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ABSTRACT

The methods of Gibbons and Ferson (1985) are extended, relaxing the
assumption that expected returns are linear functions of predetermined
instruments. A model of conditional mean variance spanning generalizes
Huberman and Kandel (1987). The empirical results indicate that more than a
single risk premium is needed to model expected stock and bond returns, but

the number of common factors in the expected returns is small. However, when

size-based common stock portfolios proxy for the risk factors, we reject the
hypothesis that four of them describe the conditional expected returns of

the other assets.
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This paper makes two contributions to the burgeoning literature on tests of
asset pricing models with changing expected returns. First, we extend and
generalize the latent variables methodology of Gibbons and Ferson (1985,
henceforth GF). Latent variable models assume that expected returns vary
over time as functions of a small number of risk premiums, which are common
across assets. The expected risk premiums are treated as unobserved latent
variables. Numerous studies have applied such models to study the expected
returns of stocks, bonds, foreign exchange and other assets.1 Our general
model allews conditional heteroskedasticity and does not assume a functional
form for the conditional expected returns. This is attractive because in
models which assume a functional form, misspecification of the functional
form can contaminate inferences about the number of common risk premiums.
While our model is more general, it should also have improved power compared
with other models. We illustrate how the approach can be further extended
by examining models which allow limited (seasonal) fluctuations in
conditional betas.

Using individual common stocks or using portfolios based on size
rankings and industry affiliation, we reject models with fixed betas and a
single risk premium. However, the latent variables models provide no
evidence that more than two or three risk premiums are needed to capture
expected returns over the 1927-§7 period. Tests for the number of latent
variables produce similar results in montthly and daily data. The similarity
is interesting in view of a number of market microstructure considerations
that should be more apparent in daily data. When we allow for conditional
betas that can shift in January, the results for our general latent variable

models are similar.

Our second contribution is a special case of our general latent
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variable model. We refer to this as conditional mean variance spanning, as
it extends the earlier work of Huberman and Kandel {1987). Huberman and
Kandel examined the hypothesis that three size-based portfolios span the
unconditional mean variance frontier of 30 size-based portfolios, and they
found little evidence against this hypothesis. Our tests of conditional
mean-variance spanning are more general because they do not assume
homoskedasticity or normality. They examine the hypothesis that a
particular subset of returns can generate the conditional mean-variance
boundary for a given set of test assets.

Our tests produce evidence similar to Huberman and Kandel, when used to
examine unconditional spanning for our sample of size-based common stock
portfolios. However, when we condition on a common set of lagged
information variables, we reject conditional mean variance spanning of the
same sample. We also reject conditional beta pricing models, which
correspond to mean variance intersection, using three or even four size
portfolios as the factors.

Section I reviews latent variables models and presents a general model
which does not assume that expected returns are linear. Section I also
develops the tests of conditional mean variance spanning and discusses some

econometric issues, Section II presents the empirical results. Section ITI

summarizes and concludes,

I. Latent Variables Models
It is well known that mean-variance efficiency implies that expected
returns can be described as a linear function of a single beta. The beta

for each asset is measured relative to the mean-variance efficient portfolio



3
[e.g. Roll (1977)]. When expected returns and risks are conditioned on
information about the state of the economy, then the betas, the expected
risk premiums and the zero-beta rate may be time-varying., Latent variable
models attempt to describe time-variation in expected returns using a small
number of expected risk premiums, together with fixed beta coefficients.2
The approach examines restrictions implied by an asset pricing model with

the familiar form3

K K _
BRyel2, )= 11- 2 b EQoelze ) + 5 by EQudze ) s (1)

P
[

where he — one of k unobserved ex post risk premiums or factor-mimicking

portfelio returns;

o
I

ih = risk measure ("beta") of security i relative to risk
factor h, conditional on the information Zt l; and

AOt = the return on a "zero-beta" security.
At this level of generality, equation (1) does not assume that the risk
factors are portfolio returns; they could be other state variables not
observed by the econometrician [e.g. Cox, Ingersoll and Ross (1985)]. The
model can generally be transformed, however, to one in which portfolios

represent the factors [e.g. Breeden (1979)}. The asset betas, will

Pin’
generally be time-varying functions of Z,._1- The latent variables model of
GF assumes that ratios of the bih are fixed parameters and specifies the

dimension, K, of the asset pricing hypothesis. The expected risk premiums,
E(Aht]Zt_l), are assumed to be time-varying and unobserved, and are treated

as the latent variables. We call the hypothesis that equation (1) holds

with constant ratios of betas, for a given K > 1, the "K Latent Variable
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Model.“a If a K latent variable model is accepted, the results may be
interpreted as indicating the number of "common factors," or time-varying
risk premiums in the expected returns.5
Tests of latent variable models derive their power from the assumption

that expected returns are changing over time and are correlated with

observable instruments Zt 1 GF assume that conditional expected returns

given Zt 1 are linear with fixed coefficients, so that returns obey the

regression model:

= 4 -
Rie = 8:i"2cq ¥ Wy s

E( U |Zt_l) =0, (2)

where Zt 1 is an L-vector of predetermined variables (including a constant),
contained in the market’s information set at time t - 1 and Ei is the
regression coefficient vector for each asset i, for i=0,...,N. We call

equation (2) the "Linear Expectations Assumption." Given the linear

expectations assumption, the following expression

E(Ri

2 ) =872 3)

may be substituted into Equation (1). Gibbons and Ferson (1985) show that

the following parameter restrictions on the system of regression equations

(2) are implied:

i j=0 13 °j - )



The Sj, for j =0, ..., K, are the regression coefficients for K + 1 assets
chosen as "reference assets."6 The restriction (4) states that the
coefficients of all N + 1 assets may be replicated from only K + 1 assets if
the K-latent variable model characterizes expected returns. The c;q are
functions of the betas for assets i and j in equation (1), as described
below. The restriction that the Cij must sum to 1.0 for each asset i
follows from the fact that [1- zhilbih] is the coefficient on the "zero-
beta" factor for asset i 1in equation (1). The information variables, zt-l’
should be correlated with changes in investor expectations and must be known
when the market sets prices at t - 1. The number of information variables L
must exceed the number of latent variables, K.

GF implement their tests as a restricted multivariate regression model
for a system of regression equations like (2). They assume that the residual
covariance matrix is fixed over time and examine the likelihood ratic test
statistic (LRT). Thus, their tests examine a joint hypothesis which we
characterize as consisting of three parts. The first is the K latent
variable hypothesis. The second is the linear exXpectations assumption. The
third is the fixed residual covariance matrix assumption. Thus, the GF tests

can be interpreted as examining:
HO: { K latent variables, linear expectations, fixed covariance }. (3)
Subsequent studies [e.g. Campbell (1987)] produce empirical evidence against

the fixed covariance matrix assumption and extend the models to allow for

conditional heteroskedasticity. We therefore concentrate our analysis on



the following two hypotheses:

Hl: { K latent variables, linear expectations }, (6)

and

H2: { K latent variables }. (7)

To examine Hl' previous researchers relax the fixed covariance matrix
assumption by estimating the restricted regression system (2), imposing the
restrictions (4), using the generalized method of moments [GMM, see Hansen
(1982)]. The parameters are chosen to minimize the quadratic form Tg'Wg,
where g=vec(u’'Z/T) is the vector of sample orthogonality conditions, u is
the T x n matrix of the error terms, Z is the T x L matrix of the
instruments, T is the sample size, n is the number of equations and W is the
inverse of the covariance matrix of the orthogonality conditions. This
approach allows the covariance matrix of u to be conditionally
heteroskedastic, and thus vary over time as a function of Z. The minimized
value of the quadratic form is asymptotically distributed as a x2 variable
under the null hypothesis, and provides a goodness-of-fit statistic. When
the error terms are defined by the system (2), with the restrictions (4)

imposed, the tests examine H1 and we call the statistic the "GMML" test

. .7
statistic.

