thew-coordinate ofp, wp does not change sign. Since thew-coordinates of
Pl andQl are 0 andwp(0) is O(δ) close towp, we can only expect to find a heteroclinic
connection betweenPl and Pr if we choosep O(δ) close toPl or Ql . It is possible to
computewp(0) up toO(δ2) accuracy for these values ofp by the Poincar´e mapP (4.10).
We setk = 0 and(z, w) = the coordinates ofPl or Ql (5.2) in (4.1), where we have
to change the interval of integration(−Tδ, Tδ) into (−∞, 0). This wayP measures the
accumulated change ink, z, w on the one-dimensional (purely) strong unstable manifolds
of Pl andQl between0l and{x = 0}. Note that all three integrals converge and that1K
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and1K1 are 0+ O(δ2); the computation of1K2 yields

wp(0) = ±
√

2δc2

√
1+ c1s

1− c1c2

√
s+ c2

1+ sc1
, (5.8)

where the+ (resp.−) sign corresponds top = Pl (resp.Ql ). Note thatc2 is the only
parameter which has influence on the sign ofwp(0). However, by (5.8), we observe
that for all c2 6= 0, wp(0) has to change sign (at least) once ifp is varied fromPl to
Ql . Moreover, ifc2 = 0 we see that(ż, ẇ) decouple from the(ẋ, ẏ) in (4.3): There
are exact (integrable) connections between the one-dimensional strong stable/unstable
manifolds of Pl and Pr if z ≡ the z- coordinate ofPl in (5.2). Thus there exists a
p ∈ Wu(Pl ) ∩ Ws(Ql ) ∩ 0l such thatwp(0) = 0, and for thisp: γp = γ wp . We
conclude that there exists a heteroclinic orbit betweenPl and Pr for all c2 such that
(5.7) holds. As in the previous case, we can construct from this orbit,γ

(1)
Pl Pr
(t), three

symmetrical counterparts,γ (1)Pr Pl
(t), γ (1)Ql Qr

(t), andγ (1)Qr Ql
(t) by applying the symmetries

{x → −x, y → −y}, {z→ −z, w → −w}, and{t → −t, y → −y, z→ −z}. This
concludes the proof of the Theorem (see Figures 8, 9).

At this point we can compare the behaviour of the ‘localised structures’ in the nonlocal
and in the singularly perturbed system. We ignore, just for the moment, the fact that we
derived the extra condition (1.7). Remember that the heteroclinic orbits found in Sec-
tion 3.1 do not satisfy the extra condition (1.7). First, we note that the solutionsγ

(1)
Pl Qr

,

γ
(1)
Pr Ql

, γ (1)Ql Pr
, andγ (1)Qr Pl

, which intersect{x = 0} atz= 0, cannot have a counterpart in the
nonlocal system, simply because thew-coordinates of these solutions areO(1) during
the fast ‘jump’ while all solutions of the nonlocal system must correspond tow = ż= 0.
The other four solutions have aw-coordinate ofO(δ) during the jump. Moreover, the
jumps take placeO(δ) nearPl and Pr (or Ql and Qr ) and it is easy to check that the
jumps areO(δ) close to the two pairs of nonlocal, integrable heteroclinic orbits found in
Section 3.1. Thus, it is natural to conclude thatγ

(1)
Pl Pr
(t), γ (1)Pr Pl

(t), γ (1)Ql Qr
(t), andγ (1)Qr Ql

(t)
are the counterparts of the nonlocal heteroclinic orbits.

However, this conclusion can only be justified if the coupling coefficient,c2, in the
B-equation, is positive. This follows from (5.8): The jump of the connectionγp(t) takes
placeO(δ) nearPl if c2 > 0. Thus all four heteroclinic orbits are as in Figure 8: They
areO(δ) close to the purely fast connections of the unperturbed or the nonlocal problem.
The parts of the orbits near0l and0r are only of anO(δ) length. Ifc2 < 0 the connection
γ
(1)
Pl Pr
(t) makes its jumpO(δ) near the unperturbed, fast connections betweenQl and

Qr . The solution followsWu(Pl ) ∩Ws(Ql ) ∩ 0l from Pl almost (O(δ)) up to Ql . The
same happens in/near0r (see Figure 9). Analogously, the unperturbed fast connections
betweenPl and Pr correspond to heteroclinic orbits fromQl to Qr of the perturbed
system. Moreover, thew-coordinate of these solutions becomesO(1) during their (long)
stays near0l and0r . Note that this significant distinction between the casesc2 > 0,
c2 < 0 also has its impact on the periodic orbits found in Section 3.1: These solutions will
have to merge with the heteroclinic cycles{γ (1)Pl Pr

