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ABSTRACT

Shotgun metagenomics of microbial communities reveals information about strains of relevance for applications

in medicine, biotechnology and ecology. Recovering their genomes is a crucial, but very challenging step,

due to the complexity of the underlying biological system and technical factors. Microbial communities are

heterogeneous, with oftentimes hundreds of present genomes deriving from different species or strains, all at

varying abundances and with different degrees of similarity to each other and reference data. We present a

versatile probabilistic model for genome recovery and analysis, which aggregates three types of information

that are commonly used for genome recovery from metagenomes. As potential applications we showcase

metagenome contig classification, genome sample enrichment and genome bin comparisons. The open source

implementation MGLEX is available via the Python Package Index and on GitHub and can be embedded into

metagenome analysis workflows and programs.

INTRODUCTION

Shotgun sequencing of DNA extracted from a microbial community recovers genomic data from different

community members while bypassing the need to obtain pure isolate cultures. It thus enables novel

insights into ecosystems, especially for those genomes which are inaccessible by cultivation techniques

and isolate sequencing. However, current metagenome assemblies are oftentimes highly fragmented,

including unassembled reads, and require further processing to separate data according to the underlying

genomes. Assembled sequences, called contigs, that originate from the same genome are placed together

in this process, which is known as metagenome binning (Dröge & McHardy, 2012) and for which many

programs have been developed. Some are trained on reference sequences, using contig k-mer frequencies

or sequence similarities as sources of information (McHardy et al., 2007; Dröge, Gregor & McHardy,

2014; Wood & Salzberg, 2014; Gregor et al., 2016), which can be adapted to specific ecosystems. Others

cluster the contigs into genome bins, using contig k-mer frequencies and read coverage (Chatterji et al.,

2008; Kislyuk et al., 2009; Wu et al., 2014; Nielsen et al., 2014; Imelfort et al., 2014; Alneberg et al.,

2014; Kang et al., 2015; Lu et al., 2016).

Recently, oftentimes multiple biological or technical samples of the same environment are sequenced

to produce distinct genome copy numbers across samples, sometimes using different sequencing protocols

and technologies, such as Illumina and PacBio sequencing (Hagen et al., 2016). Genome copies are

reflected by corresponding read coverage variation in the assemblies which allows to resolve samples

with many genomes. The combination of experimental techniques helps to overcome platform-specific

shortcomings such as short reads or high error rates in the data analysis. However, reconstructing

high-quality bins of individual strains remains difficult without very high numbers of replicates. Often,

genome reconstruction may improve by manual intervention and iterative analysis (Figure 1) or additional
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sequencing experiments.

Contigs

Read Libraries

Reference Genome Sequences

(b) enrich

(c) select

(d) refine

Reduced Contigs

Genome Bins

(a) (re-)cluster or (re-)classify

Reduced Genome Bins

Figure 1. Genome reconstruction workflow. To recover genomes from environmental sequencing data,

the illustrated processes can be iterated. Different programs can be run for each process and iteration.

MGLEX can be applied in all steps: (a) to classify contigs or to cluster by embedding the probabilistic

model into an iterative procedure; (b) to enrich a metagenome for a target genome to reduce its size and

to filter out irrelevant sequence data; (c) to select contigs of existing bins based on likelihoods and

p-values and to repeat the binning process with a reduced data-set; (d) to refine existing bins, for instance

to merge bins as suggested by bin analysis.

Genome bins can be constructed by consideration of genome-wide sequence properties. Currently,

oftentimes the following types of information are considered:

• Read contig coverage: sequencing read coverage of assembled contigs, which reflects the genome

copy number (organismal abundance) in the community. Abundances can vary across biological or

technical replicates, and co-vary for contigs from the same genome, supplying more information to

resolve individual genomes (Baran & Halperin, 2012; Albertsen et al., 2013).

• Nucleotide sequence composition: the frequencies of short nucleotide subsequences of length k

called k-mers. The genomes of different species have a characteristic k-mer spectrum (Karlin,

Mrazek & Campbell, 1997; McHardy et al., 2007).

• Sequence similarity to reference sequences: a proxy for the phylogenetic relationship to species

which have already been sequenced. The similarity is usually inferred by alignment to a reference

collection and can be expressed using taxonomy (McHardy et al., 2007).

Probabilities represent a convenient and efficient way to represent and combine information that is

uncertain by nature. Here, we

• propose a probabilistic aggregate model for binning based on three commonly used information

sources, which can easily be extended to include new features.

• outline the features and submodels for each information type. As the feature types listed above

derive from distinct processes, we define for each of them independently a suitable probabilistic

submodel.

