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Abstract Hubs are centers for collection, rearrangement,

and redistribution of commodities in transportation net-

works. In this paper, non-linear multi-objective formula-

tions for single and multiple allocation hub maximal

covering problems as well as the linearized versions are

proposed. The formulations substantially mitigate com-

plexity of the existing models due to the fewer number of

constraints and variables. Also, uncertain shipments are

studied in the context of hub maximal covering problems.

In many real-world applications, any link on the path from

origin to destination may fail to work due to disruption.

Therefore, in the proposed bi-objective model, maximizing

safety of the weakest path in the network is considered as

the second objective together with the traditional maximum

coverage goal. Furthermore, to solve the bi-objective

model, a modified version of NSGA-II with a new dynamic

immigration operator is developed in which the accurate

number of immigrants depends on the results of the other

two common NSGA-II operators, i.e. mutation and cross-

over. Besides validating proposed models, computational

results confirm a better performance of modified NSGA-II

versus traditional one.

Keywords Facility location � Mathematical modeling �
Hub maximal covering � Uncertainty � NSGA-II �
Immigration operator

Introduction

There are three major decisions in a supply chain design:

location, routing and inventory decisions (Tavakkoli-Mog-

haddam et al. 2013). Hub location is one of the most appealing

fields in facility location which attracted many researchers in

recent years. Hub location problems have many applications

in areas such as postal delivery systems, telecommunication

networks, airline networks, and other delivery systems with

numerous demand and supply nodes. Hubs are facilities which

collect the flows from several origin centers, then rearrange

and distribute them to their destinations. The effective use of

hub nodes decreases the number of required links for con-

necting origins to destinations and helps to benefit the econ-

omies of scale. Hub location problem was first introduced by

O’Kelly (1986). Afterwards, O’Kelly (1987) proposed the

first mathematical model for hub location problem. Hub

location problem consists of subcategories such as hub med-

ian, hub center, and hub covering problems (Alumur et al.

2012). This paper focuses on hub covering problems. The

interested reader is advised to review the papers by Campbell

and O’Kelly (2012) and Farahani et al. (2013) to study the

other subcategories.

Hub covering problems, as location-allocation problems,

consist of two sub problems namely hub set covering

problem (HSCP) and hub maximal covering problem

(HMCP). While HSCP is aimed at minimizing the trans-

portation and hub establishment costs without any limita-

tion on the number of established hubs, a hub maximal

covering problem is constrained by the number of estab-

lished hubs as an exogenous parameter. The hubs should be

located in such a way that the total utility gained from all the

covered origin/destination (O/D) pairs is maximized.

Campbell (1994) introduced hub covering problems and

proposed mathematical models for both HSCP and HMCP.
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Kara and Tansel (2003) developed a non-linear model for

the single allocation HSCP. They proved NP hardness of the

problem and linearized it in three different ways. Wagner

(2008) formulated a new mathematical model for HSCP, in

which the cost discount factor is independent from the

number of transmitted commodities. Tan and Kara (2007)

used hub covering problem in the Turkish cargo delivery

system including 81 cities with expert-based weights. Calık
et al. (2009) studied a single allocation hub covering

problem with an incomplete hub network. They proposed an

efficient heuristic algorithm based on Tabu Search. Qu and

Weng (2009) employed a path re-linking approach to solve

HMCP. Karimi and Bashiri (2011) proposed models for

HSCP and HMCP under a different coverage type and

developed two heuristic algorithms to solve them. Fazel

Zarandi et al. (2012) investigated a multiple allocation

HSCP. What they assumed is that a node will be covered if

there are at least a given number of paths to satisfy its

demand. Furthermore, to consider the dispersion among

hubs, they forced a lower bound on the distance between the

established hubs. Hwang and Lee (2012) proposed two

heuristics for HMCP and implemented them on the CAB

dataset. The results confirmed satisfying performance of the

heuristics in terms of both the solution quality and the

computational time. In this paper, to mitigate the com-

plexity of models for single and multiple allocation

HMCPs, new mathematical formulations with fewer con-

straints and variables than the existing ones are proposed.