(t), γ (1)Pr Pl
(t)} and{γ (1)Ql Qr

(t), γ (1)Qr Ql
(t)}

asz0 approaches±√(c2+ s)/(1− c1c2), thez-coordinates ofPl ,r , Ql ,r (see (5.2)). For
c2 < 0 the periodic orbits withz0 > 0 (resp.z0 < 0) will ‘grow’ large, slow parts
(exponentially) close to0l and0r which follow the cycle{γ (1)Ql Qr

(t), γ (1)Qr Ql
(t)} (resp.
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{γ (1)Pl Pr
(t), γ (1)Pr Pl

(t)}) asz0 approaches
√
(c2+ s)/(1− c1c2) (see Figure 9). In a sense one

can interpret this as a four-dimensional ‘canard-like’ behaviour (see [8]), since thisO(1)
change in the periodic orbits takes place for an exponentially small change inz0. Thus,
a significant part of the structure of the solutions disappears in the transition from the
nonlocal system to the singularly perturbed system ifc2 < 0.

5.3. Multijump Heteroclinic Orbits

In this subsection we will study the possible existence of ‘multijump’ heteroclinic orbits,
that is, heteroclinic solutions connecting two of the critical pointsPl ,r , Ql ,r by various
jumps through the fast field alternated with slow parts near0l , 0r . These solutions cannot
have a counterpart in the nonlocal limit. We will find that they can only exist forc2 < 0.
First we focus on orbits which only make jumps from0l to 0r , or vice versa, without
following the periodic flow of the fast field for more than half a circuit. Later, we will
construct orbits from0l (or 0r ) to itself which make one complete circuit through the
fast field.

Before we formulate the Theorem on the existence of multijump orbits of the first
type we give a construction of one of the most simple multi-=2-jump heteroclinic orbits
in the casec2 < 0 and show that this construction cannot work ifc2 > 0.

We consider the part of the two-dimensional unstable manifoldWu(Pl ) on which the
orbits approachPl (ast →−∞) ‘from the right’ tangential to the trivial heteroclinic orbit
γ
(0)
Pl Ql

. Thus, as in the definition ofWu(0l ), we only consider those parts ofWs,u(Pl ,r Ql ,r )

which merge with the family of heteroclinic connections in the limitδ ↓ 0. For simplicity
we also denote this subset ofWu(0l ) by Wu(Pl ). In the sequel we will use similar
restrictions on the ‘full’ manifoldsWu,s(Pl ,r , Ql ,r ), also without adapting the notation.
By the above Theorem we know thatWu(Pl ) intersectsWs(Pr ): This is the orbitγ (1)Pl Pr

(t)
which has, ifc2 < 0 (resp.c2 > 0), (z, w)-coordinatesO(δ) close to those ofQl (resp.
Pl ) during its jump through the fast field.

First we consider the casec2 < 0. LetL1 ⊂ Wu(Pl )∩{x = 0} be a (one-dimensional)
neighbourhood ofγ (1)Pl Pr

∩ {x = 0}; L1 intersectsWs(Pr ) transversally (by (5.6)). Define
for q ∈ L1 the orbit throughq by γq(t) ∈ Wu(Pl ). Thus whenq0 = L1∩Ws(Pr ), γq0 =
γ
(1)
Pl Pr

. The orbitγq will follow γq0 along0r for an O(1) distance, ifq is exponentially
close toq0. Such an orbitγq will leave the neighbourhood of0r exponentially close to
Wu(Qr ) sinceγq0 ∈ Ws(Pr )andWu(Qr )∩0r = Ws(Pr )∩0r (see Figure 9). We takeL1

of exponentially short length;L1 is divided into two distinct parts byWs(0r )∩ {x = 0}
with q0 = γ (1)Pl Pr

∩{x = 0} as separatrix. Therefore, the two-dimensional manifoldF(L1)

of orbitsγq throughL1 is separated into two parts, an ‘inner’ and an ‘outer’ part, by the
three-dimensional stable manifoldWs(0r ) of 0r before it approaches0r . Orbitsγq(t)
on the outer part ofF(L1) will again leave the neighbourhood of0r in the direction
opposite to0l (their x-coordinates increase): They cannot return to either0l or 0r and
become unbounded. Orbits on the inner part ofF(L1) will follow Wu(0r )—where we
use the restricted definition (see above)—and return to the{x = 0}-hyperplane. The
flow near0r twistsF(L1) such that the inner part leaves the neighbourhood of0r as a
‘sheet’ exponentially close toWu(Qr ). We refer to [14] and especially [15] (since this
paper applies to system (1.5) for a general treatment of the deformation of manifolds
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near slow manifolds; see also [1]). Thus, the intersectionF(L1) ∩ {x = 0}, after the
(first) passage through a neighbourhood of0r , consists of a curve exponentially close
to the curveWu(Qr ) ∩ {x = 0} ⊂ Wu(0r ) ∩ {x = 0}. By Theorem 1 we know that
Wu(Qr ) ∩ {x = 0} intersects the two-dimensional manifoldWs(0l ) ∩ {x = 0} twice
transversally (the orbitγ (1)Qr Pl