• showcase several applications related to the binning problem

We focus on defining explicit probabilistic models for each feature type and their combination into

an aggregate model. In contrast, binning methods often concatenate and transform features (Chatterji
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et al., 2008; Imelfort et al., 2014; Alneberg et al., 2014) before clustering. Specific models for the

individual data types can be better tailored to the data generation process and will therefore generally

enable a better use of information and a more robust fit of the aggregate model while requiring fewer

data. We propose a flexible model with regard to both the included features and the feature extraction

methods. There already exist parametric likelihood models in the context of clustering, for a limited set

of features. For instance, Kislyuk et al. (2009) use a model for nucleotide composition and Wu et al.

(2014) integrated distance-based probabilities for 4-mers and absolute contig coverage using a Poisson

model. We extend and generalize this work so that the model can be used in different contexts such as

classification, clustering, genome enrichment and binning analysis. Importantly, we are not providing an

automatic solution to binning but present a flexible framework to target problems associated with binning.

This functionality can be used in custom workflows or programs for the steps illustrated in Figure 1. As

input, the model incorporates genome abundance, nucleotide composition and additionally sequence

similarity (via taxonomic annotation). The latter is common as taxonomic binning output (Dröge, Gregor

& McHardy, 2014; Wood & Salzberg, 2014; Gregor et al., 2016) but has rarely been itself used as input

features in binning (Chatterji et al., 2008; Lu et al., 2016). We show that taxonomic annotation is valuable

information that can improve binning considerably.

METHODS

Classification models

Classification is a common concept in machine learning. Usually, such algorithms use training data for

different classes to construct a model which then contains the condensed information about the important

properties that distinguish the data of the classes. In probabilistic modeling, we describe these properties

as parameters of likelihood functions, often written as θ. After θ has been determined by training, the

model can be applied to assign novel data to the modeled classes. In our application, classes are genomes,

or bins, and the data are nucleotide sequences like contigs. Thus, contigs can be assigned to genomes bins

but we need to provide training sequences for the genomes. Such data can be selected by different means,

depending on the experimental and algorithmic context. One can screen metagenomes for genes which

are unique to clades, or which can be annotated by phylogenetic approaches, and use the corresponding

sequence data for training (Gregor et al., 2016). Independent assemblies or reference genomes can also

serve as training data for genome bins (Brady & Salzberg, 2009; Patil et al., 2011; Gregor et al., 2016).

Another direct application is to learn from existing genome bins, which were derived by any means, and

then to (re)assign contigs to these bins. This is useful for short contigs which are often excluded from

binning and analysis due to their high variability. Finally, probabilistic models can be embedded into

iterative clustering algorithms with random initialization.

Aggregate model

Let 1 ≤ i ≤ N be an index referring to N contigs resulting from a shotgun metagenomic experiment. In

the following we will present a generative probabilistic aggregate model that consists of components,

indexed by 1 ≤ k ≤ M, which are generative probabilistic models in their own right, yielding probabilities

Pk(contigi | genome) that contigi belongs to a particular genome. Each of the components k reflects a

particular feature such as

• a weight wi (contig length)

• sample abundance feature vectors ai and ri, one entry per sample

• a compositional feature vector ci, one entry per compositional feature (e.g. a k-mer)

• a taxonomic feature vector t i, one entry per taxon

We define the individual feature vectors in the corresponding sections. As mentioned before, each of

the M features gives rise to a probability Pk(contigi | genome) that contigi belongs to a specific genome

by means of its component model. Those probabilities are then collected into an aggregate model that

transforms those feature specific probabilities Pk(i | genome) into an overall probability P(i | genome) that

Preprint v0.4.2p 3/17



contig i is associated with the genome. In the following, we describe how we construct this model with

respect to the individual submodels Pk(i | genome), the feature representation of the contigs and how we

determine the optimal set of parameters from training sequences.

For the ith contig, we define a joint likelihood (Equation 1, the probabilities written as a function of the

genome parameters), which is a weighted product over M independent component likelihood functions, or

submodels, for the different feature types. For the kth submodel, Θk is the corresponding parameter vector,

Fi,k the feature vector of the ith contig and αk defines the contribution of the respective submodel or

feature type. β is a free scaling parameter to adjust the smoothness of the aggregate likelihood distribution

over the genome bins (bin posterior).

L(Θ | Fi) =

















M
∏

k=1

L(Θk | Fi,k)αk

















β

(1)

We assume statistical independence of the feature subtypes and multiply likelihood values from the

corresponding submodels. This is a simplified but reasonable assumption: e.g., the species abundance

in a community can be altered by external factors without impacting the nucleotide composition of the

genome or its taxonomic position. Also, there is no direct relation between a genome’s k-mer distribution

and taxonomic annotation via reference sequences.

All model parameters, Θ, α and β, are learned from training sequences. We will explain later, how

the weight parameters α and β are chosen and begin with a description of the four component likelihood

functions, one for each feature type.