A. Latent Variables Models with General Expected Returns
To examine H2 we relax the assumption that expected returns are linear
functions of zt-l' This is accomplished by reformulating the model so that

there exist constants cij such that;



it = E?=0 Cij Rjt T fie
1 = Eg c..; 1=K+ 1, ., N.
j=0  "ij
E( e;, | 2,4 = 0.

(8a)
(8b)

(8¢c)

The equations (8) may be derived as follows. Consider equation (1),

where the E(Ahtlzt-l); h=0,... K are assumed to depend on Zt

1 but the

functional form is not specified. In particular the expected premiums are

not assumed to be linear functions of Zt 1» hor are the individual asset

returns assumed to be linear functions of Z

8
t-1-

vector of asset returns in excess of the return of the zero-th asset, R

The asset RO is not assumed to be a zero beta asset.

let r =R - R

0 be the

0

Partition the vector of

excess returns r as r=(r1',r2')', where ¥, represents the first K reference

assets and r, the remaining N-K test assets,
excess betas, §, with typical element ﬂij=biJ

conformably with the excess returns as ﬂ=(ﬁl',ﬂ2‘)'.

subscripts, equation (1) implies:

*
B(ryl2) - 8 E"|2)

*
E(r,|z) = g, EQ|2),

Define the N x K matrix of

.-boj, and partition this matrix

Suppressing the time

(9a)

(9b)

*
where E(XA |Z) is the K-vector of expected risk premiums in excess of the

*
expected zero beta return: E()A |Z)= {E(Ahtlzt_l)—E(AOt|Z

the reference assets are chosen so that the K x K matrix ﬁl

e.)s b=l,. .. K. If

is invertible,

*
we may use equation (9a) to solve for E(X Z) in terms of E(rl]Z).

Substituting this relation into (9b),

and expressing the result in terms of



the original returns, we have:

-1 -1
E(Eztlzt-l) = [lN‘K - 3261 lK] E(Rotlztvl) + ﬂ2ﬁl E(thlz (10)

t_l) ;

where glt in equation (10) is the K-vector of reference assets, BZt

N-K test assets, lN—K is an N-K vector of ones and lK is a K-vector of

are the

ones. If the error term, £ is defined as in equation (8a), where the Ri
are the N-K test assets and the Rjt’ j=0,...,K are the zero-th asset and the
other K reference assets, then equation (10) implies that there exist
parameters cij such that the equations (8b) and (8c) are satisfied. In

particular, the cij for i=K+1,...,N and for j=1l,...,K are the elements of

-1
-k B ﬁzﬁl lK]-

ﬁzﬁl_l and the o for i=K+1,...,N are the elements of [lN
The assumption that the matrix ﬂzﬁl-l is fixed makes more precise our
previous statements that the latent variable models assume that "ratios of
the betas" are constant.

Note that the regression coefficients 6i do not appear in system (8),
and there is no assumption made about the functional relation of expected
returns to the lagged instruments. We use the general latent variable model

of equation (8) to examine the hypothesis H2'9 Our tests are based on the

GMM goodness-of-fit measure and we call the test statistic the "GMM2" test

statistic.

B. Conditional Mean Variance Spanning and Intersection
Huberman and Kandel (1987) consider N-K regression equations for a set
of asset returns, R2, regressed on a smaller set of K+l asset returns R. .

1

They show the restriction that the intercepts are zero and the regression
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slopes sum to 1.0 for each asset is equivalent to the statement that the
unconditional mean-variance boundary formed from the combined set of returns
can be generated using only the subset of returns Rl' They refer to this as
mean-variance spanning.

Beta pricing as in equation (1), where the assets R1 are mimicking
portfolios for the risk factors, is equivalent to mean-variance
intersection. This is the hypothesis that only one combination of the
assets Rl is on the mean-variance boundary of the combined set of returns.

While spanning is a stronger hypothesis than intersection, Huberman and
Kandel (1987) found little evidence against unconditional mean-variance
spanning, It is therefore interesting to examine the effects of bringing
conditioning information into the analysis.

Mean variance spanning is closely-related to our general latent
variable model in equation (8). If we replace the orthogonality conditions
in equation (8¢c) with the conditions: E(cit)=E(£it Rjt)=0, for j=0,... K,
then the Cij coefficients are the unconditional regression coefficients of
the Rit on the Rjt' Tests of this system, suppressing an intercept, are
tests of the hypothesis of unconditional mean-variance spanning. Using the
GMM, these tests are more general than the tests examined by Huberman and
Kandel (1987) and Lehmann and Modest (1988) in that they do not assume
normality or homoskedasticity of the error terms.lo

If we replace the orthogonality conditions of equation (8c) with the
conditions that E(citlzt_l)#E(cit Rjt]Zt_l)=0, for j=0,...,K, then the
tests examine the hypothesis of conditional mean variance spanning. The

tests assume that the conditional betas of the test assets on the spanning

assets Rj’ for j=0,...,K, are fixed parameters. We implement our tests of
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conditional mean-variance spanning using the GMM. The instruments are a

vector of ones, the lagged variables in Zt-l’ and the spanning asset returns
Rjt’ for j=0,...,K.

Our general latent variable model, given by the equations (8), is
modified to test for mean-variance spanning by simply changing the
orthogonality conditions on the error terms. To test for mean-variance
intersection, we introduce intercepts in equations (8a). The intercepts
depend on the expected zero-beta rate, which introduces new parameter(s) .
The restrictions of (8b) are replace by the restriction that the intercepts
are (1-E?=O Cij) multiplied by the expected zero beta return. Non-normal
and heteroskedastic errors can be accommodated by using the GMM.ll

Tests of mean variance spanning and intersection are related to the
analysis of Hansen and Jagannathan (1991), who study the restrictions on an
intertemporal marginal rate of substitution, m_, implied by the general
asset pricing expression E[mt(1+Rit)]=l’ for all i. Mean variance spanning
is equivalent to the restriction that a projection of the marginal rate of
substitution on the vector of asset returns has coefficients equal to zero
for all assets except the spanning assets Rjt’ j=0,... K, and for all
possible values of an expected zero-beta rate. Intersection is equivalent
to the same restriction holding for an unique value of the expected zero-
beta rate. See Ferson (1992) for proofs and further discussion; see

Cochrane (1992) for some interesting empirical tests.