near{z = 0} [Figure 7] and the orbitγ (1)Qr Ql
near{w = 0}

[Figure 9]). Now we note that the orbitγq0 = γ (1)Pl Pr
already ‘touches down’ on0r (or

better: approaches0r exponentially close)O(δ) close toQr . Thus,γq0 is exponentially
close toγ (1)Qr Pl

andγ (1)Qr Ql
for certain parts ofO(1) length of these orbits (near0r ). As a

consequence, we know that the curveF(L1)∩{x = 0}must be extended along the entire
length ofWu(Qr ) ∩ {x = 0} (except for anO(δ) part), and that it thus has to intersect
Ws(0l ) ∩ {x = 0} twice, exponentially close toγ (1)Qr Pl

andγ (1)Qr Ql
. This yields that there

are two orbits onF(L1) which are asymptotic to0l . We again apply the argument that
system (4.3) has a Hamiltonian structure, so that the ‘energy’H is conserved on orbits:
F(L1) can only intersectWs(0l ) alongWs(Pl ) or Ws(Ql ).

So we conclude that there exist two two-jump orbits, which consist of five parts: a
slow part near0l , a fast jump, a slow part near0r , a second jump, and a third slow part
near0l : the heteroclinic orbitγ (2,1)Pl Ql

and the homoclinic orbitγ (2,1)Pl Pl
. By the symmetries

(4.4) we can create a family of eight distinct two-jump homoclinic orbits and four two-
jump heteroclinic orbits. Note that there thus exist, for instance, two different homoclinic
two-jump orbits toPl , γ

(2,1)
Pl Pl

andγ (2,2)Pl Pl
, related to each other by the symmetry{y →

−y, t →−t, w→−w} (see below).
Before we extend the above argument to 3, 4, . . .-jump heteroclinic and homoclinic

orbits we consider the casec2 > 0. The above construction is impossible in this case.
The construction is based on the orbitγ

(1)
Pl Pr

. This orbit exists also forc2 > 0, but now, as
we already noted above, this orbit only has parts ofO(δ) length near the slow manifolds
(Figure 8). Thus, the intersection ofF(L1) with {x = 0} (after passing0r ) is also
only of O(δ) length and cannot intersectWs(0l ) ∩ {x = 0}: F(L1) ∩ Ws(0l ) = ∅.
Of course one could try to construct two-jump orbits based on one of the one-jump
orbits which jump near{z = 0} after following a trivial heteroclinic orbit on0l for
half its length (Figure 7). Let’s for instance considerγ (1)Pl Qr

(this is no restriction, due

to the symmetries (4.4)). It is only possible to construct a two-jump orbit ifγ
(1)
Pl Qr

has
parts exponentially close to one of the two one-jump connections which depart fromPr

(sinceWu(Pr )∩0r = Ws(Qr )∩0r ). It is clear thatγ (1)Pr Ql
is the only possible candidate

(see Figure 7). More precisely, a two-jump combiningγ (1)Pl Qr
andγ (1)Pr Ql

is possible if the

‘touch-down’ point ofγ (1)Pl Qr
on0r has az-coordinate which is larger than thez-coordinate

of the ‘take-off’ point ofγ (1)Pr Ql
. Note that these two orbits are related to each other by

the symmetry{x → −x, y → −y}. Since thew-coordinate of both orbits is (strictly)
negative during the jump through the fast field we find by (4.3) that thez-coordinate of
both orbits decreases monotonically. Thus, the touch-down point is ‘below’ the take-off
point: There cannot be a two-jump orbit ifc2 > 0. However, in Theorem 3 we shall
show, using a different argument, that there exists a solution connectingPl andQl with
two slow parts near0l and no slow parts near0r : It makes a complete circuit through
the fast field and does not touch down on0r .

A priori one would assume that the one-jump orbits which jump near the{z = 0}-
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plane can be used to construct other, new two-jump orbits in the casec2 < 0. By the
above arguments it is possible to construct a two-jump orbit which is exponentially close
to γ (1)Pl Qr

until it takes off from0r to follow the one-jump orbitγ (1)Pr Pl
. However, the thus

constructed two-jump homoclinic solution toPl is the symmetric counterpartγ (2,2)Pl Pl
of

the above-constructed orbitγ (2,1)Pl Pl
under the symmetry{y→−y, t →−t, w→−w}.