In the following, we denote the jth position in a vector xi with xi, j. To simplify notation, we also

define the sum or fraction of two vectors of the same dimension as the positional sum or fraction and

write the length of vector x as len(x).

Absolute abundance

We derive the average number of reads covering each contig position from assembler output or by mapping

the reads back onto contigs. This mean coverage is a proxy for the genome abundance in the sample

because it is roughly proportional to the genome copy number. A careful library preparation causes the

copy numbers of genomes to vary differently over samples, so that each genome has a distinct relative

read distribution. Depending on the amount of reads in each sample being associated with every genome,

we obtain for every contig a coverage vector ai where len(ai) is the number of samples. Therefore, if

more sample replicates are provided, contigs from different genomes are generally better separable since

every additional replicate adds an entry to the feature vectors.

Random sequencing followed by perfect read assembly theoretically produces positional read counts

which are Poisson distributed, as described in Lander & Waterman (1988). In Equation 2, we derived a

similar likelihood using mean coverage values (see Supplementary Methods for details). The likelihood

function is a normalized product over the independent Poisson functions Pθ j
(ai, j) for each sample. The

expectation parameter θ j represents the genome copy number in the jth sample.

L(θ | ai) =
len(ai)

√

√

√

√len(ai)
∏

j=1

Pθ j
(ai, j) =

len(ai)

√

√

√

√len(ai)
∏

j=1

θ
ai, j

j

ai, j!
e−θ j (2)

The Poisson explicitly accounts for low and zero counts, unlike a Gaussian model. Low counts are

often observed for undersequenced and rare taxa. Note that ai, j is independent of θ. We derived the model

likelihood function from the joint Poisson over all contig positions by approximating the first data-term

with mean coverage values (Supplementary Methods).
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The maximum likelihood estimate (MLE) for θ on training data is the weighted average of mean

coverage values for each sample in the training data (Supplementary Methods).

θ̂ =

N
∑

i=1
wi ai

N
∑

i=1
wi

(3)

Relative abundance

In particular for shorter contigs, the absolute read coverage is often overestimated. Basically, the Lander-

Waterman assumptions (Lander & Waterman, 1988) are violated if reads do not map to their original

locations due to sequencing errors or if they “stack” on certain genome regions because they are ambiguous

(i.e. for repeats or conserved genes), rendering the Poisson model less appropriate. The Poisson, when

constrained on the total sum of coverages in all samples, leads to a binomial distribution as shown by

(Przyborowski & Wilenski, 1940). Therefore, we model differential abundance over different samples

using a binomial in which the parameters represent a relative distribution of genome reads over the

samples. For instance, if a particular genome had the same copy number in a total of two samples, the

genome’s parameter vector θ would simply be [0.5,0.5]. As for absolute abundance, the model becomes

more powerful with a higher number of samples. Using relative frequencies as model parameters instead

of absolute coverages, however, has the advantage that any constant coverage factor cancels in the division

term. For example, if a genome has two similar gene copies which are collapsed during assembly, twice

as many reads will map onto the assembled gene in every sample but the relative read frequencies over

samples will stay unaffected. This makes the binomial less sensitive to read mapping artifacts but requires

two or more samples because one degree of freedom (DF) is lost by the division.

The contig features ri are the mean coverages in each sample, which is identical to ai in the absolute

abundance model, and the model’s parameter vector θ holds the relative read frequencies in the samples,

as explained before. In Equation 4 we ask: how likely is the observed mean contig coverage ri, j in sample

j given the genome’s relative read frequency θ j of the sample and the contig’s total coverage Ri for all

samples. The corresponding likelihood is calculated as a normalized product over the binomials BRi,θ j
(ri, j)

for every sample.

L(θ | ri) =
len(ri)

√

√

√

√len(ri)
∏

j=1

BRi,θ j
(ri, j) =

len(ri)

√

√

√

√len(ri)
∏

j=1

(

Ri

ri, j

)

θ
ri, j

j

(

1− θ j

)(Ri−ri, j)
(4)

Ri is the sum of the abundance vector ri. Because both Ri and ri can contain real numbers, we need to

generalize the binomial coefficient to positive real numbers via the gamma function Γ.

(

n

k

)

=
Γ(n+1)Γ(k+1)

Γ(n− k+1)
(5)

Because the binomial coefficient is a constant factor and independent of θ, it can be omitted in ML

classification (when comparing between different genomes) or be retained upon parameter updates. As

for the Poisson, the model accounts for low and zero counts (by the binomial coefficient). We derived the

likelihood function from the joint distribution over all contig positions by approximating the binomial

data-term with mean coverage values (see Supplementary Methods).

The MLE θ̂ for the model parameters on training sequence data corresponds to the amount of read

data (base pairs) in each sample divided by the total number of base pairs in all samples. We express this
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as a weighted sum of contig mean coverage values (see Supplementary Methods).

