IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 49, NO. 9, SEPTEMBER 2004

1465

Information Flow and Cooperative Control
of Vehicle Formations

J. Alexander Fax, Member, IEEE, and Richard M. Murray, Member, IEEE

Abstract—We consider the problem of cooperation among a col-
lection of vehicles performing a shared task using intervehicle com-
munication to coordinate their actions. Tools from algebraic graph
theory prove useful in modeling the communication network and
relating its topology to formation stability. We prove a Nyquist cri-
terion that uses the eigenvalues of the graph Laplacian matrix to
determine the effect of the communication topology on formation
stability. We also propose a method for decentralized information
exchange between vehicles. This approach realizes a dynamical
system that supplies each vehicle with a common reference to be
used for cooperative motion. We prove a separation principle that
decomposes formation stability into two components: Stability of
the is achieved information flow for the given graph and stability
of an individual vehicle for the given controller. The information
flow can thus be rendered highly robust to changes in the graph,
enabling tight formation control despite limitations in intervehicle
communication capability.

Index Terms—Cooperative control, graph theory, Laplacian,
multivehicle control, stability.

1. INTRODUCTION

ECENT technological advances have spurred a broad in-

terest in autonomous, adaptable vehicle formations. The
development of powerful control techniques for single vehicles,
the explosion in computation and communication capabilities,
and the advent of miniaturization technologies have elevated
interest in vehicles which can interact autonomously with the
environment and other vehicles to perform, in the presence of
uncertainty and adversity, tasks beyond the ability of individual
vehicles. Application areas include microsatellite clusters [1],
[2], unmanned aerial vehicles (UAVs) [3], [4], autonomous un-
derwater vehicles (AUVs) [5], [6], automated highway systems
(AHSs) [7], [8], and mobile robotics [9], [10].

While each of these areas poses its own unique challenges,
several common threads can be found. In most cases, the vehi-
cles are coupled through the task they are trying to accomplish,
but are otherwise dynamically decoupled, meaning the motion
of one does not directly affect the others. Decisions must be
made by each vehicle using only limited information about the
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other vehicles, information that may be subject to uncertainty
and transmission delay. The reaction of a vehicle to other vehi-
cles’ motions renders the formation an interconnected dynam-
ical system whose behavior depends not only on the individual
vehicle dynamics, but on the nature of their interconnection.

The cooperative behavior we focus on in this paper is
formation control. Existing approaches to vehicle formation
control generally fall into two cagetories. The “leader—follower”
approach has the advantage of simplicity in that a reference
trajectory is clearly defined by the leader, and in that internal
stability of the formation is implied by stablity of the individual
vehicles’ control laws. However, leader—follower architectures
are known to have poor disturbance rejection properties (see,
e.g., [11]). Additionally, a leader—follower architecture depends
heavily on the leader for achieving its goal, and over-reliance
on a single vehicle in the formation may be undesirable,
especially in adversarial environments. The second approach
is the “virtual leader” approach [12], [6], in which vehicles in
the formation jointly synthesize a single, possibly fictitious,
leader vehicle whose trajectory acts as a leader for the group.
This approach avoids the problems with disturbance rejection
inherent in the leader—follower approach, but at the expense
of high communication and computation capabities needed to
synthesize the virtual leader and communicate its position in
time to support real-time control of other vehicles.

What these approaches have in common is an assumption
about the underlying communication topology that enables the
use of a particular formation control methodology. We wish to
consider a broader range of vehicle interconnection possibilities
and understand how the topology of the information flow affects
the stability and performance of the system as it performs a co-
ordinated task. Our ultimate goal is the development of infor-
mation exchange strategies which improve formation stability
and performance and are robust to changes in the communica-
tion topology.

Our approach is to model the communication topologies as
a graph; each vehicle is a vertex of a (directed) graph, and an
arc is drawn from vertex ¢ to vertex j if vehicle ¢ receives in-
formation from vehicle j. By merging ideas from graph theory
and control theory, we are able to study the interplay between
the communication network and vehicle dynamics, and to pro-
pose strategies for information exchange which mitigate those
effects. We limit our focus to linear time-invariant (LTT) systems
in order to elucidate the role of the graph in the system behavior.
In that context, we provide necessary and sufficient conditions
for stability of an interconnected system of indentical vehicles
in terms of the eigenvalues of the graph Laplacian and show how
to shape the information flow to achieve high performance. Por-
tions of this work have been reported in [13]-[15].
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The use of graphs in analysis of interconnected systems is
not new. When decentralized control became an area of study
in the 1970s, researchers used graph-theoretic ideas in mod-
eling interconnections [16], [17]. The current broad interest in
vehicle formations has revived an interest in graph-theoretic
ideas [18]-[20]. A related area of research is synchronization
of chaotic oscillators. References [21] and [22] identified the
Laplacian eigenvalues as an important object of study. Other re-
searchers took a more control-theoretic approach, using tools
such as Lyapunov stability [23] and the circle criterion [24] to
derive sufficient conditions for nonlinear chaotic oscillators to
synchronize. The observation in [23] that the eigenvalues must
be “negative enough” to achieve stability is similar is spirit to
the work presented here. Our work differs in that we restrict
our focus to stabilization of formations with linear dynamics,
and as such we are able to make more precise statements about
the role of Laplacian eigenvalues in determining formation sta-
bility. Our results are useful for controller design and also lay
the foundation for our investigation of the role of intervehicle
communication.