We can now formulate the Theorem onN-jump orbits:

Theorem 2. Assume that c2 < 0 and s and c1 are such that (5.7) holds. Then, for any
N ≥ 2, there areN (N) distinct N-jump heteroclinic or homoclinic orbitsγ (N,k)S,T (t)
between the critical points S, T ∈ {Pl , Pr , Ql , Qr }; k denotes the fact that there can
be more than one orbit between S and T . The numberN (N) satisfies the recurrence
relation

N (N) = N (N − 1)+N (N − 2) with N (1) = 8, N (2) = 12. (5.9)

These orbits consist of N+1 slow passages near0l ,r alternated by N jumps through the
fast field and are all exponentially close to the ‘skeleton’ spanned by the fundamental
one-jump solutions constructed in Theorem 1.

Proof. The three-jump orbits are based on the two-jump orbits, just as the two-jump
orbits are based on the one-jump orbits. We will start by constructing the orbitsγ

(3,1)
Pl Qr

(t)

and γ (3,1)Pl Pr
(t); the other three-jump orbits can be found by the symmetries (4.4). We

consider, for instance, the heteroclinic orbitγ (2,1)Pl Ql
(t). LetL2 be an exponentially small,

one-dimensional neighbourhood ofγ (2,1)Pl Ql
(t) ∩ {x = 0} in F(L1) ∩ {x = 0}, after

the first passage ofF(L1) of 0r (whereF(L1) is defined above);L2 will play a role
similar toL1 in the above construction of the two-jump orbits. We defineF(L2) ⊂
F(L1) as the manifold of orbits throughL2; F(L2) is separated into two parts by
Ws(0l ) with γ (2,1)Pl Ql

(t) as separatrix. Thus,F(L2) is split and twisted by the slow flow
near0l : It becomes a sheet exponentially close toWu(Pl ) when it again leaves the
neighbourhood of0l . The intersectionF(L2)∩ {x = 0} after the passage of0l consists
of a curve exponentially close to the first intersection ofWu(Pl ) with {x = 0} and of
the same length asWu(Pl ) ∩ {x = 0} (up to O(δ)-terms). Therefore,F(L2) ∩ {x = 0}
intersectsWs(0r )∩{x = 0} two times transversally: an intersection exponentially close
to γ (1)Pl Qr

(t) ∩ {x = 0} and another exponentially close toγ (1)Pl Pr
(t) ∩ {x = 0}. By the

Hamiltonian character of the flow we know that these intersections must correspond to
the three-jump orbitsγ (3,1)Pl Qr

(t) andγ (3,1)Pl Pr
(t).

It is clear that this construction can be repeated for allN: Based onγ (3,1)Pl Pr
(t)we define

L3 ⊂ F(L2) ∩ {x = 0}, exponentially close to the third intersection ofγ (3,1)Pl Pr
(t) with

{x = 0}. The manifoldF(L3) gets twisted and separated near0r so that it intersects
Ws(0l ) ∩ {x = 0}, after its passage of0r , two times: the four-jump orbitsγ (4,1)Pl Pl

(t) and

γ
(4,1)
Pl Ql

(t), i = 1, 2.
Note that the numberN (N) of N-jump orbits increases quite rapidly withN. Let’s

constructN (2) fromN (1) = 8 (Theorem 1). Ifγ (1) jumps through the fast field near
{w = 0} then we have shown above that one can construct two two-jump orbits based
on this one: one which makes its second jump near{z = 0} and one which makes its
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second jump again near{w = 0}. If γ (1) jumps near{z= 0}, then there only exists one
two-jump orbit based on thisγ (1), which makes its second jump near{w = 0}. Thus,
the four one-jump orbits near{w = 0} lead to eight two-jump orbits; four of them make
their last jump near{w = 0}, the other four make their last jump near{z = 0}. The
four one-jump orbits near{z= 0} lead to four two-jump orbits with a second jump near
{w = 0}. Thus, as we already found by the symmetries (4.4),N (2) = 12, since all these
orbits are distinct, by construction.

This method of counting can be used for every transition fromN to N + 1. Define
W(N), resp.Z(N), the number ofN-jump orbits ofW, resp.Z, type (by definition)
which make their final jump through the fast field near{w = 0}, resp.{z = 0}. By
the above construction, everyW-orbit yields oneW-type orbit and oneZ-type orbit; a
Z-orbit yields aW-orbit; thus,{

W(N + 1) = W(N)+ Z(N),
Z(N + 1) = W(N).

SinceN (N) =W(N)+Z(N) we recover (5.9). Note thatN (N) = 4pN+2, wherepN

is theN-th Fibonacci number. ThusN (N) ≈ 1
2(1+

√
5)N (N − 1) for largeN.