θ̂ =

N
∑

i=1
wi ri

N
∑

i=1
wi Ri

(6)

It is obvious that absolute and relative abundance models are not independent when identical input

vectors (here ai = ri) are used. However, because the sum of independent Poisson variables also follows a

Poisson distribution, we can instead apply the model to the total coverage in all samples, Ri. To illustrate

the total abundance, this compares to mixing the samples before sequencing so that the resolution of

individual samples is lost. Doing so, we can combine both absolute and relative abundance, the latter

because one DF is lost in the ratio transform, and incorporate both types of submodels in the aggregate

model.

Nucleotide composition

Microbial genomes have a distinct “genomic fingerprint” (Karlin, Mrazek & Campbell, 1997) which is

typically determined by means of k-mers. Each contig has a relative frequency vector ci for all possible

k-mers of size k. The nature of shotgun sequencing demands that each k-mer is counted equally to its

reverse complement because the orientation of the sequenced strand is typically unknown. With increasing

k, the feature space grows exponentially and becomes sparse. Thus, it is common to select k from 4 to 6

(Teeling et al., 2004; McHardy et al., 2007; Kislyuk et al., 2009). Here, we simply use 5-mers (len(ci) =
45

2
= 512) but other choices can be made.

We chose a Naı̈ve Bayes likelihood model for its simplicity and effectiveness. It is worth noting

that despite its name it is not necessarily a Bayesian method and it is called naı̈ve, because it assumes

statistical independence of features so that the likelihood function in Equation 7 becomes a simple

product over observation probabilities. We know that k-mers are not independent by overlaps and reverse

complementarity (Kislyuk et al., 2009). Nevertheless, the model has been successfully applied to k-mers

(Wang et al., 2007), and we can replace k-mers in our model with better-suited compositional features,

i.e. using locality-sensitive hashing (Luo et al., 2016). A genome’s background distribution θ is a vector

which holds the probabilities to observe each k-mer and the vector ci does the same for the ith contig.

The composition likelihood for a contig is a weighted and normalized product over the background

frequencies.

L(θ | ci) =

len(ci)
∏

i=1

θ
ci

i
(7)

The genome parameter vector θ̂ that maximizes the likelihood on training sequence data can be

estimated by a weighted average of feature counts (Supplementary Methods).

θ̂ =

N
∑

i=1
wi ci

N
∑

i=1
wi

(8)

Similarity to reference

We can compare contigs to reference sequences, for instance by local alignment. Two contigs that align

to closely related taxa are more likely to derive from the same genome than sequences which align to

distant clades. We convert this indirect relationship to explicit taxonomic features which we can compare

without direct consideration of reference sequences. A taxon is a hierarchy of nested classes which can be
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written as a tree path, for example, the species E.coli could be written as [Bacteria, Gammaproteobacteria,

Enterobacteriaceae, E.coli].

We assume that distinct regions of a contig, such as genes, can be annotated with different taxa. Each

taxon has a corresponding weight which in our examples is a positive alignment score. The weighted taxa

define a spectrum over the taxonomy for every contig and genome. It is not necessary that the alignment

reference be complete or include the respective species genome but all spectra must be equally biased.

Since each contig is represented by a hierarchy of L numeric weights, we incorporated these features into

our multi-layer Naı̈ve Bayes model. First, each contig’s taxon weights are transformed to a set of sparse

feature vectors t i = {ti,l | 1 ≤ l ≤ L}, one for each taxonomic level, by inheriting and accumulating scores

for higher-level taxa (see Table 1 and Figure 2).

Table 1. Calculating the contig features t i for a simplified taxonomy. There are five original integer

alignment scores for nodes (c), (e), (f), (g) and (h) which are summed up at higher levels to calculate the

feature vectors ti,l. The corresponding tree structure is shown in Figure 2.

Node Taxon Level l Index j Score ti,l, j

a Bacteria 1 1 0 7

b Gammaproteobacteria 2 1 0 6

c Betaproteobacteria 2 2 1 1

d Enterobacteriaceae 3 1 0 5

e Yersiniaceae 3 2 1 1

f E.vulneris 4 1 1 1

g E.coli 4 2 3 3

h Yersinia sp. 4 3 1 1

hf g

d e

b c

a Domain (level 1)

Class (level 2)

Family (level 3)

Species (level 4)

Figure 2. Taxonomy for Table 1 which is simplified to four levels and eight nodes. A full taxonomy may

consist of thousands of nodes.

Each vector ti,l contains the scores for all Tl possible taxa at level l. A genome is represented by a

similar set of vectors θ = {θl | 1 ≤ l ≤ L} with identical dimensions, but here, entries represent level-specific

relative frequencies. The corresponding likelihood model corresponds to a set of Naı̈ve Bayes models,

one for each layer. The full likelihood is a product of the level likelihoods.