As mentioned earlier, most of the existing hub location

models have been formulated in deterministic environ-

ments leading to invalid results for implementation;

because, in practice, many problem parameters are char-

acterized with high uncertainty. To face such uncertainty,

some efforts have been made. Some of the major exten-

sions to hub location problems under uncertainty are

summarized in Table 1. As observed, demand, transporta-

tion time, customer’s entrance rate to hubs, fixed costs of

establishing hubs, covering radius and location of demand

nodes were assumed to be uncertain in previous researches.

Notably, in previous researches, uncertainty in the links

among node pairs due to disruption has not been investi-

gated. So, we study the effect of disruption in the links

transmitting loads among node pairs in a hub network.

Sometimes, to model the hub networks, it is critical to take

into account link failure probability. For example, in

martial distribution systems, there is usually a disruption

probability for the transmitted cargos in war. According to

some factors like airplane specifications as well as geo-

graphical and weather conditions of the path in air trans-

portation systems, there are always some risks for flight.

Also, when a massage is transmitted across different sta-

tions in a telecommunication system, it may be altered or

destructed due to an interaction or crosstalk. Therefore, we

develop a bi-objective HMCP model in which besides the

coverage, safety of the weakest path in the obtained net-

work is also maximized. Noteworthy, the safety of ship-

ment through each link follows, as usual, a Bernoulli

distribution independently from the other ones.

Based on the above explanations, main contributions of

this paper are as follows:

1. Proposing new efficient mathematical formulations for

single and multiple allocation HMCPs.

2. Investigating HMCPs under uncertain shipments by

developing a bi-objective model maximizing safety of

the paths in designed network.

3. Modifying the traditional NSGA-II to obtain a better

performance in solving the HMCP problems.

The rest of the paper is organized as follows. In Sect. 2, we

present the proposed mathematical formulations. To solve

the proposed model efficiently, a modified version of NSGA-

II is proposed in Sect. 3. Computational results to validate the

models and analyze performance of the proposed algorithm

are provided in Sect. 4. Finally, concluding remarks and

some guidelines for further research are provided in Sect. 5.

Proposed mathematical model

In this section, mathematical formulations are developed

for single and multiple allocation HMCPs as well as

Table 1 Major contributions to hub location problems under

uncertainty

References Uncertain parameter Solution approach

Sim et al.

(2009)

Transportation time Heuristic approach

Yang (2009) Demand Mixed-integer

programming

Contreras et al.

(2011)

Transportation time

(dependent)

Demand

Transportation time

(independent)

Monte Carlo simulation/

Benders decomposition

Mohammadi

et al. (2011)

Entrance rate to

hubs

Imperialist competitive

algorithm (ICA)

Zhai et al.

(2012)

Demand Stochastic optimization

Alumur et al.

(2012)

Fixed establishment

costs demand

Robust optimization

stochastic optimization

Eydi and

Mirakhorli

(2012)

Transportation time

covering radius

Fuzzy linear programming

Mohammadi

et al. (2013)

Transportation time Multi-objective imperialist

competitive algorithm

Davari et al.

(2013)

Location of demand

nodes

Fuzzy simulation
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bi-objective HMCPs under uncertain shipments. Consider

N ¼ 1; 2; . . .; nf g as the set of nodes, i and j as indices for

origins (O) and destinations (D), respectively, and k and

l as indices for hubs. Each node is a potential candidate for

establishing a hub. Each O/D pair can be connected only

through hubs. It is assumed that hub network is complete,

and an O/D pair may be connected through one or two

hubs. Hence, if at least one of the origin or destination

nodes is a hub, it is possible to connect them directly.

Moreover, it is assumed that traveling times among the

nodes are symmetric and follow the triangle inequality

(e.g., for i, k, j: tij � tik þ tkj).

We assume that safety of the transmitted load between

nodes i and j, independent of the other links, follows a

Bernoulli distribution with parameter pij. Therefore, if it is

planned to transmit load from origin i to hub k (xik ¼ 1),

hub k to hub l (xkl ¼ 1) and hub l to destination j (xjl ¼ 1),

safety for transmitting the load between origin i and des-

tination j will be equal to pik:pkl:plj.

As special facilities are employed for transportation

among the hubs, a cost discount factor a is introduced.