This paper is organized as follows. In Section II, we pro-
vide a brief summary of the relevant results in graph theory and
define the relevant notation. The main stability results are de-
rived in Section III, where we prove a Nyquist-like criterion
for determining stability and explore the interaction between
graph topology and vehicle dynamics through this criterion. In
Section IV, we propose an information exchange methodology
which is robust to uncertainty in the communication topology.
This approach exhibits a separation principle which decouples
the stability of the formation communication, which we term
information flow, and the local control of individual vehicles.
Finally, in Section V we summarize the main results and pro-
vide some thoughts on future directions of research.

II. GRAPH THEORY

Many excellent texts on graph theory exist; a recent example
is [25]. Recent results regarding the Laplacian and its spec-
tral structure can be found in [26]—[28]. The Perron—Frobenius
theory can be found in many texts; the presentation here is based
on material in [29]-[31].

A. Definitions

A directed graph G consists of a set of vertices, denoted V),
and a set of arcs A C V2, where a = (o, 3) € Aand v,w €
V. The first element of a is denoted tail(a), and the second is
denoted head(a). We assume that tail(a) # head(a) for all
a, meaning that the graph has no self-loops. We also assume
that each element of A is unique. A graph with the property
that for any (o, 3) € A, the arc (3, ) € A as well is said to
be undirected. The in(out)-degree of a vertex «, denoted d;(«)
(do(c)), is the number of arcs with « as its head (tail). If every
possible arc exists, the graph is said to be complete.

A path on G of length N from « to oy is an ordered set of
distinct vertices {ay, . .. ,an } such that (o; 1, a;) € A for all
i € [1, N]. A graph in which a path exists from every vertex to
every vertex is said to be strongly connected. A graph in which
disjoint subsets of vertices exist that cannot be joined by any
path is termed disconnected. An N-cycle on G is a path except
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for which o9 = v, meaning the path rejoins itself. A graph
without cycles is said to be acyclic. A graph with the property
that the set of all cycle lengths has a common divisor k£ > 1 is
said to be k-periodic.

The relationship between graph theory and control theory dis-
cussed in this paper makes use of matrices associated with a
graph. For the purpose of defining these matrices, we assume
that the vertices of G are enumerated, and each is denoted «;.
The normalized adjacency matrix of a graph, denoted G(G),
is a square matrix of size |V|, defined by G;; = 1/d,(w;) if
(i, o) € G, and is zero otherwise. When the graph in ques-
tion is clear, this matrix will be denoted as G.

Following [28], we define the Laplacian of the graph as!

L=1-G. )

It is possible to work with weighted graphs, in which the off-
diagonal elements of L are unequal yet still sum to —1. Most
of the results of the following sections do not depend on the
arcs being weighted equally, though we will assume that for
convenience. A sample graph and Laplacian are shown in Fig. 1.

Note that (G is nonnegative by construction, and that the rows
of L each sum to zero. The theory of nonnegative matrices will
be quite useful in understanding the links between graph theory
and vehicle formation control. Recall that a nonnegative matrix
G is termed irreducible if there does not exist a permutation
matrix P such that PGPT is block triangular, and is termed
reducible otherwise. We will generally restrict our focus to ir-
reducible matrices, though the structure of reducible matrices
is useful in understanding the effects of multiple competing
leaders in a formation; see [13]. Note that irreducibility implies
strong connectivity. If G is aperiodic, then G is termed primitive.
If G is k-periodic, it is termed imprimitive, or cyclic of index k.
We will denote the spectral radius of G as p(G). The following
well-known theorem will be of use in our analysis.

Theorem 1 (Perron—Frobenius): Let A be a nonnegative, ir-
reducible matrix. The following are true:

1) p(A) > 0;

2) p(A) is a simple eigenvalue of A, and any eigenvalue of

A of the same modulus is also simple;

3) A has a positive eigenvector = corresponding to p(A).
Furthermore, if A is primitive, then all eigenvalues of A other
than p(A) have modulus strictly less than p(A).

If A is not primitive, the eigenvalues of A have an interesting
structure:

Theorem 2: Let A be a nonnegative, irreducible matrix
which is cyclic of index k. Then A has k eigenvalues of mod-
ulus p(A), equal to \; = p(A)e T i i =0,... k—1.

B. Eigenvalues of Laplacians

We now return to the structure of the spectrum of the Lapla-
cian. The following can be shown to be true by observing that
the rows of L necessarily sum to zero, and that any eigenvalue
A of L corresponds to an eigenvalue 1 — A of G.

ISome references define L as D — A, where D is the matrix with the out-
degrees along the diagonal and A is the standard adjacency matrix. Others use
the transpose of A to define the Laplacian of the directed graph. This distinction
is of little consequence in terms of the theory, but the definition stated above
better suits our purposes.
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Fig. 1. Sample graph and Laplacian.

Proposition 1: Zero is an eigenvalue of L. The associated
eigenvector is 17

Proposition 2: All eigenvalues of L lie in a disk of radius 1
centered at the point 1 4 07 in the complex plane.

Proposition 3: If G is strongly connected, the zero eigen-
value of L is simple. If, in addition, G is aperiodic, all nonzero
eigenvalues lie in the interior of the Perron disk. If G is k-peri-
odic, L has k evenly spaced eigenvalues on the boundary of the
Perron disk.

Proposition 4: If G is undirected, then all eigenvalues of L
are real.

C. Kronecker Algebra and Formation Modeling

A final tool that will be useful in modeling and maniuplating
equations governing formation motion is Kronecker algebra.
For example, if ©:; = Ax; represents the dynamics of a single
vehicle, the dynamics of N vehicles can be represented as & =
(In ® A)x. Another important case is if A is an N X N matrix
representing the manipulation of scalar data from N vehicles,
and that manipulation needs to be applied to each value of a
vector of length 7. In that case, the manipulation can be repre-
sented by concatenating the N vectors of length 7 into a single
vector of length Nn, and multiplying it by A ® I,,.