L(θ | t i) =

L
∏

l=1

Tl
∏

j=1

θ
ti,l, j

l, j
(9)
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For simplicity, we assume that layer likelihoods are independent which is not quite true but effec-

tive. The MLE for each θl is then derived from training sequences similar to the Naı̈ve Bayes model

(Supplementary Methods).

θ̂l =

N
∑

i=1
ti,l

Tl
∑

j=1

N
∑

i=1
ti,l

(10)

Inference of weight parameters

The aggregate likelihood for a contig in Equation 1 is a weighted product of submodel likelihoods. The

weights in vector α balance the contributions, assuming that they must not be equal. When we write the

likelihood in logarithmic form (Equation 11), we see that each weight αk sets the variance or width of the

contigs’ submodel log-likelihood distribution. We want to estimate αk in a way which is not affected by

the original submodel variance because the corresponding normalization exponent is somewhat arbitrary.

For example, we normalized the nucleotide composition likelihood as a single feature and the abundance

likelihoods as a single sample to limit the range of the likelihood values, because we simply cannot say

how much each feature type counts.

l(Θ | Fi) = β

M
∑

k=1

αk l(Θk | Fi,k) (11)

For any modeled genome, each of the M submodels produces a distinct log-likelihood distribution

of contig data. Based on the origin of the contigs, which is known for model training, the distribution

can be split into two parts, the actual genome (positive class) and all other genomes (negative class),

as illustrated in Figure 3. The positive distribution is roughly unimodal and close to zero whereas the

negative distribution, which represents many genomes at once, is diverse and yields strongly negative

values. Intuitively, we want to select α such that the positive class is well separated from the negative

class in the aggregate log-likelihood function in Equation 11.

Because α cannot be determined by likelihood maximization, the contributions are balanced in a

robust way by setting α to the inverse standard deviation of the genome (positive class) log-likelihood

distributions. More precisely, we calculate the average standard deviation over all genomes weighted

by the amount of contig data for each genome and calculate αk as the inverse of this value. This scales

down submodels with a high average variance. When we normalize the standard deviation of genome

log-likelihood distributions in all submodels before summation, we assume that a high variance means

uncertainty.

Parameter β in Equation 11 is only relevant for soft classification but not in the context of ML

classification or p-values. It can best be viewed as a sharpening or smoothing parameter of the bin

posterior distribution (the probability of a genome or bin given the contig). β is estimated by minimization

of the training or test error, as in our simulation.

Data simulation

We simulated reads of a complex microbial community from 400 publicly available genomes (Supplemen-

tary Methods and Supplementary Table 1). These comprised 295 unique and 44 species with each two or

three strain genomes to mimic strain heterogeneity. Our aim was to create a benchmark dataset under

controlled settings, minimizing potential biases introduced by specific software. We sampled abundances

from a lognormal distribution because it has been described as a realistic model (Schloss & Handelsman,

2006). We then simulated a primary community which was then subject to environmental changes

resulting in exponential growth of 25% of the community members at growth rates which where chosen

uniformly at random between one and ten whereas the other genome abundances remained unchanged.
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original log-likelihood weighted log-likelihood
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l(Θ1 | Fi,1) α1l(Θ1 | Fi,1)
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0

0

0

0

Figure 3. Procedure for determination of αk for each submodel. The figure shows a schematic for a

single genome and two submodels. The genome’s contig log-likelihood distribution is scaled to a

standard deviation of one before adding the term in the aggregate model in Equation 11.

We applied this procedure three times to the primary community which resulted in one primary and three

secondary artificial community abundances profiles. With these, we generated 150 bp long Illumina

HiSeq reads using the ART simulator (Huang et al., 2012) and chose a yield of 15 Gb per sample. The

exact amount of read data after simulation was 59.47 Gb. To avoid a bias caused by specific metagenome

assembly software and to assure a constant contig length, we divided the original genome sequences into

non-overlapping artificial contigs of 1 kb length and selected a random 500 kb of each genome to which

we mapped the simulated reads using Bowtie2 (Langmead & Salzberg, 2012). By the exclusion of some

genome reference, we imitated incomplete genome assemblies when mapping reads, which affects the

coverage values. Finally, we subsampled 300 kb contigs per genome with non-zero read coverage in at

least one of the samples to form the demonstration dataset (120 Mb), which is both diverse and difficult to

classify by the short contig length. For each contig we derived 5-mer frequencies, taxonomic annotation

(simulating novel species) and average read coverage per sample, as described in the Supplementary

Methods.

RESULTS

Maximum likelihood classification

We evaluated the performance of the model when classifying contigs to the genome with the highest

likelihood, a procedure called Maximum Likelihood (ML) classification. We applied a form of three-

fold cross-validation, dividing the simulated data set into three equally-sized parts with 100 kb from

every genome. We used only 100 kb (training data) of every genome to infer the model parameters

and the other 200 kb (test data) to measure the classification error. The smaller fraction was used for

training because identifying the training data often represents a limiting factor in metagenome analysis.