Campbell (1994) suggested that O/D pair i–j will be cov-

ered through hubs k and l in the following three ways:

1. Total transportation cost (time or distance) from origin

i to destination j via hubs k and l is less than a

predetermined amount T (cik þ ckl þ clj � T). In this

paper, this rule is used for covering an O/D pair.

2. Transportation cost (time or distance) for each link in

the path from i to j via hubs k and l is less than a

predetermined amount h (cik � h; ckl � h; clj � h).

3. Transportation cost (time or distance) from origin i to

hub k and hub l to destination j is less than a

predetermined amount D (cik �D; clj �D).

Model parameters

wij Importance of covering O/D pair i–j

Cik Traveling time (cost or distance) from node i to k

T Maximum permissible transportation cost (time or

distance) for covering O/D pairs

P Number of hubs to be established

pik Safety for the link transmitting loads between nodes

i and k

M A big number

Model variables

xik Binary variable which is equal to 1 if node i is

connected to hub k

yij Binary variable which is equal to 1 if O/D pair i, j are

connected to the hub network

s Safety of the weakest path in the designed hub

network

Single allocation HMCP model

In the following, the proposed model is presented for single

allocation HMCPs:

max
X

i

X

j

X

k

X

l

wijxikxlj ð1Þ

xik � xkk; 8i; k ð2Þ
X

k

xkk ¼ P ð3Þ

X

k

xik � 1; 8i ð4Þ

ðcik þ ackl þ cljÞxikxjl � T ; 8i; j; k; l ð5Þ

xik 2 0; 1f g 8i; k ð6Þ

Expression (1), as the common objective of HMCPs,

maximizes total utility of the hub network as sum of

importance of the covered nodes. Constraint (2) ensures

that non-hub nodes are only connected to hub nodes.

Equation (3) guarantees that exactly P hubs are established

in the network. Equation (4) confirms that a non-hub node

may be connected to only one hub. Constraint (5) is sug-

gested for covering an O/D pair. Regarding the first rule of

covering, variables can simultaneously be equal to 1 only if

the total transportation costs from origin i to hub k, hub k to

hub l considering the discount factor and hub l to desti-

nation j are less than the given threshold T. To linearize the

proposed non-linear model, binary variable y and constraint

(7) are added to the model.

2yij �
X

k

xik þ
X

l

xjl 8i; j ð7Þ

yij 2 0; 1f g ð8Þ

In constraint (7), binary variable yij is allowed to be 1 if

both i and j are connected to the hub network simulta-

neously; otherwise, this variable is forced to be 0. There-

upon, non-linear objective function (1) can be substituted

with (9).

max
X

i

X

j

wijyij ð9Þ

Using Lemma 1, constraint (5) can be linearized with no

excess variables.

Lemma 1 Linear constraint (10) can be used instead of

non-linear constraint (5).

ðcik þ ackl þ cljÞ:ðxik þ xjl � 1Þ� T ; 8i; j; k; l ð10Þ

Proof Generally there are four possible cases for binary

variables xik; xjl. (1) xik ¼ xjl ¼ 0: constraint (5) changes to

0� T and constraint (10) to �1ð Þ cik þ ackl þ clj

� �
� T . T is
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a nonnegative parameter; so, both equations are obvious;

(2) xik ¼ 0; xjl ¼ 1: both equations change to 0� T ; (3)

xik ¼ 1; xjl ¼ 0: this case is similar to 2; (4) xik ¼ xjl ¼ 1:

both equations change to cik þ ackl þ clj

� �
� T . Since both

constraints work similarly in all possible cases, we can use

them interchangeably.

To the best of our knowledge, there are two distinct

formulations for HMCPs presented in Campbell (1994) and

Karimi and Bashiri (2011). The proposed non-linear model

consists of n2 variables and n4 þ n2 þ n þ 1 constraints and

the linearized version has 2n2 binary variables and n4 þ
2n2 þ n þ 1 constraints. However, the formulation pro-

posed by Campbell (1994) has n4 þ n2 þ n variables with

2n4 þ n2 þ 1 constraints and the model proposed by Kar-

imi and Bashiri (2011) has 2n2 þ n variables with n4 þ
2n2 þ n þ 1 constraints (using the same coverage type).