The associativity property of the Kronecker product facili-
tates manipulation of these matrices. In particular, if X is an
r X s matrix, and Y is an N X N matrix, then

(UIneX)(Yol)=YoL)(IneX)=YoX. (2

III. RELATIVE POSITION CONTROL IN VEHICLE FORMATIONS

The problem we consider in this section is the stabilization
of the relative position of a set of vehicles with identical linear
dynamics.

A. Formation Equations of Motion

We consider a set of N vehicles, whose (identical) linear dy-
namics are denoted

T; = Paz; + Ppu,; 3)

where x; € R",u; € R™ are the vehicle states and controls,
and ¢ € [1, N] is the index for the vehicles in the flock. Each
vehicle receives the following measurements:

yi = Po, @ @
je T )

zij = Po, (v — x5),
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where the set J; C [1, N]\{7} represents the set of vehicles
which vehicle i can sense. Thus, y; € R* represents internal
state measurements, and z;; € R! represents external state mea-
surements relative to other vehicles. We assume that 7; # 0,
meaning each vehicle can sense at least one other vehicle. Note
that a single vehicle cannot drive all the z;; terms to zero simul-
taneously; the errors must be synthesized into a single signal.
For simplicity, and without loss of generality, we assume that
all relative state measurements are weighted equally to form one
error measurement

1
zi = 7] Z Zij (6)

where |J;| is the cardinality of the set J;. The choice of
weighting does not impact the results, as long as the weights
for a given vehicle sum to one. We also define a decentralized
control law K which maps y;, 2z; to u; and has internal states
v; € R?, represented in state-space form by

vy = Kavi + Kp,yi + KB, %
u; = Kcv; + Kp,y; + Kp, %. @)

We now consider the system of all N vehicles together, using
the Kronecker product to assemble the matrices governing for-
mation behavior, as discussed earlier. Let = denote the concate-
nation of the vectors z;, . . ., z . Using this notation, the system

’ ’

dynamics are represented as follows:
Zi? _ A11 A12 xr
GG a)C) oo

Ay =In ® (Pa+ PgKp, Pc,)
+ Iy ® PeKp,Pc,)(L® I,)
A = Iy @ PpKc
Ayn =INQ Kp Po, + (INQ® Kp,Pc,)(L® I,)
Ay =In Q@ K4.

where

The matrix L is defined as follows:

Li;=1 &)

1 - g
LijZ{_m” 1€
0, J ¢ Ji

and represents the relative sensing defined in (6). The Kronecker
product is used to dimension L to the size of the measurement
vector, as discussed earlier.

(10)

B. Formation Stability

We are now able to identify the role of the sensing graph in
the formation dynamics. The vehicles and their sensing indices
J; together form a graph, where each vertex represents a ve-
hicle and an arc leads from vertex 7 to vertex j if j € J;. Our
assumption that each vehicle can sense at least one other vehicle
implies that the out-degree of each vertex is at least 1. The ma-
trix L defined in (9) is the Laplacian of the graph, defined in
Section II-A. We show the following to be true.
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Theorem 3: Alocal controller K stabilizes the formation dy-
namics in (8) iff it simultaneously stabilizes the set of N systems

i; = Paz; + Ppu;
yi = Po, i

(11)

zZ; = )\,L'I)c2 T,

where )\; are the eigenvalues of L.

Proof: We will show the above to be true by transforming
the closed-loop dynamics in the following way. Let 7" be a Schur
transformation of L, meaning the unitary matrix such that U =
T~LLT is upper triangular with the eigenvalues of L along the
diagonal [30]. Clearly, T' ® I,, transforms L ® I,, into U ® I,,. If
weletz = (T ® I,)z,and o = (T ® I,,,)v, we can restate (8),
using the associative property in (2), in terms of z and v. The
resulting matrix elements are

Ay = 1IN ®(PA+PBKD1PC1)
+(In ® PKp,Pc,)(U ® In)
Ao =In ® PRKc
Ay =In ® K, Pe, + (In © K, P, )(U ® I,,)

Asy = In ® K4. 12)

Because the elements of the transformed system matrix are ei-
ther block diagonal or block upper-triangular, the stability of
this system is equivalent to the stability of the N subsystems de-
fined taking the diagonal blocks. For U ® I,,, the diagonal blocks
are each \;I,,, so the N diagonal subsystems can be written

i; = (Pa+ PeKp, Pc, + \iPsKp, Pc,)i; + PsKci;
v; = (K, Po, + M\iKp,Pc, )i + K 4 (13)

which is equivalent to the controller K stabilizing the system in
1. [ |

Theorem 3 reveals that a formation of N identical vehicles
can be analyzed for stability by analyzing the stability of a single
vehicle with the same dynamics, modified by only a scalar, rep-
resenting the interconnection, that takes values according to the
eigenvalues of the interconnection matrix L. This theorem ap-
plies to any matrix, not only a Laplacian. Note that \; may be
complex, leading to a complex-valued LTI in the previous for-
mulation. The value in this formulation lies not in its direct use
in design, but in its application to classical and modern stability
robustness criteria, as we discuss later.

The zero eigenvalue of L (see Proposition 1) can be inter-
preted as the unobservability of absolute motion of the forma-
tion in the measurements z;. A prudent design strategy is to
close an inner loop around y; such that the internal vehicle dy-
namics are stable, and then to close an outer loop around z;
that achieves desired formation performance. For the remainder
of this paper, we concern ourselves solely with the outer loop.
Hence, we assume from now on that Pc, is empty and that
P4 has no eigenvalues in the open right-half plane. We do not
wish to exclude eigenvalues along the jw axis because they are
characteristic of vehicle systems, representing the directions in
which motion is possible. The controller K is also presumed to
be stable. If K stabilizes the system in (11) for all \; other than
the zero eigenvalue, we say that it stabilizes the relative forma-
tion dynamics.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 49, NO. 9, SEPTEMBER 2004

Note that for a strongly connected graph or for a formation
with a single leader, it can be shown that the only equilibrium
point is in fact the desired relative position of the vehicles. Ad-
ditionally, the theorem is equally applicable when the inputs are
driven not to zero, but to some internally consistent set of offsets
[13].