Note that the closure of the set of intersections of allN-jump orbits with{x = 0}
is a Cantor set of exponentionally small dimension. This can be seen as follows. We
take the intersection pointI (1) of the orbitγ (1)Pl Pr

(t) and {x = 0} as the base for the
construction of a part of this Cantor set;I (1) is the (transversal) intersection of the curves
Wu(Pl ) ∩ {x = 0} andWs(Pr ) ∩ {x = 0} in the three-dimensional space{x = 0} (see
Figure 6). By the construction of the orbitsγ (2)Pl Pl

(t) andγ (2)Pl Ql
(t) (Theorem 2) we know

that there exist two pointsI (2)1,2 ∈ Wu(Pl ) ∩ {x = 0}, exponentially close toI (1). These

points are the first intersections ofγ (2)Pl Pl
(t) andγ (2)Pl Ql

(t)with {x = 0}. Analogously, there

are two pointsI (2)3,4 ∈ Ws(Pr ) ∩ {x = 0} exponentially close toI (1), corresponding to

the second intersections ofγ (2)Pr Pr
(t) andγ (2)Qr Pr

(t) with {x = 0}. These four new points

again are ‘surrounded’ by intersection pointsI (3)j of three-jump orbits. The construction

of these new points is identical to the construction of theI (2)j points from the point

I (1). Note that the ratio of the distance between (for instance)I (2)1 and the new points
aroundI (2)1 , and the distance betweenI (1) and I (2)1 is exponentially small. Thus we can
proceed by constructing the pointsI (4)k , I (5)l , etc. Note that at any step one has to ‘zoom
in’ exponentially ‘deep’ to obtain the next level. The closure of this infinite collection
of points{I (N)j }N=1,...,∞; j=1,..., jN (where clearlyjN → ∞ asN → ∞) forms a Cantor
set of exponentially small (but positive) dimension. Such a set exists near any of the
eight base points formed by the intersections of one of the fundamental one-jump orbits
(Theorem 1) and{x = 0}. The union of these eight sets again forms a Cantor set.

There are of course more points in this (uncountable) set than theN-jump heteroclinic/
homoclinic orbits. One can, for instance, construct many types of different periodic orbits
between0l and0r , which consist of alternating slow and fast parts. Thus, these periodic
orbits differ significantly from those found in Section 4.1. None of them can have a
counterpart which can be described by the nonlocal system. Note that these periodic



Singularly Perturbed and Nonlocal Modulation Equations 405

orbits correspond to limit points of the above-described Cantor set in the{x = 0}-
hyperplane. One of the simplest periodic orbits of this type consists of four parts: a slow
part exponentially close to0l and toγ (1)Pl Pr

∩ γ (1)Qr Ql
, a fast part near the fast jump ofγ (1)Pl Pr

,

a slow part near0r andγ (1)Pl Pr
∩γ (1)Qr Ql

, and the second fast jump nearγ (1)Qr Ql
(see Figure 9).

So far we have studied orbits which only make jumps directly from0l to0r , or vice
versa. Now we want to construct orbits which make one complete circuit through the
fast field. Here we focus, for simplicity, on constructing a heteroclinic orbit fromPl to
Ql which has two slow parts both near0l alternated by one ‘double’ jump which makes
a complete circuit through the fast field. This orbit only can be constructed forc1 < 0,
where the sign ofc2 is arbitrary. Forc1 > 0 the above orbit generally does not exist. Using
the symmetries (4.4) in system (4.3), one can obtain from this orbit other heteroclinic
orbits which have two slow parts near0l or 0r connected by a fast ‘double’ jump. The
idea of the proof of the following theorem is based on the methods developed in [6].

Theorem 3. Assume that c1 < 0and s and c2 are such that (5.7) holds. Then, there exist
four heteroclinic orbitsγ (d)Pl Ql

(t), γ (d)Ql Pl
(t), γ (d)Pr Qr

(t), andγ (d)Qr Pr
(t). These orbits consist of

two slow parts which are both near0l (or 0r ), alternated by a complete circuit (or a
‘double’ jump) through the fast field.

Proof. We only constructγ (d)Pl Ql
(t); the other three orbits can be found by applying the

symmetries (4.4). LetL4 ⊂ Wu(Pl ) ∩ {x = 0} be a (one-dimensional) neighbourhood
of γ (1)Pl Qr