Multiple allocation HMCP model

To formulate multiple allocation HMCP, constraints (4)

and (7) are omitted, and (11) and (12) are added.

yij �
X

k

xik 8i; j ð11Þ

yij �
X

l

xjl 8i; j ð12Þ

These constraints allow upper bound of the binary var-

iable to be 1 if both the origin and destination nodes are

connected to hub network; otherwise, this equation is

forced to be 0. This formulation for multiple allocation

HMCPs has 2n2 binary variables and n4 þ 3n2 þ 1 con-

straints. Whereas the formulation proposed by Campbell

(1994) has n4 þ n2 þ n variables with 2n4 þ 1 constraints

and the model proposed by Karimi and Bashiri (2011) has

2n2 þ n variables with n4 þ 2n2 þ n þ 1 constraints (using

the same coverage type).

Bi-objective HMCPs

To increase safety of paths in the designed network,

expressions (13), (14), (15) are added to proposed HMCP

formulations.

Max s ð13Þ
s� xikxjlðpikpklpjlÞ þ Mð1 � xikxjlÞ; 8i; j; k; l ð14Þ

s� 0 ð15Þ

The second objective as expression (13) tries to maxi-

mize safety of the weakest path in the network considering

the uncertainty in transmitting load to its destination.

Constraint (14) provides an upper bound for safety of the

weakest path in network. For O/D pair (i, j), the upper

bound is equal to safety of established path i toward j via

hubs k and l. Noteworthy, if the aforementioned path is not

established, expression (14) is converted to an unnecessary

constraint. Lemma 2 proposes a linear equivalent to non-

linear constraint (14).

Lemma 2 Linear constraint (16) and non-linear con-

straint (14) may be used interchangeably.

s� xik þ xjl

2
pikpklplj þ Mð1 � xik þ xjl

2
Þ; 8i; j; k; l ð16Þ

Proof There are four possible cases for binary variables

xik, xjl. (1) xjl ¼ xik ¼ 0: right-hand side of both constraints

equals M; (2) xjl ¼ 1; xik ¼ 0: right-hand side of constraint

(14) equals M and right side of constraint (16) equals
pik :pkl:pjl

2
þ M

2
and considering M is a large number they work

similarly; (3) xjl ¼ 0; xik ¼ 1: this case is analyzed similar

to 2; (4) xjl ¼ xik ¼ 1: right-hand side of both equations

equals pik:pkl:pjl. The two constraints work similarly in all

possible cases so they might be used alternatively.

Solution algorithm: modified NSGA-II

In multi-objective models, existing constraints frequently

prevent achieving a solution in which all the objective

functions are optimal (Ghane and Tarokh 2012). In this

situation, the set of Pareto optimal solutions, i.e. the solu-

tions none of which is utterly better than the others, is the

best choice. Classical optimization methods convert a given

multi-objective problem to a single-objective one by dif-

ferent approaches. When the obtained single-objective

problem is solved, in fact, one of the solutions in the set of

Pareto optimal solutions is found. To map the whole Pareto

optimal frontier, this procedure should be repeated many

times, which is a time-consuming process (Deb et al. 2002).

Furthermore, considering the complexity of real-world

problems, a good approximation of Pareto optimal frontier

is generally acceptable (Coello Coello 2007). This leads to

the use of evolutionary algorithms to solve multi-objective

problems. Early analogies between the mechanism of nat-

ural selection and learning or optimization process have

been led to development of so-called evolutionary algo-

rithms whose main goal is to simulate the evolutionary

process on a computer (Coello Coello and Lamont 2004). A

key benefit of multi-objective evolutionary algorithms is to

attain a set of Pareto solutions. Such algorithms try to

improve quality of the first-frontier members in consecutive

generations. Initially, Schaffer (1985) applied a genetic

algorithm (GA) to solve a multi-objective problem and

proposed a vector-evaluated GA. After that, numerous

multi-objective versions of evolutionary algorithms were

188 J Ind Eng Int (2014) 10:185–197
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proposed. Non-dominated sorting genetic algorithm

(NSGA) is one of the most efficient and commonly used

versions of multi-objective GA offered by Srinivas and Deb

(1994). To resolve some shortcomings of NSGA, Deb et al.