Hereafter, we refer to the plant dynamics from w; to y; as P,
its transfer function as P(s), and that of the controller from y;
to u; as K (s). For single-input-single-output (SISO) systems,
we can state a second version of Theorem 3 which is useful for
stability and robustness analysis.

Theorem 4: Suppose P is SISO. Then, K stabilizes the rel-
ative formation dynamics iff the net encirclement of —\;" ! by
the Nyquist plot of — K (s)P(s) is zero for all nonzero ;.

Proof: The Nyquist criterion states that stability of the
closed-loop system in Theorem 3 is equivalent to the number
of counterclockwise encirclements of —1 + 50 by the forward
loop A\;P(jw)K (jw) being equal to the number of right-half
plane poles of P(s), which is assumed to be zero. This crite-
rion is equivalent to the number of encirclements of —A\; ! by
P(jw)K (jw) being zero. [ |

In the case where P is multiple-input-multiple-output
(MIMO), the formation can be thought of as a structured
uncertainty of the type scalar time identity (see [32]) where
the scalars are the Laplacian eigenvalues. More specifically,
we will write the eigenvalues as A; = 1 4 p; and consider
bounds on ;. Suppose it is known that |u;| < M for all
nonzero ;. If we close the loop around the unity block
and leave p;I as an uncertainty, the resulting lower block is
C(s) = P(s)K(s)(I — P(s)K(s))~*, which is assumed to
be stable. The following result from robust control theory then
applies.

Theorem 5: K stabilizes the relative formation dynamics of
the MIMO vehicle P if p(C(jw)) < M1 Vw € (—o0,0).

Example 1 (Double Integrator With Time Delay): Consider
a system of the form P(s) = (e*T/s?), modeling a second
order plant with time-delay, and suppose the plant has been sta-
bilized with a PD control law. Fig. 2 shows a formation graph
and the Nyquist plot of K (s)P(s) with the Laplacian eigen-
values. The “0” locations correspond to the eigenvalues of the
graph defined by the solid arcs in Fig. 2, and the “x” locations
are for eigenvalues of the graph when the dashed arc is included
as well. This example clearly shows the effect the formation has
on stability margins. The standard Nyquist plot reveals a system
with reasonable stability margins—about 8 dB and 45°. When
one accounts for the effects of the formation, however, one sees
that for the “o” formation, the stability margins are substantially
degraded, and for the “x” formation, the system is in fact un-
stable. Interestingly, the formation is rendered unstable when
additional information (its position relative to vehicle 6) is used
by vehicle 1. We will return to this point shortly.

C. Evaluating Formations Via Laplacian Eigenvalues

The location of Laplacian eigenvalues has emerged as the
parameter which enables formation stability to be analyzed
on the local level. We now turn to the question of bounding
or predicting eigenvalue location based on properties of the
graph. We begin by considering simple formation structures
and their eigenvalue placement. Examples of these graphs are
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Fig. 2. Formation graph and Nyquist plot.

TABLE 1
SAMPLE GRAPHS, SPECTRA, AND NYQUIST LOCATIONS
%%x}‘- ML) = {1+ 75} e
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. |
T Ne ML) =1-€F SR
-1
[ ] ‘\‘.
Q" ‘\\‘. ANL)>2 4
3. il

shown in Table I, where sample graphs, their nonzero spectra,
and the locations on the Nyquist plot are shown.

1) Complete graph: The complete graph is one where every
possible arc exists. In this case, the eigenvalues of a
graph with N vertices can be analytically determined
to be zero and 1+ 1/(N — 1), the latter repeated N — 1
times. For large N, stabilization of the complete graph
is equivalent to stabilizing an individual vehicle.

2) Acyclic (directed) graph: This graph has the 1 eigenvalue
repeated N times. This can be seen from the fact that the
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0.2

vertices can be ordered such that L is upper triangular
with ones along the diagonal. This is the “leader—fol-
lower” architecture discussed earlier. In this case, vehicle
stabilization is truly a local result, since other vehicles’
dynamics enter only as a disturbance.

3) Singledirected cycle: This graphis periodic and, therefore,
has eigenvalues at 1 — e/(=1)/27 j € [1, N] according
to Proposition 3. These eigenvalues lie on the boundary
of the Perron disk in which all the eigenvalues must lie.
Note that the negative inverse of these points lie on the
—0.5 vertical in the complex plane.

4) Two-cyclic undirected graph: A graph of this type would
include a vehicle platoon with bidirectional position
measurement. This graph will have an eigenvalue at
2, due to its periodicity, and all other eigenvalues will
be real, due to the symmetry of the graph.

Fig. 3 shows various eigenvalue regions for — L and the cor-
responding regions for —L~!. The region bounded by the solid
line is the Perron disk in which all eigenvalues must lie. Its in-
verse is the LHP shifted by -0.5. The dashed region is a bound in
the magnitude of the nonzero eigenvalues of L. It corresponds
to a shifted circle on the right-hand side of Fig. 3. Finally, the
dashed—dotted line corresponds to a bound on the real compo-
nent of the eigenvalues. The inverse of this bound corresponds to
a circle which touches the origin. The shaded region represents
the “desirable” region, in which the eigenvalues’ locations do
not differ substantially from —1.