C. Econometric Issues

Asset pricing models generally imply a condition that may be stated as

E(u|Z)=0, where u is the model error term and the elements of 7 are
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predetermined public information. However, GMM estimation uses the weaker
condition that E(u'Z)=0. Unless particular probability distributions for the
asset returns are assumed (e.g., normality), the condition that u is
uncorrelated with Z is weaker than the condition that E(u|z)=0, Therefore,
GMM tests of asset pricing models typically do not fully exhaust the
implications of the asset pricing theories.12 This is convenient for our
tests of mean-variance spanning. Mean variance spanning does not imply that
E(eithjt)=O or that E(sitIRjt,Zt_1)=O, j=0,...,K, so we do not wish to
impose these conditions in our tests. These stronger conditions imply that
the K+1 reference assets Rj are separating funds in the sense of Ross (1978)
[see for example, Huberman and Kandel (1987), proposition 2].

The hypothesis H2, as examined using the GMM2 test statistic, is less
restrictive than Hl’ as examined using the GMM1 test statistic. Logically,
one expects to find less evidence in the data against H2 than against Hl'
For example, if the linear expectations assumption is misspecified then the
error terms under Hl can be related to the instruments and this can cause a
rejection of the orthogonality condition E(u’Z)=0. Nonlinearity in the
conditional mean returns is not a misspecification under H, .

2

Tests of the general latent variable model using the GMM2 statistic
should have higher power against some alternatives than should the tests of‘
Hl using the GMM1 statistic. This is because the power of the test
statistic, for a given set of instruments 7 and a given alternative for
which E(u’Z) is nonzero, is higher when the covariance matrix of the error
term u 1is smaller. The power should be improved because system (8) can

control more of the error variance than system (2). In system (2), the error

variance is the portion of the asset return variance that is not explained



12
by the lagged instruments, which is large [see Table II]. In system (8), the
contemporaneous returns R., j=0,...,K can "explain” a large fraction of the
]
test asset returns, resulting in a smaller residual variance.13

It can be hazardous to draw strong inferences from a comparison of P-
values for different test statistics. The power of the tests may differ, as
discussed above, and there could be finite sample problems which distort the
results. The test statisties do not explicitly account for errors in the
estimates of the covariance matrix of the orthogonality conditions, and
these may be important in small samples. Finite sample problems should not
be important in our large samples of daily data, but could be important in
monthly sample sizes.

Ferson and Foerster (1992) provide simulation evidence on the finite
sample properties of GMM tests of latent variable models. They find that a
two-stage GMM approach, as described in Hansen and Singleton (1982), tends
to reject a correct null hypothesis too often while an iterated GMM approach
provides more accurate test statistics, especially in large models. Using an
iterated approach, they find that the size of the tests are accurate for
monthly samples with only half the numbers of observations in our samples.

Following Ferson and Foerster (1992), we use an iterated GMM approach in our

tests.14

II. Empirical Results
We begin our analysis with a brief look at the daily returns of the Dow
Jones 30 (DJ30) common stocks, which were studied by Gibbons and Ferson
(1985). This is an interesting sample because no studies have examined the
more general latent variable models for individual common stocks, We then

compare the results with an expanded sample of daily and monthly portfolio
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returns.

Table I reports test results for the latent variable models of the
DJ30. In the left-hand columns the instruments are a constant, the lagged
return on a value weighted stock index and a dummy variable for Monday.
These are the same as the instruments used by GF. In the right-hand columns,
a dummy variable for the month of January (DJAN) is included as an
additional instrument. In subperiods one through three, which approximates
the time period used by GF, the GMM1 and GMM2? statistics produce no evidence
against the single latent variable model. In the fourth subperiod (1980 to
1985) both test statistics reject (at the 0.05 level) a single latent
variable. The tests provide robust evidence that more than a single time-
varying risk premium is needed to capture the expected returns of the Dow
Jones 30 stocks, as they do not assume that the residual covariance matrix
is fixed (under Hl) or that the expected returns, conditional on the
instruments, are linear with constant coefficients (under HZ)'

Table I also reports tests for K=2 latent variable models and provides
no evidence against the models under Hl or H2' The results are similar when
the January dummy is excluded or included as an instrument. Neither the
GMM1 nor the GMM2 statistics produce evidence against a two latent variable

model for the daily returns of the DJ30 stocks.

A. Tests with Portfolio Returns

We examine daily and monthly returns for size and industry-grouped
common stock portfolios. Results for each are summarized, but we focus on
the monthly returns. Monthly returns are less susceptible to the biases from

bid-ask effects and thin trading.15 Monthly returns should be influenced
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less by short term, predictable patterns that result from specialist
behavior and other microstructure effects, than are daily returns. Market
microstructure models typically assume that any predictable patterns due to
expected risk premiums can be safely ignored at the short time intervals
involved. Studies do this, for example, by assuming that traders are risk
neutral. A common setting posits exogenous (e.g. "liquidity") demand shocks
in order to focus on specialist behavior in the pPresence of asymmetric
information, strategic trading and other such issues. These "exogenous"
demands, however, should ultimately become endogenous. They may be driven by
the same underlying factors that determine demands in standard equilibrium
models of expected returns. We find it interesting, therefore, that our
tests for the number of latent variables produce similar results for both
daily and monthly returns.

The sample consists of common stocks of NYSE firms. Beginning in
January of 1928 and ending in December of 1987, a total of 720 monthly
observations are available. Ten portfolios are formed according to size
deciles, based on the market value of equity outstanding at the beginning of
each year. The ten “"size" portfolios are value-weighted averages of the
firms in each decile group. The daily size portfolio sample is similar, but
the daily data begin in 1963. When we form portfolios using daily data, we
rank the firms by size each year and we weight the individual returns using
the previous day’s gross relative returns.16

We also examine 12 portfolios of NYSE firms grouped by the same 2-digit
SIC industry codes used in Breeden, Gibbons and Litzenberger (1989). We
include a firm in the portfolio for its industry, in every month for which a

return, a price per common share, and the number of shares outstanding is
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recorded by CRSP. The monthly industry portfolios are value-weighted each
month. The daily industry portfolios are from Foerster (1987), and are
weighted within each industry by the lagged gross return relatives.

In the monthly size and Industry portfolio samples, we also include a
long-term government bond and a long-term, low-grade corporate bond (i.e.
"junk” bond) portfolic. The low grade bond portfolioc returns are provided by
Ibbotson Associates for 1928-1976 and by Blume, Keim and Patel (1991) for

1877 to 1987. The government bond returns are from CRSP.

B. Predicting Asset Returns

We include five predetermined instruments in our monthly tests. The
motivation for including the variables and a brief description of each
follows.

EW is the one month lagged return of the equal-weighted NYSE index from
CRSP. Such a variable may capture a common factor in the autocorrelations
of returns, related to mean-reverting behavior in the stock market. Results
of Fama and French (1988a) suggest that a common factor explains much of the
autocorrelation of stock portfolio returns.

HB3 is the lagged one-month return of a three-month Treasury bill less
the one-month return of a one-month bill. Campbell (1987) finds that a
similar variable can predict monthly returns in both the bond and the stock
markets.