(2002) proposed an improved version called NSGA-II

which in most multi-objective optimization problems is

capable of converging to high-quality solutions with a better

spread of solutions in the obtained frontier than the previous

evolutionary algorithms (Noori-Darvish and Tavakkoli-

Moghaddam 2012). In this paper, a modified version of

NSGA-II is developed for solving the proposed multi-

objective single allocation HMCP model. The modified

NSGA-II differs in three ways from traditional one: (1)

improved operators are designed to adapt to the problem,

(2) an immigration operator is introduced for a better search

in the solution space, and (3) a new mechanism is designed

for adding individuals to the population. The following

subsections are devoted to explain the proposed algorithm.

Chromosome structure

Besides simplicity, chromosome structure should contain

all the information required to solve the problem. The most

important features of problem are (a) ordinary nodes must

be connected to hubs, (b) each ordinary node is allowed to

connect only into one hub, (c) P hubs are established and

(d) to cover an O/D pair, length of established path must be

smaller than the specified covering radius.

In the proposed structure, each allele is denoted as a

node, and number in it refers to the hub number to which

the node is allocated (feature b). Hence, if a node’s position

is equal to the hub number allocated to it, the considered

node is a hub. Figure 1 demonstrates the proposed structure

for a problem with seven nodes. As alleles 2 and 5 are

allocated to themselves, they are denoted as hubs. To create

each chromosome in the initial population, P nodes are

selected randomly to be hubs (feature c) and each one of

the remaining nodes is assigned to only one hub randomly

(feature a). Considering the covering constraint, for a

specified O/D pair, if the total transportation cost in a given

path is less than the determined covering radius it will be

covered. For example, in the network designed in Fig. 1,

ordinary nodes 4 and 6 are assigned to hubs 2 and 5,

respectively. Thus, the considered path is 4–2–5–6. If the

total transportation cost in this path (c42 þ ac25 þ c56) is

less than the covering radius, O/D pair (4, 6) is covered and

the associated utility (wij) is taken into account. Safety of

the covered path 4–2–5–6 is p42p25p56. This probability for

the uncovered paths is not calculated.

Non-dominated sorting

Sorting and selecting the best individuals for the next

generation are the most important differences between

NSGA-II and the other multi-objective evolutionary algo-

rithms. Initially, each solution is allocated a rank according

to the number of times dominated by the other solutions.

The rank of a solution determines the frontier in which it is

located; therefore, the solutions with rank 1 are those in the

first frontier. Actually, the first-frontier members are the

algorithm’s approximation of Pareto optimal frontier.

Then, algorithm tries to improve them in iterative genera-

tions. The solutions located in a less crowded area are the

more favorable solutions in the same frontier because of

clarifying shape of the Pareto frontier.

To sort solutions of the same frontier, crowding distance

measure is used (Deb et al. 2002). For each objective

function, the solutions within the same frontier are sorted

in ascending order. Based on the distance between two

consecutive solutions for each objective function, the

crowding distance measure is calculated as follows:

CDi ¼
XM

m¼1

f iþ1
m � f i�1

m

f max
m � f min

m

ð17Þ

where M is the number of objectives, f max
m and f min

m are the

maximum and minimum amounts of objective m among

frontier members, and f iþ1
m and f i�1

m are the amounts of

objective function m for the subsequent and precedent

solutions in the sorted frontier population.

Due to the importance of boundary solutions of a fron-

tier in detecting its shape, the first and the last solution

crowding distances are set to be infinite. Finally, to select

the best individuals for the next generation, the solutions

are sorted in an ascending order according to their rank.

Among the solutions with the same rank, those with higher

crowding distance are preferred.

Genetic operators

Genetic operators are tools for better search, i.e. explora-

tion and exploitation, in the solution space. As a result of

mating, new offsprings are involved in population whose

features are a mixture of parents’ specifications. This

process is simulated with a crossover operator in GA.