If we consider the complete graph and the single directed
cycle graph of Table I as representing two extremes—one with
all eigenvalues at a single location, the other with eigenvalues
maximally dispersed, we see that eigenvalue placement can be
related to the rate of mixing of information through the network.
When the graph is highly connected, the global component of an
individual vehicle’s dynamics are rapidly averaged out through
the rest of the graph, and thus has only a minor effect on sta-
bility. When the graph is periodic, the global component of the
dynamics introduces periodic forcing of the vehicle, and the rest
of the network never averages it out. This is represented on the
Nyquist plot by putting the inverse eigenvalues nearer to the
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—AL)

Fig. 3.
for —L—1.

imaginary axis, thus diminishing stability margins. This obser-
vation explains why the system in Fig. 2 loses stability margin
when a link is added. The “solid” graph possesses two 3-cycles
and two 2-cycles. When the dashed link is added, an additional
3-cycle is created, rendering the graph more nearly 3-periodic.
This drives two of the eigenvalues nearer to the positions they
would occupy if the graph were truly periodic, i.e., the —0.5
vertical. The observations made in this section are qualitative;
It would appear from here a productive line of research would be
establishing measures of near-periodicity useful in quantifying
formation stability margins.

IV. INFORMATION FLOW IN VEHICLE FORMATIONS

In this section, we explore a paradigm for information
exchange that enables the vehicles to jointly determine a virtual
formation leader which does not presuppose any communication
topology, and whose stabilty and performance are robust to
uncertainties in the graph. The stability analysis tools developed
in the previous section will be useful in this development,
as will theorems from Perron—Frobenius theory reviewed in
Section II-A.

In the previous section, we assume that sensed information
was available instantaneously, and we used a continuous-time
model of the vehicle dynamics. In this section, we assume that
information takes a fixed time 7 to travel between vehicles. To
facilitate analysis, we also model each vehicle’s dynamics P as
a discrete-time dynamical system

:172“ = Px + Ppul,

Yy, = Poxj, + Ppuj, (14)
where £ is the time step of duration 7" and 7 is the vehicle index.
The error signal is given in (6). The controller K is redefined
similarly. Note that the stability results of Section III-B can be
reproduced for discrete time systems by plotting the response of
the discrete-time transfer function for z = e/ and applying the
Nyquist criterion.

Broadly speaking, any decentralized formation control
system consists of vehicles receiving a transmission from
other vehicles, performing some computation using available
information, transmitting the results of that computation, and
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Inclusion regions for —A(L) and —A(L)~!. The left figure shows various eigenvalue regions for — L and the right figure shows the corresponding regions

using it as the basis for control. We can view this process
as a discrete-time dynamical system where the states p; are
the information at each vehicle. Our approach to the use of
information is to shape this dynamical system to ensure that its
evolution has the desired stability and convergence properties.
We term this approach information flow.

The block diagram representing information flow is shown in
Fig. 4 for the case where relative measurements z are scalar. The
method applies equally to vector measurements, which can be
incorporated using the Kronecker product, as shown earlier but
emitted here for clarity. The Laplacian continues to represent
the sensing of relative position. Absolute vehicle offsets h( are
included, and a consistent set of commanded relative offsets are
defined by passing hg through L. In this case, GG represents the
transmission and averaging of information, denoted p, whose
dimension is the same as y. The graph representing communi-
cation topology is presumed to coincide with the sensing graph.
The “information” p, whose role will be elucidated, is the output
of afilter Iy ® R, which represents each vehicle’s local com-
putation. The inputs to each vehicle’s information flow law are
the averaged sensed errors and the averaged transmitted infor-
mation, represented by G in the feedback path. We constrain R
to be strictly proper, to account for one time step of sensing and
transmission delay. Finally, the information filter is augmented
by the output of a predictor P, ideally is equal to P, whose
output is filtered by H to produce the feedforward correction
term w, also dimensioned compatibly with .

A. Properties of the Information Flow Loop

To understand this approach, we first examine properties of
the information flow filter when decoupled from the vehicle con-
trol and predictor. To understand the convergence of this loop,
we first look at the simplest case, namely R(z) = (1/z), which
can be written as

, 1 . , ,
Pit1 = |7 > opi+ (yi - yi)

J1€T:

15)

or, in vector form, pr11 = Gpy, + Lyi. This system is neutrally
stable due to the Perron root of GG. The following theorem de-
scribes the evolution of this system.

Theorem 6: Suppose the directed graph G(G) is strongly
connected and aperiodic, and let the input y; be constant. The
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steady state value of the dynamical system in (15), when py = 0,
is

N
Pro=y' =) ey (16)
j=1

where ef is the ith element of the left Perron eigenvector of G,
scaled so that Y ef = 1.

Proof: Let e, denote the right Perron eigenvector of G,
and e its left Perron eigenvector, normalized such that e,Tel =
1. If G is irreducible, both e,. and e; are positive (Theorem 1),
so such a scaling must exist. Let £ = e,ef . The following
relationships between G and FE are known to be true (see [30,
p- 498] and recall that the Perron eigenvalue is 1).

Lemma7: GV = E+ (G — E).

Lemma 8: The eigenvalues of G — F are the eigenvalues of
G with the Perron eigenvalue replaced with a zero eigenvalue.