∩ {x = 0}; L4 intersectsWs(Qr ) transversally. Define forp ∈ L4 the orbit

throughp by γp(t) ∈ Wu(Pl ). Thus for p0 = L4 ∩Ws(Qr ), γp0(t) = γ (1)Pl Qr
(t). If we

take p1 ∈ L4 exponentially close top0, the orbit will follow γp0 along0r for an O(1)
distance. Such an orbitγp1 will leave the neighbourhood of0r exponentially close to
Wu(Qr ) and will still be exponentially close toWu(Qr ) at its next intersection with
the hyperplane{x = 0}; we denote this intersection point byq1. At this intersection,
it will be ‘outside’ Ws(0l ). Here, an orbit is said to be outsideWs(0l ) when, after the
passage near0l , it leaves the neighbourhood of0l in the direction opposite to0r (its
x-coordinate decreases): It cannot return to0l or 0r and becomes unbounded. On the
other hand an orbit is insideWs(0l ) when it does return to the{x = 0}-hyperplane.
In other words, an ‘inside’ orbit leaves the neighbourhood of0l near the structure of
heteroclinic connections between0l and0r which exist in the limitδ ↓ 0. The fact that
an orbit is ‘outside’ or ‘inside’ is determined by (5.6) and thus by the sign ofc1. Now
we takep2 ∈ L4 at anO(1) distance fromp0, where thez-coordinate ofp2, pz

2 is larger
than thez-coordinate ofp0. Here we also make sure thatpz

2 is not atO(δ) distance from
the z-coordinate ofPl . This assures that the next intersection ofγp2 with {x = 0} is
insideWs(0l ); this intersection point is denoted byq2. Note thatγp2(t) only approaches
0r O(

√
δ)-close. We denote the two-dimensional manifold of orbitsγp throughL4 by

F(L4). From the above it follows that the next intersection ofF(L4)with the hyperplane
{x = 0} contains a curve connectingq1 andq2. Sinceq1 is outsideWs(0l ) andq2 is
insideWs(0l ), there exists ap∗ ∈ L4 so that the orbit throughp∗ intersectsWs(0l ).
Due to the Hamiltonian structure of the flow we know thatp∗ must be onWs(Ql ). Thus
we constructed a heteroclinic cycleγp∗ = γ

(d)
Pl Ql

with two slow parts near0l and one

fast complete circuit. From the fact that the pointγ
(1)
Pl Pr
∩ {x = 0} is not in the interval
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[ p1, p2] ⊂ L4, we see that, forc2 < 0, the above orbit is not the one we constructed in
Theorem 2,γ (2)Pl Ql

: γ (d)Pl Ql
does not come closer to0r thanO(

√
δ).

We can show by analogous analysis that such an orbit as constructed above is generally
not found forc1 < 0. Again let p0 = γPl Qr ∩ {x = 0}. Then the orbit through a point
on Wu(Pl ) ∩ {x = 0} which is exponentially close top0 is at its next intersection with
the{x = 0}-hyperplane exponentially close toWu(Qr ) and is insideWs(0l ). However,
the orbit through a point which is atO(1) distance fromp0 (and with az-coordinate
which now has to be chosen smaller thanpz

0) is at its next intersection with{x = 0} also
insideWs(0l ). Thus, the line between these points does, in general, not intersectWs(0l )

(compare to the ‘inside’ and ‘outside’ cases defined in [6]). This implies that such an
orbit as constructed in the above theorem generally does not exist forc1 > 0.

Remark 5.1. In all the above theorems we assumed thats + c2 > 0. However, for
s+ c2 < 0 similar statements hold. Recall that in this case the integrable flow on0l ,r

has a ‘figure 8’ structure: There are two homoclinic orbits to the points(±1, 0, 0, 0) on
0l ,r (Figure 4). The pointsPl ,r , Ql ,r have become centre points (on0l ,r ). Analogous to
Theorem 1 one can prove that there exist eight heteroclinic orbits between the critical
points(±1, 0, 0, 0) ∈ 0l ,r which consist of two slow parts near0l and0r , alternated by
one fast jump. There also existN-jump homoclinic orbits, independent of the signs of
the coefficients. However, the number ofN-jumps is not the same as before. There are
two two-jump orbits and, for everyN ≥ 3, there exists only oneN-jump orbit. Thus
choosings+c2 < 0 reduces the number of heteroclinic and homoclinic orbits drastically,
although the general behaviour remains the same.

6. Discussion

In this paper we derived and studied two different types of modulation equations which
describe the same physical phenomena. Pattern formation in a reflection-symmetric
system which is subject to two interacting destabilising mechanisms is described by
two nonlinearly coupled Ginzburg-Landau equations (1.4). If the natural spatial scales
associated to those mechanisms differ significantly (see Figure 1) one can either describe
the behaviour near criticality by a singularly perturbed modulation equation (1.5), or one
can apply a so-called Landau reduction and derive a nonlocal modulation equation (1.6);
see also Metzener and Proctor [22] for the application of this idea. As a necessary
consequence of the derivation process we showed that there is an extra, again nonlocal,
solvability condition in the nonlocal case (1.7).