D/P is the dividend yield of the CRSP value-weighted stock index,
defined as the dividends paid on the index for the previous twelve months,
divided by the current level of the index. A similar variable is studied by

Rozeff (1984), Fama and French (1988b), Poterba and Summers (1988) and
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others. Fama and French (1989) argue that dividend yields may capture
cyclical patterns in expected returns related to business conditions.

TB is the nominal, one-month Treasury bill rate. The ability of short-
term bills to predict monthly returns of bonds and stocks is studied by Fama
and Schwert (1977), Breen, Glosten and Jagannathan (1989), Ferson (1989) and
others,

DJAN equals one if the month is January and zero otherwise. We include
the January dummy variable to capture seasonal patterns in returns [Rozeff
and Kinney (1976), Keim (1983)] and for further analysis of possible
seasonal changes in risk.

The predetermined variables used in the monthly regressions follow
previous empirical work on predicting portfolio returns.17 There is a
natural concern, raised by a number of researchers, about predictability
uncovered through collective "data snooping."18 However, some evidence to
support the view that the predictability is not spurious is available from
studies using international data.19 Furthermore, Ferson and Harvey (1991)
find that stylized beta pricing models can "explain" much of the
predictability uncovered by similar instruments in monthly post war U.S.
data. They use a set of five economic risk factors, similar to Chen, Roll
and Ross (1986). Some theoretical support for predictability using the
lagged instruments is also available., For example, Bossaerts and Green
(1989) develop a model in which conditional expected returns are inversely-
related to the price of an asset. Kandel and Stambaugh (1990) develop model

. . : . . . : . 20
economies In which yields track time-varying expected risk premiums.
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Our monthly regression model takes the following form:

Rpt = ap + 6plD/Pt_l + 6p2TBt-l + 6p3HBBt-l + SpAEwt—l + SPSDJANt + u (11)
Table II summarizes the regression (11) for selected portfolios over the
1968-1987 subperiod. To conserve Space, we report statistics only for the
most recent subperiod. The coefficients of the regressions are similar to
the findings of other studies over similar periods, so they are not shown.
The adjusted R-squares of the regressions vary across the portfolios from
less than 3 percent to over 19 percent. Recall that the latent variable
models under H1 [equation (4)] imply that the regression coefficients for
all of the test assets are linear combinations of the coefficients for the
reference assets. We conduct tests of various linear hypotheses on the
coefficients, which suggest that the sample design should provide some
power. The tests reject, for most of the instruments and subperiods, the
hypotheses that the coefficients are jointly equal to zero or are equal
across the portfolios. Similar results are found in the daily data.

In the right-hand column of Table II we report tests for
heteroskedasticity in the residuals of regression (11). The test is that of
White (1980), and is constructed by regressing the squares of the OLS
residuals from (11) on the squares and cross products of the elements of the

instrument vector, 2 The coefficient of determination from the

£-1°
regression, multiplied by the sample size, is asymptotically a chi-square
variable and serves as the test statistic. The table reports the right-tail

p-value from the chi-square distribution for each equation. We find strong

evidence for heteroskedasticity in the equations for the bonds. We can also
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reject homoskedasticity for the largest firms and for some of the
industries, but the tests do not reject homoskedasticity for the smaller
firms and many of the industries.21

The evidence of conditional heteroskedasticity suggests that tests of
latent variables models under HO are problematic, Heteroskedasticity also
suggests that the conditional betas of the test assets may be time-varying.
However, latent variable models refer to betas with respect to unobserved
risks factors. Risk factor-mimicking portfolios of the test assets will
generally be formed with time-varying weights. Therefore,
heteroskedasticity in the covariance matrix of the asset returns does not
imply that a latent variable model with a small number of fixed betas is
misspecified under H1 or H2.22
C. Tests of Latent Variable Models

Table III summarizes tests of the latent variable models using monthly
data for the size and industry portfolios. The goodness-of-fit statistics
are asymptotically chi-square variables, with degrees of freedom equal to
the number of orthogonality conditions less the number of parameters. For
the GMM1 (GMM2) statistic with N assets, K latent variables and L
instruments, there are NxL ([N-K-1]xL) orthogonality conditions. There are
[(K+1)XL + (N-K-1)xK] parameters in the model based on the equations (2) and
{(4), and there are K x (N-K-1) parameters in the model based on the
equations (8).

Table III summarizes models with K=1,2 and 3 latent variables. The
tests reject a single latent variable (K=1) under both H, and H, at standard

1 2

significance levels for the full sample, except for the sample of industry
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and bond portfolios under Hl' There is no evidence that more than two
latent variablesz are required under Hl, using the GMM1 statistic. The GMM?
test statistic, examining H2, produces smaller p-values in nearly every case
than does the GMM1 test statistic, despite the weaker assumptions of H2
compared with Hl' This is consistent with our view that the GMM2 test should
have higher power than the GMM1 test.23 The GMM2 test can reject the K=2
model for the overall sample at the 5% level. It can reject the K=3 model at
the 10% level for the sample of size and bond portfolios, but not for the
industry portfolio sample. However, the small p-values for the K=2 and K=3
models for the industry portfolios are driven by the second subperiod. The

smallest p-value in the first and third subperiods for these cases is

0.068.

D. Conditional Mean-variance Spanning

Conditional mean-variance spanning is a stronger economic hypothesis
than is a latent variable model. Therefore, if we reject a K-latent
variable model we should also reject conditional mean-variance spanning
using K+1 or fewer spanning portfolios. Given our evidence on the latent
variable models, we conduct tests with K=2 (three spanning portfolios) and
K=3 (four spanning portfolios).

We follow Huberman and Kandel (1987) by focusing on monthly data and
using size-based portfolio returns as the spamning portfolios Rj’ for
j=0,...,K in system (8). Huberman and Kandel examine unconditional mean-
variance spanning using three size-based portfolios (K=2). Their test assets
are thirty size-based common stock portfolios.24 They use an F test,

assuming homoskedasticity and normality, and they find little evidence
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against the spanning hypothesis for the 1964-1983 period.

Table IV summarizes the results of our tests for mean-variance
spanning. The spanning portfolios for K=2 are the common stock size
portfolios from deciles 1,5, and 10. When K=3, they are the size portfolios
from deciles 1,4,7, and 10. Consistent with Huberman and Kandel, we find
little evidence against unconditional spanning with K=2 (or K=3), when our
remaining size-sorted portfolios are the test assets and the sample period
is 1948-67 or 1968-87. However, we do reject unconditional spanning for
1928-47, a period not examined by Huberman and Kandel. (The p-values are
0.026 for K=2 and 0.036 for K=3.)

When we include bond returns in the test assets, or when the industry-
grouped common stock portfolios are the test assets, the tests reject
spanning (K=2 or K=3) in every subperiod. The evidence of Huberman and
Kandel (1987) for size based portfolios as test assets, which seemed to
support an unconditional spanning model using three size portfolios, does
not extend to these alternative assets.25 Since our tests do not rely on
homoskedasticity or normality, the rejections are not attributed ro problems
with those assumptions.