Now, our system evolves as follows for k£ > 0:

7)

We assume that py = 0, and we wish to find pss = limg_, o0 Pk,
if such a limit exists. Substituting into (17) via Lemma 7, we
have

k—1
=Y E+(G-E)| Ly (18)
j=0

Recalling that E = e,.e], and that L shares eigenvectors with
G, we see that e,. and ¢; are the eigenvectors of L corresponding
to the zero eigenvector. Therefore, FL = erefL =e¢e.0=0,
and the F7 term can be eliminated from (18). Because G is
assumed irreducible and aperiodic, all non-Perron eigenvalues
of GG have modulus strictly less than one (Theorem 3). There-
fore, by Lemma 8, we see that p(G — E) < 1. The infinite
expansion of p., therefore converges [30, p. 301] and can be
written as poo = (I — G+ E)"'Ly = (L + E)"'Ly =
(L+E)"YL+E—-E)y = (I-(L+E)"'E)y.Now, Le, = 0,
and Ee, = (e el e, = e,(efe,) = €., 50 (L+ E)e, = e, =
(L+E)~'e, = e,,andhence poo = (I — (L+ E)te,ef )y =
(I—e.el)y = (I—E)y. The eigenvector e,. is known to be 17",
The eigenvector ¢; is positive, and is scaled such that > e'li =1
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The columns of F are, therefore, constant, and the rows are each
elT. Therefore, p., can be written component-wise as
]\T
At } : J, g
Poo =Y — ay.
i=1

19)

|

The information flow loop, therefore, has the effect of having
the formation track the formation center, where the center
is defined according to a weighting given by the graph. The
key is that the formation center, given by Zj\;l ely’ in (19),
is common to all vehicles, indicating that the formation has
reached consensus as to its center. In this architecture, the
weighting that defines the center cannot be chosen, though in
principle it could be set by unevenly weighting the information
when performing the averaging. However, this would require
global knowledge of the graph, which is assumed not to be
available.

This approach can be expanded to accommodate a more gen-
eral information flow law that enables the designer to influence
the dynamics of the information flow

M
Qr+1 = Z ajqr—j + Gpr + Ly

=0

M
pr=Y_ bigkj-
=0

For which R(z) = (Y12 b;zM~7) /(221 — 3200 a;2M=d)
In this case, we prove separate stability and convergence
theorems.

Theorem 9: The system in (20) is (neutrally) stable iff the

transfer function

(20)

__R()
11— R(2)
is (neutrally) stable and its Nyquist plot avoids encirclement of

the negative inverse of any of the nonzero eigenvalues of L.
Proof: Equation (20) can be rewritten as

F(2) 1)

p(z) = (In ® R(2))(Gp(2) + Ly(2)) (22)
which can be transformed to the form
p(z) = (In ® F(2))L(—p(z) + y(2)). (23)

This equation has the form of a feedback loop with Iy ® F(z)
in the forward path and L in the reverse, and is therefore sub-
ject to the same stability analysis used for vehicle formations
in Section III, where it was shown in Theorems 3 and 4 that
the stability of this system is given by the Nyquist criterion
stated above. Because one set of eigenvalues of this system cor-
responds to the open-loop dynamics, this system can be at best
neutrally stable if F'(z) is itself neutrally stable. ]

We now turn to the steady-state performance of the informa-
tion flow law. We assume that F'(z) has all poles on the interior
of the unit circle with the possible exception of a simple pole at
1, and that the polynomial 3" a;2" =7 has roots in the inte-
rior of the unit circle.

Theorem 10: If F(z) stabilizes L in the sense of Theorem 9,
and under the previous assumptions, then the information flow
law converges to the value

Poo =c(I —cE — (1 —c)(I —¢(G - E))™'G)y
where ¢ = E;\io a;, b= Z]’M:o bj,and ¢ = (b/1 — a).

(24)
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Fig. 5. Information flow filter Nyquist plots.

Proof: The proof is a lengthier version of the proof for
Theorem 6, and can be found in [13]. [ |
Noting that the denominator of F(z) is equal to z™*+1 —
Zj]\/io(aj +b;)zM =7, and that ¢ = 1 corresponds to a+b = 1,
we see that ¢ = 1 implies that F'(z) has apole at 1. Whenc = 1,
we recover the steady-state result of Theorem 6, only we now
see it to be true for any information flow filter with a pole at 1
(and which stabilizes the graph). When ¢ < 1, the steady-state
is offset by an additional term. Note that when ¢ = 1, the
vehicles all agree on the location of the formation center
(expressed in each vehicle’s coordinates), while when ¢ < 1,
they do not. We can say that when ¢ = 1, the vehicles achieve
consensus on formation center. From this perspective, having
c =1 appears to be a desirable property of the information
flow filter. However, when ¢ = 1, the system is only neutrally
stable. The reason the filter converges to a steady state is
because the input passed through L, whose kernel is equal to
the Perron eigenvector of G. However, the presence of noise or
sensor errors has the potential to introduce drift. Additionally,
the eigenvalue at 1 means that old information never decays
out, rendering the system sensitive to initial conditions. Of
course, the initial conditions of the information flow law can
be set (or reset) by the vehicle, assuming the existence of
a protocol which guaranteed that this could be done without
disrupting the formation.
Example 2: To understand the effects of shaping the infor-
mation flow, we consider two examples. The first filter is in (15).
In this case, following (21), Fi(z) = 1/(z — 1). The second

filter is Fa(z) 0.1875(z — 0.1)/((z — 0.25)(z — 1)). The
pole at 1 means that ¢ 1 in both cases. Fig. 5 shows the
Nyquist plot for these two filters and Fig. 6 shows the conver-
gence of the systems to constant input. The first lies along the
—0.5 vertical. Points on that line correspond to periodic graphs
(see Section II-B), which confirms Theorem 6. The second lies
entirely to the right of the —0.5 vertical. Recalling from Sec-
tion III-C that the Nyquist plot points generated by the Lapla-
cian, —\;(L)~%, all must lie on or to the left of this vertical,
we conclude that this information flow law stabilizes any graph.
While both settle in approximately the same time, the first filter
exhibits ringing due to the proximity of the closed loop poles
to the unit circle. The second filter has a much smoother re-
sponse. We see how the information flow filter can be designed
to achieve desirable responses and robustness to uncertainty in
the graph.