Seldom abnormalities in the genetic structure of some

individuals in the population cause salient differences in

their specifications, called mutation operator in GA. The

mutation operator plays an important role as it helps to

escape local optima. Another phenomenon which humanFig. 1 Chromosome structure for a problem with seven nodes
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societies are faced is entrance of some foreign individuals

into the existing population, called immigration, used as

another genetic operator here.

Among various crossover techniques, we apply the

simple single-point crossover. However, if we select a cut

point randomly and interchange corresponding parts of

chromosomes, infeasible solutions like those in Fig. 2 may

be generated. As shown in Fig. 2, first offspring has four

hubs including nodes 2, 3, 6, and 7 while second one has

nodes 5 and 6 as hubs. Furthermore, in second offspring,

the second and the forth nodes are allocated to non-hub

nodes 7 and 2, respectively, which are as unacceptable

allocations.

To resolve this problem, a modified single-point cross-

over is proposed. At first, the set of hub nodes in each parent,

called h1 and h2, with cardinality of P are derived. Cut point

Q is randomly selected from [1, P-1]. Then, the first

Q members of h1 and the last P-Q members of h2 are joined,

and the set of hubs in first offspring c1 is created. Similarly,

the first Q members of h2 and the last P-Q members of h1

make the set of hubs in second offspring c2. If there are

duplicates in each of the aforementioned sets, one of non-

hub nodes is randomly replaced with one of repetitive hub

nodes. After determining the set of hubs in each offspring,

non-hub nodes are allocated to hubs randomly to create the

complete offsprings. Figure 3 shows implementation of the

proposed single-point crossover on Fig. 2.

To mutate a given chromosome, after random selec-

tion of a hub and non-hub node, non-hub node is altered

to a hub and vice versa. Also, all the nodes allocated to

the previous hub, including the hub node, are assigned to

the new hub. To do mutation on the chromosome in

Fig. 4, non-hub node 3 and hub node 2 are selected at

random.

The third operator introduced here is called immigration.

As it happens in most societies, a set of individuals, called

immigrants, are added to the existing population periodi-

cally. Immigrants are created randomly and cause a better

search in the solution space. In the proposed algorithm, set

of immigrants consists of two parts. The first part is a fixed

number of immigrants called ‘basic number of immigrants’

or BIN, and the second one varies in sequential iterations

called ‘variable number of immigrants’ or VIN. After

crossover and/or mutation, if the offspring dominates any of

the parents, the operation is considered successful. The

exact value of VIN is equal to number of unsuccessful

crossover/mutation operations. In NSGA-II, results of two

operators (crossover and mutation) are directly added to

populations while, in the modified NSGA-II, only the suc-

cessful offsprings will be added to population, and the

others will be replaced with immigrants.

Accordingly, in each iteration of NSGA-II, number of

offsprings and mutants added to population is more than

(or equal to) the modified NSGA-II; however, sum of the

offsprings, mutants, and immigrants in the modified

NSGA-II is, as BIN value, more than sum of the offsprings

and mutants in the traditional NSGA-II. The offsprings and

immigrants are added to the main population, and after

Fig. 2 Crossover with an infeasible solution

Fig. 3 Modified crossover

performed on h1 and h2

Fig. 4 A mutation example
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using non-dominated sorting algorithm, better individuals,

considering the population size, move to the next genera-

tion. The pseudo code of modified NSGA-II is provided in

Fig. 5.

Computational results

In this section, first the proposed formulations are validated

and their efficiencies are proved using some numerical

examples extracted from the Turkish data set (Tan and

Kara 2007) and effect of the second objective function is

evaluated using a weighting method on a small-sized

HMCP. Then, multi-objective metrics are introduced and

after parameters setting, performance of the modified

NSGA-II is studied versus the traditional algorithm.

Model validation and efficiency

In numerical examples, we have 10, 20, 30, 35 nodes and

the number of established hubs are 1 and 2. Covering

threshold (T) equals to average distance among nodes and

discount factor a is 0.5. GAMS 22.2 with CPLEX solver is

used to solve the experimental problems.