Our main goal has been to compare the set of solutions described by the singularly
perturbed equation to that of the nonlocal system. We restricted ourselves to the sta-
tionary solutions. Note that it is natural to expect stationary patterns in systems with a
reflection symmetry, such as convection experiments. For instance, consider the theoret-
ical and analytical study of double-layer convection by Rasenat et al. [25]: Under certain
conditions these experiments can be described by the equations studied in this paper (see
for instance the neutral curve in Figure 6 in [25]); the experiments performed for this
paper exhibit stationary patterns (although the patterns can certainly be nonstationary).

Of course it could be expected that the singularly perturbed equation has a richer
set of solutions than the nonlocal reduction. However, in Section 3 we have shown that
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the nonlocal system, combined with the extra condition (1.7), cannot describe any other
patterns than purely (spatially) periodic, or quasi-periodic with only two independent
frequencies. These patterns are also described by the singularly perturbed system, but
this system also governs a very complicated set of ‘localised’ patterns, corresponding
to heteroclinic and homoclinic solutions. These types of patterns are important in the
dynamics of the uncoupled Ginzburg-Landau equation (see for instance [28]).

The large families of ‘multijump’ and ‘complete circuit’ orbits found in Section 5 only
make up a small part of the entire set of possible solutions which have an alternating slow-
fast structure. The heteroclinic and homoclinic orbits found in Section 5 correspond to
only a very small subset of the Cantor sets formed by the intersectionsWu,s(Pl ,r , Ql ,r )∩
{x = 0}, which we only briefly discussed in that section. Moreover, we did not pay any
attention to connections between the slow manifolds0l and0r which are not on the
‘energy’-level of the critical pointsPl ,r , Ql ,r . By the methods developed in this paper
it is also possible to show the existence of orbits which connect, through the fast field,
corresponding periodic orbits on0l and0r . Furthermore, the essence of the analysis also
works for other values of theÄi -integrals (see Section 4) thanÄ1 = Ä2 = 0.

This is another aspect of the paper: We have shown that the singularly perturbed
Hamiltonian system (1.8) has a very intricately structured phase-space. Moreover, we
have been able to unravel much of the structure of this phase-space using in essence
topological, or geometrical, methods. These methods are based on the ideas described
for instance in [11], [1], and [6].

Thus, the geometrical methods have enabled us to show that the reduction of the
singularly perturbed system to the nonlocal system destroys a very large set of ‘localised’
patterns.

Finally we make just one short remark about the stability of patterns as described by
the modulation equations, (1.5) and (1.6). We did not pay any attention to that aspect
in this paper. There is much literature on this. We refer to Matkovsky and Volpert [20]
where the stability of purely periodic patterns to systems like (1.4), and thus (1.5), has
been studied. The same ideas can be used to study corresponding solutions to (1.6). We
have not done this in this paper because the analysis is rather straightforward, while
the results depend in a complicated manner on the values of the coefficients in the
equations. The stability of the quasi-periodic and ‘localised’ patterns is a much more
complicated issue. Only recently has the instability of stationary quasi-periodic patterns
to the uncoupled real Ginzburg-Landau equation been proved in [5]. Note that the quasi-
periodic solutions found in this paper correspond directly to the quasi-periodic solutions
studied in [5]. There are many stability/instability results on ‘localised’ patterns in an
uncoupled Ginzburg-Landau equation. These results only exist for patterns which are
much less complicated than most of the ones constructed in this paper. Here, we only
refer to [28] and the recent paper [16], in which the approach is also geometrical, and
the references given there.

Acknowledgments

The authors thank Peter Bollerman for his useful remarks on the derivation of the mod-
ulation equations in Section 2 and Philip Holmes and Tasso Kaper for comments that
improved the presentation of this paper.



408 A. Doelman and V. Rottsch¨afer

References

[1] L. Arnold, C. Jones, K. Mischaikow, and G. Raugel (1994)Dynamical Systems, Lecture
Notes in Mathematics1609, Springer-Verlag, New York.

[2] P. Bollerman, A. van Harten, and G. Schneider (1994) On the justification of the Ginzburg-
Landau approximation, inNonlinear Dynamics and Pattern Formation in the Natural Envi-
ronment(A. Doelman and A. van Harten, eds.),Pitman Res. Notes in Math.335, Longman,
UK, 20–36.

[3] P. Bollerman (1996)On the Theory of Validity of Amplitude Equations, thesis, Utrecht Uni-
versity, the Netherlands.

[4] A. Doelman (1993) Traveling waves in the complex Ginzburg-Landau equation,J. Nonlin.
Sci.3 225–266.

[5] A. Doelman, R.A. Gardner, and C.K.R.T. Jones (1995) Instability of quasi-periodic solutions
of the Ginzburg-Landau equation,Proc. Roy. Soc. Edinburg125A501–517.