B. Information Flow in the Loop

The information flow filter supplies each vehicle with the in-
formation it cannot sense: a formation center to use as a refer-
ence for control. The information p represents the position of
the virtual leader relative to each vehicle, and is therefore the
logical input to the controller K. We can analyze the stability
of this architecture, shown in Fig. 4 (with the predictor still dis-
abled), by isolating L and applying the Nyquist criterion as in
Theorem 4. In this case, one determines stability by analyzing
the Nyquist plot of F'(2)(1+ K(z)P(z)). For a given plant and
controller, the information flow loop can be designed to provide
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desirable margins. However, care must be taken in interpreting
the stability margins derived from this plot. The gain and phase
margins of this plot do not correspond to uncertainties in the
plant in the typical fashion due to the location of P in the transfer
function.

To improve upon this, we turn to the predictor. In the absence
of the predictor, the information flow loop is necessarily reac-
tive to vehicle motions. When the predictor term is included, the
information flaw law has the ability to correct the information
it transmits based on its own expected motion. We realize this
by adding w;, the output of the filtered predictor, as a feedfor-
ward term to p;, the output of each vehicle’s information flow
law, prior to transmission or use as an error signal for control.
This architecture can be seen in Fig. 4. When H(z) is chosen
properly, the following result can be derived.

Theorem 11: Choose H(z) to be

H(z)=1- R(z) (25)

and suppose the feedback interconnection of P(z) and K (z) is
well-posed. Then the relative formation dynamics are stabilized
if and only if F'(z) stabilizes L in the sense of Theorem 9 and
K (z) stabilizes P(z).

Proof: We prove the presence of a separation prin-
ciple through the use of a transformation of coordinates.
The state-space equations of motion for the plant are

given in (14). The predictor P is presumed to be iden-
tical to the plant P, and has the same equations of motion
with z,y replaced by z,y. The information flow filter R
is defined in (20), but with the feedforward correction
term added to the output, as discussed above. Letting the
state-space representation of R be (Ra,Rp,Rc,Rp),
we see that the state-space represntation of H satisfies
Hjys=Rs,Hg = Rg,Hc = —Rc,Hp =1 — Rp. Note that
H is stable due to the assumptions of Theorem 9. The states
for the information flow laws and feedforward filters for all N
vehicles are g and 7, respectively. If one solves for the states, the
resulting system of equations in terms of (H4, Hg, Hc, Hp)
is Xpp1 = UXy, where XF = [T oF 2T +T ¢F] where
U is deﬁnqd in (26), as shown at Athe pottAom of the page,
in which X = Iy ® X,¢ = Hp(PpKpA + @), and
A = (Iy — PpKp)™!, which is invertible by assumption
of well-posedness of the interconnection. If we apply the
transformation

10010
00100

T=Ix®|0 0 0 1 0 Q7
01001
00001

to the system matrix, we recover the matrix given in (28), as
shown at the bottom of the next page. Stability of the system

Py PpAKc PsKpAP: —PgKpAH: PsKpAH:
0 Ki+ KgPpAKc KpAP: —KgAHc KpAHc
U = 0 f)BA[A(C ﬁA—I—IA)Bf(DAIA)C —PB[A(DAFIC ﬁB[A(DA[:]C (26)
0 nlpAke fisAbe - HabphpAile HnPphpAflc
HsLPy  HpPpAKc bPo —$Ho Ha+ ¢He
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is equivalent to stability of the blocks along the diagonal. The
first, P4, is neutrally stable by assumption. The assumption
that the information flow law stabilizes the graph is equivalent
to the second block, H4 + HpGH, being stable. The third
block along the diagonal, which comprises the third and fourth
columns/rows, is stable if K stabilizes P. (The reader will verify
that this is the matrix derived when K and P are interconnected
directly via feedback.) The final block represents the states of
H, which is stable by the assumption in Theorem 9. [ |

Remarks: Equation (28) can be interpreted in the following
way. The first set of states are open-loop copies of the vehicles’
dynamics, and represent mismatches in initial conditions be-
tween the predictor and the actual vehicle. The second set is
identical to the dynamics of (20), whose stability and conver-
gence properties were studied previously. The output of this set
of states acts as a reference for the N copies of P in feedback
with K, found in the third and fourth rows. We see, therefore,
that the effect of this architecture is to supply the local con-
trollers with a reference signal that represents the error of that
vehicle relative to a common reference trajectory whose dy-
namics obey the open-loop dynamics of an individual vehicle.
The final set of states represent the feedfoward component.
These states are unobservable in the motion of the vehicles, but
are stable by design. For the case where R(z) = 1/z, we see
that H(z) = (2 — 1)/z, which confirms our intuition that the
role of the predictor is to compute the expected change in the
vehicle’s position and add it to the transmitted information, as
a means of compensating for communication lags.

Several observations can be made regarding implementation.
The first is that the motion of the formation is sensitive to mis-
matches between initial conditions of the vehicle and predictor.
This can lead to drift of the cluster if the mismatch is in ve-
locities. It should be possible to improve upon this through the
use of an observer which will prevent the vehicle and predictor

from diverging. Another solution is to initialize the predictor
using earlier measurements. The trajectories of the vehicles will
also depend on the ability of the information flow filter to track
the natural motion of the vehicles. When the natural motion of
the vehicles is at rest, we have seen that it achieves a proper
steady state when ¢ = 1. When the natural motion is secular
drift or oscillation (corresponding to poles at the origin or along
the jw axis), the quality of the reference signal will depend on
the ability of the information flow filter to track signals at the
relevant frequencies.