The right-hand column of Table IV reports tests of conditional mean-
variance spanning, using the same lagged variables that were used in the
latent variables tests as the conditioning information. With conditioning
information the evidence against spanning is stronger. The tests now produce
evidence against conditional mean-variance spanning even when the seven
remaining size portfolios are the test assets. The hypothesis is rejected in
this case for the first subperiod (K=2 and K=3) and marginally in the third

subperiod (K=2 only). The tests also reject spanning whenever the bonds or
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industry portfolios are included as test assets,

We modify system (8) as described in section I.B. to test for
conditional mean variance intersection. We assume for these tests that the
expected zero beta return is a linear function of the instruments, and we
estimate the coefficients of the linear function as additional parameters.
The tests reject conditional intersection (p-values less than 1%) when the
bonds are included as test assets with the size portfolios. In the second
subperiod we reject conditional intersection for the industries. The p-
values are 0.004 for the three portfolio model (K=2) and 0.037 for the four
portfolio model (K=3). In the first and third subperiods the pvalues for the
are 10% or larger when the industries are the test assets.

The evidence of Tables III and IV presents a challenge for future
research. The latent variables models seem to hold out the hope that a small
number of risk premiums may be able to explain the conditional expected
returns. However, the spanning and intersection tests indicate that simply

. ; . . . 2
using size-based portfolios to proxy for the risk factors is not adequate.

E. Extensions of the Tests

A number of empirical studies of conditional asset pricing models
specify explicit functional forms for the conditional covariances or betas,
which allow them to be time-varying functions of the instruments. Examples
include Campbell (1987) and Ferson (1989) in latent variable models and
Harvey (1989) and Shanken (1990), who specify the risk factors.27 The
models in this paper can also be extended to allow for time-varying
conditional betas and beta ratios (the cij coefficients). The

generalization is accomplished by replacing the fixed cij's in the models
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with the specified function, which may depend on the instruments Zt-l or
other variables. We illustrate this idea by allowing the cij coefficients
to shift in January. Such a model is motivated by earlier work of Ferson and
Keim (1984), Rogalski and Tinic (1986), Keim and Stambaugh (1986) and
Shanken (1990) who find evidence that betas may shift in January.

We first conduct tests of the hypothesis that expected risk pPremiums
are zero outside of January, as was suggested by Tinic and West (1984). If
this is the case we expect that tests which allow betas to shift in January
should have low power. We form the differences between the returns of each
portfolio and the first asset in each system of equations. We modify the
predictive regressions as follows. The return differences are regressed on
a constant, the predetermined instruments {excluding the January dummy), and
the instruments multiplied by the dummy variable for January. We test the
hypothesis that the coefficients on the variables without the dummy are
jointly equal to zero. A heteroskedasticity-consistent Wald test strongly
rejects the hypothesis that the non-January premiums are zero for each
sample of assets in every subperiod, both in the daily and the monthly data.
The evidence shows that the Dow Jones 30 common stocks, the size and the
industry portfolios all display cross-sectional dispersion in expected
returns and nonzero expected risk premiums, both in January and in
non-January months. Because these tests are not dependent on specific
proxies for the underlying risk factors, they complement the recent evidence
of Shanken (1990).2%

Using the modified predictive regressions, we generalize our tests of
latent variable models and conditional mean variance spanning to allow the

. . 29 < .
cij’s to shift in January. Assume that the beta coefficients in January
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(bij), are possibly different from betas during the rest of the year (bij).

The Cij are replaced by the expression: [cNJ .+ (cJ. - cNJij)DJANt}, where

ij ij
DJANt equals 1.0 if the return being forecast occurs in a January and 0.0
otherwise. We therefore estimate separate relative beta coefficients for
January (CJij) and for the other months (cNJij). The tests otherwise proceed
as before. The results for monthly data are summarized in Table V. Latent
variable models are shown in panel A and the tests of conditional mean
variance spanning are in panel B.

Recall the GMM1 tests of H1 that were reported in Table III could not
reject the latent variable models (with one exception). Allowing for
January effects in the betas, we find that the GMM] statistic is unable to
reject any of the models. With the larger number of parameters in the
regression model for the expected returns, the GMM1 statistic indicates that
the latent variable models' restrictions impose virtually no additional
structure on the regressions. (The p-values would all appear as 0.999, so we
do not report them in the table.)

Panel A of Table V reports tests of H2 using the GMM2 statistic. Recall
that under H2 we do not assume a functional form for conditional expected
returns and we allow for conditional heteroskedasticity. Although the
numbers differ from those in Table ITI, where we assumed constant betas, the
overall inferences implied by the GMM2 tests are similar.

Panel B of Table V examines conditional mean variance spamming using
the model of seasonal changes in beta. The results may be compared with
those of Table IV, where the betas were held fixed. The overall results are

similar. We reject spanning (K=2 or K=3) of the size portfolio sample only

in the first subperiod, which is 1928-1947. When we introduce the bonds as
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additional test assets, or when we study the sample of industry and bond
portfolios, we reject spanning in the overall samples. However, there are
cases in which we do not reject spanning for these samples in the subperiods
(one for K=2 and three cases when K=3), which shows that the spanning model

is sensitive to allowing January shifts in the betas.

IIT. Concluding Remarks

This paper studies the behavior of conditional expected returns over
time on common stocks and bonds. We extend the latent variables method of
Gibbons and Ferson (1985) to allow conditional heteroskedasticity and relax
4 common assumption that conditional expected returns are linear functions
of predetermined instruments, A special case of this model, which we denote
as conditional mean variance spanning, generalizes earlier work of Huberman
and Kandel (1987). We show how to extend the models to relax the assumption
that conditional betas are fixed parameters by replacing that assumption
with a functional form for the betas. This is illustrated by examining
models in which the beta exhibits a January seasonal.

We examine an extensive sample of daily returns, monthly returns and
instrumental variables for the predetermined conditioning information.
Gibbons and Ferson (1985) did not reject a single latent variable model for
the Dow Jones 30 common stocks, but we find that such a model can be
rejected using an extended sample for the Dow Jones 30, and for samples of
size and industry portfolios. These results are robust to
heteroskedasticity and to any assumption about the functional form of
conditional expected returns. However, the tests provide little evidence for

more than two or three latent variables in the time-varying expected
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returns.

Cn the one hand, our results lead us to be optimistic about the
potential ability of linear asset pricing theories with a small number of
common factors to capture the predictable variation of security returns both
across assets and over time. A small number of common factors in the
expected returns seems to be indicated, and interestingly, the results for
monthly and daily returns are similar. However, our tests which specify
size-based common stock portfolios as proxies for the risk factors can
reject models using three or even four portfolios. Therefore, the search
for a small number of variables which can capture conditicnal expected asset

returns should continue.
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FOOTNOTES

1. See Ferson (1992) for a recent review.

2. An alternative approach models changing conditional betas directly. Fama
and MacBeth (1973), Campbell (1987), Shanken (1990), Bodurtha and Mark
(1991), Ng (1991), Ferson and Harvey (1991), Braun, Nelson and Sunier (1991)

and the last section of this paper provide examples.