For each combination of submodels, we calculated the mean squared error (MSE) and mean pairwise

coclustering (MPC) probability for the predicted (ML) probability matrices (Suppl. Methods), averaged

over the three test data partitions. We included the MPC as it can easily be interpreted: for instance,

a value of 0.5 indicates that on average 50% of all contig pairs of a genome end up in the same bin

after classification. Table 2 shows that the model integrates information from each data source such that
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the inclusion of additional submodels resulted in a better MPC and also MSE, with a single exception

when combining absolute and relative abdundance models which resulted in a marginal increase of the

MSE. We also found that taxonomic annotation represents the most powerful information type in our

simulation. Next, we investigated how the presence of very similar genomes impacted the performance of

the model. We first collapsed strains from the same species by merging the corresponding columns in

the classification likelihood matrix, retaining the entry with the highest likelihood, and then computed

the resulting coclustering performance increase ∆MPCML. When considering assignment on the species

level instead of individual strains, the performance increase was larger for nucleotide composition and

taxonomic annotation than for absolute and relative abundance. This was expected, as the former sources

of information do not allow to distinguish among stains, contrary to genome abundance.

Table 2. Cross-validation performance of ML classification for all possible combinations of submodels.

We calculated the mean pairwise coclustering (MPC), the strain to species MPC improvement (∆MPCML)

and the mean squared error (MSE). AbAb = absolute total abundance; ReAb = relative abundance; NuCo

= nucleotide composition; TaAn = taxonomic annotation. Best values are in bold and worst in italic.

Submodels MPCML ∆MPCML MSEML

AbAb 0.03 +0.00 0.58

ReAb 0.08 +0.02 0.61

AbAb + ReAb 0.21 +0.04 0.59

NuCo 0.30 +0.06 0.52

ReAb + NuCo 0.41 +0.07 0.48

AbAb + NuCo 0.43 +0.08 0.50

TaAn 0.46 +0.09 0.41

AbAb + ReAb + NuCo 0.52 +0.09 0.44

NuCo + TaAn 0.52 +0.09 0.40

AbAb + TaAn 0.54 +0.09 0.39

AbAb + NuCo + TaAn 0.60 +0.10 0.37

ReAb + TaAn 0.60 +0.10 0.36

ReAb + NuCo + TaAn 0.64 +0.11 0.34

AbAb + ReAb + TaAn 0.65 +0.10 0.35

AbAb + ReAb + NuCo + TaAn 0.68 +0.11 0.33

Soft assignment

The contig length of 1 kb in our simulation is considerably shorter, and therefore harder to classify, than

sequences which can be produced by current assembly methods or by some cutting-edge sequencing

platforms (Goodwin, McPherson & McCombie, 2016). In practice, longer contigs can be classified with

higher accuracy than short ones, as more information is provided as a basis for assignment. For instance,

a more robust coverage mean, a k-mer spectrum derived from more counts or more local alignments to

reference genomes can be inferred from longer sequences. However, as short contigs remain frequent in

current metagenome assemblies, 1 kb is sometimes considered a minimum useful contig length (Alneberg

et al., 2014). To account for the natural uncertainty when assigning short contigs, one can calculate the

posterior probabilities over the genomes (see Suppl. Methods), which results in partial assignments of

each contig to the genomes. This can reflect situations in which a particular contig is associated with

multiple genomes, for instance in case of misassemblies or the presence of homologous regions across

genomes.

The free model parameter β in Equation 1, which is identical in all genome models, smoothens or

sharpens the posterior distribution: β = 0 produces a uniform posterior and with very high β, the posterior

approaches the sharp ML solution. We determined β by optimizing the MSE on both training and test

data, shown in Figure 4. As expected, the classification training error was smaller than the test error
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because the submodel parameters were optimized with respect to the training data. Because the minima

are close to each other, the full aggregate model seems robust to overfitting of β on training data. The

comparison of soft vs. hard assignment shows that the former has a smaller average test classification

MSE of ∼ 0.28 (the illustrated minimum in Figure 4) compared to the latter (ML) assignment MSE of ∼

0.33 in Table 2. Thus, soft assignment seems more suitable to classify 1 kb contigs, which tend to produce

similar likelihoods under more than one genome model.
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Figure 4. Model training (err) and test error (Err) as a function of β for the complete aggregate model

including all submodels and feature types. The solid curve shows the average and the colored shading the

standard deviation of the three partitions in cross-validation. The corresponding optimal values for β are

marked by black dots and vertical lines. The minimum average training error is 0.238 (β = 2.85) and test

error is 0.279 at β = 1.65.