Example 3 (Formation Acquisition): We return to the ex-
ample of the planar double integrator (now discretized in time),
and consider the following problem. Six vehicles are required to
acquire positions relative to one another such that they form the
points of a regular hexagon. The assignment of points to vehi-
cles has been predetermined, as has the communication graph,
shown in Fig. 7. A SISO controller has been designed, and its
stability checked using the tools of Section III-B. The initial po-
sitions of the vehicles are marked with “o” in Fig. 7, and their
final positions with an “x.” The initial velocities are all zero.

As can be seen in Fig. 7, the vehicles, while stable, follow
circuitious trajectories before reaching equilibrium. This is due
to two factors. The first is that each vehicle’s initial motion at-
tempts to place it in the correct position relative to the vehicles
it can sense. However, those vehicles are themselves moving to
new locations, causing the initial motions of each vehicle to be
off target. The second reason is that the closed-loop formation
dynamics have induced oscillations not anticipated in the initial
design.

To implement the information flow paradigm, we use F5(z)
from Example 2, and implement H (z) accordingly. In this case,
the vehicles follow the trajectories shown on the left in Fig. 8.
The trajectories are smoother, but still show some curving due to
action of the control law prior to convergence of the information

Py 0 0 0 0
—HplLPc Ha+HgGHe 0 0 0
T = 0 —KpAHg  Ka+KpPpAKo ~ KpAPo 0 (28)
0 —PpKpAHc PgAK¢ Py+ PpKpAKe 0
HpLPo —¢Hc HpPpAKc HpAPo Hy
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Fig. 9. Target acquisition with (left) no information flow and (right) information flow.

flow law. The right-hand figure shows the trajectories followed
by the vehicles when the information flow law is enabled one
second prior to enabling the control loop. In this case, the vehi-
cles follow straight lines to their targets. Note that the formation
center is identical in the two cases despite the differing trajecto-
ries. This is due to the decoupling of the information flow law
from expected formation motion. Finally, note that the oscilla-
tions present in Fig. 7 have been eliminated due to the decou-
pling of vehicle dynamics from information flow dynamics.

Example 4 (Target Acquisition): While the information flow
method was developed to handle relative motion, it can accom-
modate the case where a subset of the vehicles is measuring
its position relative to a target. In this example, the goal of the
formation is to position itself as a regular hexagon with the
target in the center. To achieve this, the vehicles that see the
target incorporate this relative position measurement as if it
were a vehicle, and generate fictitious information to represent
the target as a vehicle. Recalling that the information flow
filter is meant to converge to each vehicle’s relative error, the
appropriate information for a target to transmit is zero—the
target is already where it supposed to be relative to the de-
sired formation location. In this case, the graph is not strongly
connected (the target does not sense any vehicle), but it can
be shown that the information flow law will still converge to
the desired results; see [13] for more details.

Fig. 9 shows the formation evolution in a case where it begins
to converge as in the previous example, and a single vehicle
detects a target while acquiring the hexagon. In this example,

a target becomes visible to a single vehicle as the formation is
acquiring the hexagon. In the left-hand figure, which does not
implement information flow, the lack of global information
causes the formation to overshoot the target, marked with a
diamond, and to slowly settle into the desired position. The
right-hand plot shows the same situation with information flow
enabled. In this case, the information flow loop disseminates the
target information to the other vehicles, causing the information
flow loop to treat the target as the formation leader and use its
position as the common reference. In this case, the formation
gracefully changes course and quickly acquires the target. Note
that the introduction of the target causes the Laplacian itself
to change while the formation is moving, but this does not
preclude successful target acquisition.

The double integrator case has been worked as an extended
example in this paper, but the methods works equally well for
other cases. In [13], the case of relative stabilization of Hill’s
equations, which model relative satellite dynamics (see [1]) is
explored to show how periodic orbits can be acquired using
this method. Additional cases, such as changing commanded
offsets, are explored in [13].

V. CONCLUSION

The information flow law proposed in Section IV shows the
utility of the stability theorem in analyzing the behavior of
vehicle formations and in synthesizing control solutions. We
expect that this framework will be generally useful in analysis
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of formation stability problems and will be a useful starting
point for future research. In particular, we expect that the
qualitative insights into graph properties which are desirable
from the perspective of stability can be quantified. A principle
that allows each vehicle in the graph to determine its impact
on formation stability using only local information would be
particularly useful, as it could form the basis of a protocol
for information weighting.

Our approach relies on two key ideas. The first is the use of
dynamical systems as a paradigm for understanding informa-
tion exchange between vehicles, and the design of a dynam-
ical system which enables the vehicles to achieve consensus
on the formation center. The second is the use of feedforward
compensation to render the sensed and transmitted information
timely. While this paper restricts its focus to linear systems with
fixed time delays, we expect that this approach can be extended
to nonlinear vehicle systems and systems with variable time
delays. Nonlinear vehicles typically possess a center manifold
which corresponds to the surface on which the vehicle performs
locomotion; if the information flow is restricted to that surface,
it should be possible to extend the information flow principle
to that class of problems. We also conjecture that our approach
can be extended to systems with variable time delays through
appropriate extension of the feedforward term used to achieve
stability separation. At the moment, the main limitation in the
method is the constraint that ¢ = 1 in the information flow law.
The need for consensus among vehicles forces the information
flow law to be neutrally stable, which means that information
never decays out. This renders the system sensitive to sensor
errors and mismatches in initial conditions. One possibility for
improvement is a protocol for resetting the information to zero
periodically or in response to an event as a means of limiting any
drift. Such a protocol could lie in a higher layer in the control
architecture, and may itself require stability analysis. Alternate
approaches to zeroing out accumulated error will be explored in
the future.
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