3. Examples of asset pricing models like equation (1) include those of
Sharpe (1964), Black (1972), Merton (1973), Long (1974), Breeden (1979) and
Cox, Ingersoll and Ross (1985),

4. See Stambaugh (1983) for a conditional version of the Arbitrage Pricing
Model (APT) which implies that a K latent variable model holds approximately
in large markets. See Connor and Korajezyck (1989) for an equilibrium model
in which conditional betas are constant over time. The assumption that

ratios of the betas are constant will be made more precise below.

5. An alternative interpretation is to view the tests as indicating the
behavior of conditional covariances of returns with a benchmark pricing
variable, See Gibbons and Ferson (1985), Campbell (1987), Ferson (1989) and
Wheatley (1989) for discussions.

6. The reference assets must be chosen so that the matrix of their betas and
a unit vector is nonsingular; that is, they must span the K risk factors and
they cannot have identical betas on any combination of risk factors. Given
these conditions, the tests are invariant to the choice of reference assets

[see Ferson and Foerster (1992)1.

/. Hansen (1982) shows that sufficient conditions to apply the GMM include
the assumption that the data are strictly stationary and ergodic.
Jagannathan (1983) and Lim (1985) show how to accommodate seasonality. We

assume that the data satisfy the conditions needed to apply the GMM in all

of our tests,
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8. In contrast, if the linear expectations assumption holds for the asset
returns and if the bih are fixed parameters, then the K latent variable

hypothesis implies that the expected risk premiums must also be linear functions.

9. Ferson (1990) and Harvey (19%91) examine a special case of system (8)

stated for excess returns, in which equation (8b) is not imposed.

10. The Rjt’ j=0,...,K, plus a constant term, are the instrumental
variables. The system is overidentified because the intercepts are
suppressed and the cij's are constrained to sum to 1.0, See MacKinlay and
Richardson (1991) for related tests of unconditional mean variance

efficiency using the GMM.

L1. Shanken (1990) provides regression tests of beta pricing which do not
assume normality and which also allow heteroskedasticity. Shanken assumes

that conditional betas are linear functions of the instruments.

12. For a given set of instruments Z, Eu|Z)=0 implies that E(u x £(Z))=0

for all functions £(.). Typically, studies use only one f(.) function.

13. This is the case in our sample even though, in the general latent
variable model, equation (8a) is not a regression in which the error terms
must be uncorrelated with the Rj’s. We compute the determinant of the
covariance matrix of the error terms in equation (8), divided by the
determinant for the error terms of (2). If the ratio is less than one the
generalized error variance is smaller in the GMM2? than in the GMM1. For the
six subperiods and asset samples described in Table TII we find that the

ratio varies from 0.11 to 0.96, and the average value is 0.63.

14. Specifically, we construct the weighting matrix W using the parameter
estimates from the m-th stage minimization, use this matrix to find
parameters for stage m+l which minimize the criterion function, and then use
the new parameters to update the weighting matrix. The iterations continue
until either a minimum value is obtained or the objective function

converges.
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15, Several studies document biases in the daily portfolio returns of common
stocks, especially for portfolios of small stocks. For example, Blume and
Stambaugh (1983) document a bid-ask related bias in the returns of equal-
weighted portfolios. Keim (1989) and Porter (1992) find that seasonal
patterns in returns (e.g. turn of the year, day of the week) are related to
systematic concentrations of closing trades at bid and ask prices. Also,
spurious cross-correlation of daily portfolio returns at various lags may
influence regression models that contain lagged market returns [Reinganum
(1982), Lo and MacKinlay (1990b)]. The empirical evidence in Shanken (1987)
raises questions about the use of daily data when estimates of security
covariances are important. We conducted some analysis (available by
request) which suggested that these are not serious problems in our daily
sample for the DJ30. However, the biases are likely to be important for

low-price, thinly-traded stocks that are concentrated in portfolios of small

firms.

16. Blume and Stambaugh (1983) and Roll (1983) show that equal weighted
portfolio returns are subject to a statistical bias related to bid-ask
spreads. The use of a buy-and-hold portfolio reduces the bias; using the
lagged gross relative return is an approximation to a buy-and-hold strategy.
Foerster and Porter (1991) study the effectiveness of such an approach in
reducing the bias in measured portfolio returns. Their evidence suggests

that the approximation is accurate entough for our purposes.

17. When we examine daily portfolio returns, the instruments are a constant,
dummy variables for Friday, Monday, and January, the return of the CRSP
equally-weighted stock index lagged once and thrice, and the return of the
equally-weighted index of the Dow Jones 30 stocks lagged twice. This
predictive model is examined by Ferson and Keim (1984) over a shorter sample

period. Qur results for more recent data therefore provide out-of-sample

evidence.

18. Such concerns are raised by Merton (1985) and Lakonishok and Smidt

(1988) and are analyzed by Lo and MacKinlay (1990b).
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19. Cutler, Poterba and Summers (1988), Solnik (1991) and others find that
dividend yields have predictive power for future stock returns in other
countries. Campbell and Hamao (1992) find that predictable components of
bond and stock returns are highly correlated between the U.S. and Japan.
Harvey (1991) finds that a set of lagged instruments similar to ours has

predictive power for stock returns in other countries.

20. We have replicated many of our tests using alternative choices for the
monthly instruments. We replaced the dividend yield variable with a
detrended price level variable. The price level is detrended by dividing the
end of month level of the index into the average level over the previous
year, similar to Keim and Stambaugh (1986). We also examined a default-
related yield spread similar to Keim and Stambaugh (1986). None of the broad
features of the monthly results are affected by these alternative choices of

instruments.

21. These conclusions are similar to the evidence reported in Shanken
(1990), who uses a different set of instruments and monthly data for 1953-
1982. We find stronger evidence against homoskedasticity in our first
subperiod, where the largest p-value is 0.085 (leisure industry). Results
for the second subperiod are similar to those reported for the third
subperiod in Table II. Of course, White’s (1980) test only detects
heteroskedasticity that is linearly related to the levels and cross products

of the instruments, and is therefore of limited power.

22. For direct evidence on the behavior of conditional betas when the risk
factors are specified see Keim and Stambaugh (1986), Ferson (1990), Shanken
(1990) and Braun, Nelson and Sunier {1991). Ferson and Harvey (1991) and
Evans (1991) allow time-varying betas and conclude that the variation in
betas contributes little to the variation in the expected returns of size

and industry-grouped portfolios in post-war monthly data.

23. Recall that a smaller number of equations are also involved for a given

asset sample and number of latent variables in the GMM? test. This should

also affect the power of the tests.
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24. Their sample design differs from ours in several ways. They first form
33 size-based portfolios. An equally-weighted combination of the first
eleven forms the first spanning portfolio, the next eleven comprise a second
and the last eleven form the third. To avoid singularities, they then use

only 30 of the original 33 size portfolios as their test assets,

25. Lehmann and Modest (1988) conduct tests of unconditional spanning using
APT factors, which are portfolios of stocks constructed by factor analysis.
They examine test portfolios grouped on size, dividend yield and own

variance using data for 1963-82. They also find that their spanning models

are rejected.