Genome enrichment

Enrichment is commonly known as an experimental technique to increase the concentration of a target

substance relative to others in a probe. Thus, an enriched metagenome still contains a mixture of different

genomes, but the target genome will be present at much higher frequency than before. This allows a

more focused analysis of the contigs or an application of methods which seem prohibitive for the full

data by runtime or memory considerations. In the following, we demonstrate how to filter metagenome

contigs by p-value to enrich in-silico for specific genomes. Often, classifiers model an exhaustive list

of alternative genomes but in practice it is difficult to recognize all species or strains in a metagenome

with appropriate training data. When we only look at individual likelihoods, for instance the maximum

among the genomes, this can be misleading if the contig comes from a missing genome. For better

judgment, a p-value tells us how frequent or extreme the actual likelihood is for each genome. Many if

not all binning methods lack explicit significance calculations. We can take advantage of the fact that the

classification model compresses all features into a genome likelihood and generate a null (log-)likelihood

distribution on training data for each genome. Therefore, we can associate empirical p-values with each

newly classified contig and can, for sufficiently small p-values, reject the null hypothesis that the contig
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belongs to the respective genome. Since this is a form of binary classification, there is the risk to reject a

good contig which we measure as sensitivity.

We enriched a metagenome by first training a genome model and then calculating the p-values of

remaining contigs using this model. Contigs with higher p-values than the chosen critical value were

discarded. The higher this cutoff is, the smaller the enriched sample becomes, but also the target genome

will be less complete. We calculated the reduced sample size as a function of the p-value cutoff for our

simulation (Figure 5). Selecting a p-value threshold of 2.5% shrinks the test data on average down to

5% of the original size. Instead of an empirical p-value, we could also use a parametrized distribution or

select a critical log-likelihood value by manual inspection of the log-likelihood distribution (see Figure 3

for an example of such a distribution). This example shows that generally a large part of a metagenome

dataset can be discarded while retaining most of the target genome sequence data.
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Figure 5. Genome enrichment for 400 genomes with three-fold cross-validation. For each genome, we

measured the test sample size relative to the full dataset after filtering by a p-value cutoff and summing

over the three data partitions. The solid lines shows the resulting average sample size over all 400

genomes. The variability between genomes is shown as quantiles in red. Both axes are logarithmic to

show the relevant details for lower p-values cutoffs. The corresponding sensitivity, shown in Suppl.

Figure 1, is approximately a linear function of the p-value.

Bin analysis

The model can be used to analyze bins of metagenome contigs, regardless of the method that was used to

infer these bins. Specifically, one can measure the similarity of two bins in terms of the contig likelihood,

whereas in absence of a model, one would need could quantify bin similarity by direct comparison of

features such as the k-mer vectors or abundances. We compare bins to investigate the relation between the

given data, represented by the features in the model, and their grouping into genome bins. For instance,

one could ask whether the creation of two genome bins is sufficiently backed up by the contig data or

whether they should be merged into a single bin. For readability, we write the likelihood of a contig in bin

A to:

L(θA | contig i) = Li(θA) = L(θA) = LA

To compare two specific bins, we select the corresponding pair of columns in the classification

likelihood matrix and calculate two mixture likelihoods for each contig (rows), L̂, using the MLE of the
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parameters for both bins and Lswap under the hypothesis that we swap the model parameters of both bins.

The partial assignment weights π̂A and π̂B, called responsibilities, are estimated by normalization of the

two bin likelihoods.

L̂ = π̂A LA+ π̂B LB =
(

LA

LA+LB

)

LA+
(

LB

LA+LB

)

LB =
L2

A
+L2

B

LA+LB

(12)

Lswap = π̂A LB+ π̂B LA =
(

LA

LA+LB

)

LB+
(

LB

LA+LB

)

LA =
2LALB

LA+LB

(13)

For example, if π̂A and π̂B assign one third of a contig to the first, less likely bin and two thirds to the

second, more likely bin using the optimal parameters, then Lswap would simply exchange the contributions

in the mixture likelihood so that one third are assigned to the more likely and two thirds to the less likely

bin. The ratio Lswap/L̂ ranges from zero to one and can be seen as a percentage similarity. We form a

joint relative likelihood for all N contigs, weighting each contig by its optimal mixture likelihood L̂ and

normalizing over these likelihood values.

S(A,B) =
Z

√

√

√

√

√

√

N
∏

i=1















2 Li(θA) Li(θB)

L2
i
(θA)+L2

i
(θB)















L2
i
(θA)+L2

i
(θB)

Li(θA)+Li(θB)

(14)

normalized by the total joint mixture likelihood

Z =

N
∑

i=1

L2
i
(θA)+L2

i
(θB)

Li(θA)+Li(θB)
(15)

The quantity in Equation 14 ranges from zero to one, reaching one when the two bin models produce

identical likelihood values. We can therefore interpret the ratio as a percentage similarity between any

two bins. A connection to the Kullback-Leibler divergence can be constructed (Supplementary Methods).