[6] A. Doelman and P. Holmes (1996) Homoclinic explosions and implosions,Phil. Trans. Roy.
Soc. London A354845–893.

[7] J. Duan, H.V. Ly, and E.S. Titi (1996) The effects of nonlocal interactions on the dynamics
of the Ginzburg-Landau equation,Z. Angew. Math. Phys.47433–455.

[8] W. Eckhaus (1983) Relaxation oscillations including a standard chase on French ducks, in
Asymptotic Analysis II, Springer Lect. Notes Math.985449–494.

[9] W. Eckhaus (1992) On modulation equations of the Ginzburg-Landau type, inICIAM 91:
Proc. 2nd Int. Conf. Ind. Appl. Math.(R.E. O’Malley, ed.), Society for Industrial and Applied
Mathematics, Philadelphia, 83–98.

[10] W. Eckhaus (1993) The Ginzburg-Landau manifold is an attractor,J. Nonlin. Sci.3 329–348.
[11] N. Fenichel (1979) Geometric singular perturbation theory for ordinary differential equations,

J. Diff. Eq.3153–98.
[12] A. van Harten (1991) On the validity of Ginzburg-Landau’s equation,J. Nonlin. Sci.1 397–

422.
[13] D.R. Jenkins (1985) Non-linear interaction of morphological and convective instabilities

during solidification of a binary alloy,I.M.A. J. Appl. Math.35145–157.
[14] C.K.R.T. Jones and N. Kopell (1994) Tracking invariant manifolds with differential forms

in singularly perturbed systems,J. Diff. Eq.10864–88.
[15] C.K.R.T. Jones, T. Kaper, and N. Kopell (1996) Tracking invariant manifolds up to exponen-

tially small errors,SIAM J. Math. An.27558–577.
[16] T. Kapitula (1996) Existence and stability of singular heteroclinic orbits for the Ginzburg-

Landau equation,Nonlinearity9 669–685.
[17] E. Knobloch and J. De Luca (1990) Amplitude equations for travelling wave convection,

Nonlinearity3 975–980.
[18] G. Manogg and P. Metzener (1994) Interaction of modes with disparate scales in Rayleigh-

Bénard convection, inNonlinear Dynamics and Pattern Formation in the Natural Environ-
ment(A. Doelman and A. van Harten, eds.),Pitman Res. Notes in Math.335, Longman,
Harlow, Essex, UK, 188–205.

[19] B.J. Matkovsky and V. Volpert (1992) Coupled nonlocal complex Ginzburg-Landau equations
in gasless combustion,Physica54D203–219.

[20] B.J. Matkovsky and V. Volpert (1993) Stability of plane wave solutions of complex Ginzburg-
Landau equations,Quart. Appl. Math. 51265–281.

[21] G.J. Merchant and S.H. Davis (1990) Morphological instability in rapid directional solidifi-
cation,Acta Metall. Mater.382683–2693.

[22] P. Metzener and M.R.E. Proctor (1992) Interaction of patterns with disparate scales,Eur. J.
Mech. B/Fluids11759–778.

[23] R.D. Pierce and C.E. Wayne (1995) On the validity of mean-field amplitude equations for
counterpropagating wavetrains,Nonlinearity8 769–779.



Singularly Perturbed and Nonlocal Modulation Equations 409

[24] M.R.E. Proctor and C.A. Jones (1988) The interaction of two spatially resonant patterns in
thermal convection, Part 1. Exact 2:1 resonance,J. Fluid Mech.188301–335.

[25] S. Rasenat, F. Busse, and I. Rehberg (1989) A theoretical and experimental study of double-
layer convection,J. Fluid Mech.199519–540.

[26] D.S. Riley and S.H. Davis (1990) Long-wave interaction in morphological and convective
instabilities,I.M.A. J. Appl. Math.45267–285.

[27] C. Robinson (1983) Sustained resonance for a nonlinear system with slowly varying coeffi-
cients,SIAM Math. An.14847–860.

[28] W. van Saarloos and P. C. Hohenberg (1992) Fronts, pulses, sources and sinks in generalized
complex Ginzburg-Landau equations,Physica56D303–367.

[29] R.M.J. Schielen and A. Doelman (1996) Modulation equations for spatially periodic systems:
Derivation and solutions, preprint.

[30] J.T. Stuart (1958) On the non-linear mechanics of hydrodynamic stability,J. Fluid Mech.4
1–21.

[31] G. Vittori and P. Blondeaux (1992) Sand ripples under sea waves, Part 3. Brick pattern ripple
formation,J. Fluid Mech.23923–45.

[32] S. Wiggins (1988)Global Bifurcations and Chaos, Springer-Verlag, New York.