26. This is consistent with the results of Ferson (1990), who examined
quarterly data and used a different approach to specify the risks factors.
Shanken (1990) rejects a model where a government bond and a value-weighted
stock index are the factors. However, Ferson and Harvey (1991) report that a
model with five economic factors can explain much of the predictable time-

variation in post war monthly returns of size and industry portfolios.

27. Harvey (1989) assumes that conditional covariances with a market index
are ratios of linear functions. Autoregressive conditional
heteroskedasticity models [ARCH, see Engle (1982)) and their generalizations
[e.g., GARCH, see Bollerslev (1986) and EGARCH, see Nelson (1991)] have also
been used to model conditional second moments when the risk factors are
specified [e.g. Bollerslev, Engle and Wooldridge (1988), Bodurtha and Mark
(1991), Ng (1991)].

28. Shanken specifies the risk factors and documents nonzero expected risk

premiums outside of January, using monthly data for 1953-1982,

29. While there are other formal justifications, one motivation for this
regression model is to assume that the underlying unobserved expected risk
premiums are linear with fixed coefficients (which do not shift in January)

and that the assets betas shift in January as indicated above.



TABLE I
Tests of Asset Pricing Models with K=1 and K=? Latent Variables.

Daily Data for the Dow Jones 30 Common Stocks are used. The model is:

Rl = ZSl + El

? Z51C + o5
2'C = g,

R

where R=(R,,R,) is a T x (N+l) matrix of daily returns, partitioned by columns,
with K+1 columns in R. and N-K columns in R,. Z is a T x L matrix of
predetermined instrumental variables, and £°is a vector of ones. §, and C are L x
(K+1) and (K+1)} x (N-K) matrices of parameters. The GMM1 statistic is the
minimized value of the Generalized method of moments criterion function for the
system, based on the implication of the model that the time t values of the error
terms in u—(sl,s ) have conditional mean zero given the time t-! iInstruments in
Z. The orthogonaiity condition tested is E(u’Z)=0. The GMM2 statistic is the
value of the criterion function for the reformulated model:

u = R2 - Rl cC,

£'Cc = 2.

In the left-hand columns the instruments Z are a constant,
value weighted stock index and a dummy variable for Monday. In the right-hand
columns a dummy variable for the month of January is included as an additional

instrument. The right-tail probability values for the test statistics are
reported in the table.

the lagged return on a

A. Instruments exclude January Dummy: B. Instruments Include January Dummy
No. Latent GMM1 GMM2 GMM1 GMM2
Vars. Subperiod

1963-68(T=1478)

1 0 0 0.497 0.436
1 1969-73(T=1262) 0.675 0.268 0.703 0.344
1 1974-79(T=-1518) 0.565 0.350 0.329 0.077
1 1980-85(T=1519) 0.036 0.030 0.096 0.005
1 1963-85% 0.221 0.048 0.281 0.011
v 1963-68 0.987 0,987 0.976 0.614
2 1969-73 0.940 0.907 0.890 0.839
2 1974-79 0.802 0.724 0.681 0.257
2 1980-85 0.980 0.972 0.991 0.862
2 1963-852 0.999 0.999 0.999 0.814

a - . . .
The aggregate test statistic sums the chi-square values across the subperiods.

»
&



TABLE II

Predictive regression results for monthly rates of return for size- and industry- groupec
commont stock portfolios. The data are for 1968-1987 (240 observations). EW is the one
month lagged return of the equal-weighted NYSE index from CRSP. HB3 is the one-month
return of a three-month Treasury bill less the one-month return of a one-month bill. D/F
is the dividend yield of the CRSP value-weighted stock index. TB is the nominal, one-
month Treasury bill rate. DJAN is a dummy variable equal to one if month t is January ar
zero otherwise. adj. R” is the adjusted R-square, p. is the first order autocorrelatior
of the regression residual, and y (pv} is the right-%ail probability value for White's
(1980) chi-square test for conditional heteroskedasticity of the regression residual.

Results for the regression model:

Roe = @ ¥ 8,1 0/B ) ¥ 6

ot > ZTBt-l + 6p3HB3t-l + 6p4Ewt-l + 6p5DJANt + Us s (11:
Portfolio® adj. R oy %2 (pv)
Decile 1 19.0% -0.04 469
Decile 2 18.5 .01 .376
Decile 5 14.3 0.03 .306
Decile 10 7.4 -0.04 .011
Petroleum 3.7 -0.01 .000
Fin/RE 6.3 0.08 .004
Cons. Dur. 12.3 0.01 .363
Basic Ind. 5.8 -0.04 .099
Food/Tob. 6.0 0.06 .001
Constr, 10.9 0.02 .179
Cap. Goods 10.4 0.00 .203
Trans. 10.1 .01 .078
Utilicties 6.4 0.08 .002
Textiles/Trade 6.4 0.13 .479
Services 13.1 0.06 .047
Leisure 11.5 0.09 .276
Govt. Bond 2.7 0.02 .Q00
Junk Bond 9.1 0.14 .000

? Decile 1 is the smallest common stock portfolio and Decile 10 is the largest stock
portfoliec; a subset of the ten decile portfolios are shown.



TABLE III
Tests of Asset Pricing Models with K=1, 2 and 3 Latent Variables.
The model is:
R, = 2§ + €
R, = 26.C + ¢

2 1
2'C = £,

2 ¥

where R=(R,,R,) is a T x (N+1) matrix of monthly returns, partitioned by columns,
with K+1 columns in R, and N-K columns in R.. Z is a T X L matrix of

predetermined instruméntal variables, and £°is a vector of ones. §. and C are L x
(K+1l) and (K+1) x (N-K) matrices of parameters. The GMM1 statistic™is the
minimized value of the Generalized method of moments criterion function for the
system, based on the implication of the model that the time r values of the error
terms in u—(el,c ) have conditional mean zero given the time t-1 instruments in
Z. The orthogonality condition tested is E(u’Z)=0. The GMM2 statistic is the
value of GMM criterion function for the reformulated model:

U= R2 - Rl C,

2'C = £,

The instruments are a constant, the dividend yield of the CRSP value-weighted
stock index, the level of the one-month treasury bill, the lagged excess return
of a three-month over a one-month bill, the lagged return of the CRSP equally-
weighted stock index, and a dummy variable for the month of January. The assets
are ten value-weighted, size-based common stock portfolios, twelve industry-
grouped portfolios, a long-term government bond (GB) and a low-grade corporate
bond (junkret). Each subperiod has 240 monthly observations. There are 720

observations in the 1928-1987 sample period. The right-tail probability values
for the test statistics are reported in the table.
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No. Latent GMM1 GMM2
Variables Subperiod Assets
1 1928-47 10 Size, GB, 0.195 0.089
1 1948-67  Junkret 0.039 0.024
1 1968-87 0.109 0.101
1 1928-872 0.015 0.005
1 1928-47 12 Industry, 0.630 0.638
1 1948-67 GB, Junkret 0.305 0.007
1 1968-87 0.257 0.134
1 1928-872 0.333 0.027
2 1928-47 10 Size, GB, 0.728 0.510
2 1948-67  Junkret 0.097 0.049
2 1968-87 0.434 0.059
2 1928-872 0.313 0.032
2 1928-47 12 Industry, 0.726 0.610
2 1848-67 GB, Junkret 0.113 0.001
2 1968-87 0.885 0.342
2 1928-872 0.811 0.025
3 1928-47 10 Size, CB, 0.768 0.447
3 1948-67  Junkret 0.242 0.105
3 1968-87 0.687 0.068
3 1928-872 0.635 0.054
3 1928-47 12 Industry, 0.863 0.745
3 1948-67 GB, Junkret 0.171 0.003
3 1968-87 0.939 0.639
3 1928-872 0.813 0.105

a - . . -
The aggregate test statistic sums the chi-square values across the subperiods.