To demonstrate the application, we trained the model on our simulated genomes, assuming they

were bins, and created trees (Figure 6) for a randomly drawn subset of 50 of the 400 genomes using

the probabilistic bin distances −log(S ) (Equation 14). We computed the distances twice, first with only

nucleotide composition and taxonomic annotation submodels and second with the full feature set to

compare the bin resolution. The submodel parameters were inferred using the full dataset and β using

three-fold crossvalidation. We then applied average linkage clustering to build balanced and rooted trees

with equal distance from leave to root for visual inspection. The first tree loosely reflects phylogenetic

structure corresponding to the input features. However, many similarities over 50% (outermost ring) show

that model and data lack the support for separating these bins. In contrast, the fully informed tree, which

additionally includes information about contig coverages, separates the genomes bins, such that only

closely related strains remain ambiguous. This analysis shows again that the use of additional features

improves the resolution of individual genomes and, specifically, that abundance separates similar genomes.

Most importantly, we show that our model provides a measure of support for a genome binning. We know

the taxa of the genome bins in this example but for real metagenomes, such an analysis can reveal binning

problems and help to refine the bins as in Figure 1d.

Implementation

We provide MGLEX as a Python package. The program can process millions of sequences with vectorized

arithmetics using NumPy (Walt, Colbert & Varoquaux, 2011) and includes a command line interface to

the main functionality, such as model training, classification, p-value and error calculations. MGLEX is

open source (GPLv3) and freely available via the Python Package Index1 and on GitHub2.

1https://pypi.python.org/pypi/mglex/
2https://www.github.com/hzi-bifo/mglex/
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Figure 6. Average linkage clustering of a random subset of 50 out of 400 genomes using probabilistic

distances −log(S ) (Equation 14) to demonstrate the ability of the model to measure bin resolution. This

example compares the left (blue) tree, which was constructed only with nucleotide composition and

taxonomic annotations, with the right (red) tree, which uses all available features. The tip labels were

shortened to fit into the figure. The similarity axis is scaled as log(1-log(S)) to focus on values near one.

Bins which are more than 50% similar branch in the outermost ring whereas highly dissimilar bins branch

close to the center. We created the trees by applying the R function hclust(method=“average”) to

MGLEX output.
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DISCUSSION

We describe an aggregate likelihood model for the reconstruction of genome bins from metagenome

data sets and show its value for several applications. The model can learn from and classify nucleotide

sequences from metagenomes. It provides likelihoods and posterior bin probabilities for existing genome

bins, as well as p-values, which can be used to enrich a metagenome dataset with a target genome. The

model can also be used to quantify bin similarity.

The method builds on three different submodels that make use of different information sources in

metagenomics, namely contig coverage, nucleotide composition and previous taxonomic assignments.

By its modular design, the model can easily be extended to include additional information sources. This

modularity also helps in interpretation and computations. The former, because different features can be

analyzed separately and the latter, because submodels can be trained independently and in parallel.

In comparison to previously described parametric binning methods, our model incorporates two new

types of features. The first is relative differential coverage, for which, to our knowledge, this is the first

attempt to use binomials to account for systematic bias in the read mapping. As such, the binomial

submodel represents the parametric equivalent of covariance distance clustering. The second new type

is taxonomic annotation, which substantially improved the classification results in our simulation. As a

side note, taxonomic annotations, as used in the model, need not be entirely correct, as long as the same

annotation method is applied to all sequences. The aggregate model also implements weights for the

combination of feature types and allows to tune the bin posterior distribution by error minimization.

Currently, MGLEX does not yet support multiple processor cores and provides the basic functionality

presented here. However, training and classification can easily be implemented in parallel because they are

expressed as matrix multiplications. To infer or improve an existing genome binning, the model could be

also combined with inference procedures such as the Markov Chain Monte Carlo (MCMC) or Expectation

Maximization (EM) algorithms. As a limiting factor, the model requires sufficient training data to robustly

estimate the submodel weights α using the standard deviation of the empirical log-likelihood distributions

and linked sequences to estimate β using error minimization. We therefore advise to generate linked

training sequences of a certain length, as in our simulation, for instance by splitting assembled contigs.

Our open-source Python package MGLEX provides a flexible framework for metagenome analysis

and binning which we intent to develop further together with the metagenomics research community. It

can be used as a library to write new binning applications or to implement custom workflows, for example

to supplement existing binning strategies. It can build upon a present metagenome binning by taking

assignments to bins as input and deriving likelihoods and p-values that allow for critical inspection of the

contig assignments. Based on the likelihood, MGLEX can calculate bin similarities to provide insight

into the structure of data and community. Finally, genome enrichment of metagenomes can improve the

recovery of particular genomes.
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