TABLE IV

Tests of Conditional and Unconditional Mean-variance Spanning.

The model is:

where R-(RI,R Y is a T x N matrix of monthly returns,
is a (K+1)X(N-K-1) matrix of parameters. K is the dimension of the asset pricing
model (i,e., the number of spanning assets minus one) and N is the total number
of assets; there are N-K-1 test assets. The test statistic is the minimized
value of the Generalized method of moments criterion funcrion for the system,
based on the implication of the model that the error term n is uncorrelated with
the (K+1) spanning returns R.. When K=2 the spanning returns are the size
portfolios from the smallest, largest and 5-th decile, a total of 3 returns. When
K=3 the portfolios of size deciles 1,4,7, and 10 are used. When unconditional
spanning is tested, the orthogonality condition is E(n)=E(n'R.)=0. When
conditional mean variance spanning is tested, the orthogonality condition is
E(q'[Rl,Z])-O, where Z is a T x L matrix of predetermined instrumental variables.
The instruments are a constant, the dividend yield of the CRSP value-weighted
stock index, the level of the one-month treasury bill, the lagged excess return
of a three-month over a one-month bill, the lagged return of the CRSP equally-
weighted stock index, and a dummy variable for the month of January. The assets
are ten value-weighted, size-based common stock portfolios, twelve industry-
grouped portfolios, a long-term government bond (GB) and a low-grade corporate
bond (junkret). Each subperiod has 240 monthly observations. There are 720

observations in the 1928-1987 sample period. The right-tail probability values
for the test statistics are reported in the table.

£ is a vector of ones and C
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Panel A: K=2 (Three spanning portfolios)

Unconditional Spanning Conditional Spanning

{(p-values) (p-vaiues)

Subperiod Test Assets

1928-47 7 Size Portfolios 0.026 0.010
1948-67 0.159 0.141
1968-87 0.516 0.065
1928-872 0.048 0.003
1928-47 7 Size, GB, 0.000 0.003
1948-67 Junkret 0.000 0.000
1968-87 0.000 0.001
1928-872 0.000 0.000
1928-47 12 Industry 0.001 0.022
1948-67 Portfolios 0.000 0.000
1968-87 0.000 0.001
1928-872 0.000 0.000

Panel B: K=3 (Four spanning portfolios)

Unconditional Spanning Conditionail Spanning

{(p-values) (p-values)

Subperiod Test Assets

1928-47 6 Size Portfolios 0.036 0.022
1948-67 0.117 0.295
1968-87 0.930 0.515
1928-872 0.127 0.072
1928-47 6 Size, GB, 0.000 0.009
1948-67 Junkret 0.000 0.000
1968-87 0.001 0.001
1928-872 0.000 0.000
1928-47 12 Industry 0.001 0.041
1948-67 Portfolios 0.000 0.002
1968-87 0.000 0.005
1928-.872 0.000 0.000

a . . . .
The aggregate test statistic sums the chi-square values across the subperiods.



TABLE V
The effects of allowing conditional betas to shift in January.

The first panel summarizes models with K=1 and 2 latent variables. The latent
variable model is:

*

R 234 +

1° 1 ‘1
R 2*6 Cc +
i 17t £a°
2'C_ = ¥,
t
c = M. ¢l - My DIAN

where R=(R 'RZ) is a T x N matrix of monthly returns, Z* is the T x 2(L-1) matrix
{(Z,Z2 x DJA&), where DJAN is a dummy variable for the month of January and Z is
the T x (L-1) matrix of instruments consisting of a constant, the dividend yvield
of the CRSP value-weighted stock index, the level of the one-month treasury bill,
the lagged excess return of a three-month over a one-month bill, and the laggede
return.of the CRSP equally-weighted stock index. £ is a vector of ones. §.,, C'

and C are parameters. The GMM2 statistic is the value of the GMM criterion
function for the reformulated model:

n=-R, -R, C

2 1 e
2 Ct = £,
Ct - CNJ + (CJ - CNJ) DJANt.

The orthogonality condition is E(n'(Z,DJAN))=0. The tests of mean variance
spanning in panel B use the same system of equations, where R, is the T x (K+1)
matrix of spanning assets, K is the dimension of the asset pricing model and N is
the total number of assets. There are N-K-1 test assets in the vector R,. When
K=2 the spanning assets are the size portfolios from the smallest, largést and 5-
th decile, a total of 3 returns. When K=3 the portfolios of size deciles 1,4,7,
and 10 are used. The test statistic is the minimized value of the GMM criterion
function for the system, based on the orthogonality condition E(n'[R,,Z,DJAN])=0.
The assets are ten value-weighted, size-based common stock portfolios, twelve
industry-grouped portfolios, a long-term government bond (GB) and a low-grade
corporate bond (junkret). Each subperiod has 240 monthly observations. There are
720 observations in the 1928-1987 sample period. The right-tail probability
values for the test statistics are reported in the table.
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Panel A: Latent Variable Models (GMM2)
No. Latent
Varis. Subperiod Assets
1 1928-47 10 Size, GB, ' 0.314
1 1948-67  Junkret 0.025
1 1968-87 0.034
1 1928-.872 0.008
1 1928-47 12 Induscry, 0.582
1 1948-67 GB, Junkret 0.006
1 1968-87 0.027
1 1928-872 0.006
2 1928-47 10 Size, GB, 0.590
2 1948-67  Junkret 0.142
2 1968-87 0.015
2 1928-87% 0.037
2 1928-47 12 Industry, 0.179
2 1948-67 GB, Junkret 0.003
2 1968-87 0.721
2 1928-87% 0.023
Panel B: Conditional Mean-variance Spanning
K=2 K=3
Subperiod Test Assats (3 _spapning portfolios) (4 spanning portfolios)
1928-47 7 Size Portfolios 0.035 0.042
1948-67 0.158 0.380
1968-87 0.250 0.812
1928-872 0.025 0.234
1928-47 7 Size, GB, 0.004 0.002
1948-67 Junkret 0.000 0.005
1968-87 0.008 0.333
1928-872 0.000 0.000
1928-47 12 Industry 0.172 0.609
1948-67 Portfolios 0.001 0.010
1968-87 0.006 0.119
1928-87% 0.000 0.028
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a The aggregate test statistic sums the chi-square values across the three
subperiods.

The overall p-value is for the first two subperiods only,
"¢ Indicates that we were unable to obtain sa

tisfactory convergence of the
algorithm.
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