To validate the proposed linear formulations for single

and multiple allocation HMCPs, they are compared to the

formulations proposed in Karimi and Bashiri (2011) in

terms of required computational time and relative gap

(using the same coverage type). In Table 2, we compare

the single allocation model with the one in Karimi and

Bashiri (2011). In all experiments, the solution obtained by

both formulations is the same which corroborates validity

of the proposed model. The relative gap in the proposed

1. Input parameters
Population size (nPop), Crossover percentage (Pc), Mutation Percentage (Pm), Immigration 
percentage (Pimg), Number of generations (Maxit), Offsprings' population size (Popc), Mutant’s 
population size (Popm), Immigrants population size (Popimg), Counter k for determining VIM

2. Initialization
2.1.Create nPop individuals randomly and evaluate each one.
2.2.Sort population using non-dominated sorting algorithm.

3. For iterations 1 to Maxit Do
3.1.Let k=0
3.2.Crossover

3.2.1.Select Pc individuals using binary tournament selection and do Crossover.
3.2.2.Evaluate offsprings.
3.2.3.If any offspring dominates parents, add them to Popc, otherwise k=k+1.

3.3.Mutation
3.3.1.Select Pm individuals using binary tournament selection and do Mutation.
3.3.2.Evaluate mutants.
3.3.3.If mutant dominates parent, add it to Popm, otherwise k=k+1.

3.4.Immigration
3.4.1.Create Pimg +k individuals randomly and add them to Popimg.
3.4.2.Evaluate Popimg members.

3.5.Add Popc, Popm, and Popimg to the main population.
3.6.Use non-dominated sorting algorithm to sort population.
3.7.Move the first nPop individuals to the next generation.
3.8.Store the first frontier members as Pareto frontier. 

Fig. 5 Pseudo code of modified

NSGA-II

Table 2 Validating the

proposed model for single

allocation HMCP

Problem

size

Number of

Hubs

Proposed linear model Proposed model in Karimi

and Bashiri (2011)

Obtained

solution

Relative

gap

Computational

time (s)

Relative

gap

Computational

time (s)

10 1 0.000 0.323 0.000 0.332 787,809

2 0.000 0.362 0.000 0.405 1,270,931

20 1 0.063 2.767 0.091 2.872 1,777,083

2 0.096 3.464 0.098 4.016 2,451,954

30 1 0.000 12.729 0.057 17.619 2,032,516

2 0.092 16.632 0.099 24.616 2,746,645

35 1 0.089 26.636 0.099 33.887 6,333,382

2 0.000 28.742 0.096 31.030 9,621,806
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model is always less than that in Karimi and Bashiri

(2011). Average relative gap for the proposed model is

0.042 whereas in Karimi and Bashiri (2011) it is 0.067.

Also, computational time for the proposed model is less

than that of Karimi and Bashiri (2011) for all experimental

problems.

Table 3 Validating the

proposed model for multiple

allocation HMCPs

Problem

size

Number of

hubs

Proposed linear model Proposed model in Karimi

and Bashiri (2011)

Obtained

solution

Relative

gap

Computational

time (s)

Relative

gap

Computational

time (s)

10 1 0.000 0.334 0.000 0.366 787,809

2 0.000 0.367 0.060 0.376 1,286,698

20 1 0.000 2.772 0.000 2.812 1,777,083

2 0.000 2.819 0.072 2.836 2,451,954

30 1 0.000 16.704 0.098 17.998 2,032,516

2 0.088 22.820 0.097 25.092 2,918,431

35 1 0.000 30.067 0.095 33.312 6,333,382

2 0.080 33.228 0.099 34.009 1,070,413

Table 4 Utility and safety

probability for each O/D pair
Node 1 2 3 4 5 6 7

1 (0,1.000) (261,0.262) (28,0.424) (178,0.730) (187,0.521) (72,0.988) (59,0.335)

2 (261,0.262) (0,1.000) (326,0.508) (179,0.489) (123,0.232) (105,0.038) (79,0.680)

3 (28,0.424) (326,0.508) (0,1.000) (286,0.579) (329,0.489) (165,0.885) (152,0.137)

4 (178,0.730) (179,0.489) (286,0.579) (0,1.000) (307,0.624) (80,0.0.913) (109,0.721)

5 (187,0.521) (123,0.232) (329,0.489) (307,0.624) (0,1.000) (296,0.796) (324,0.107)

6 (72,0.988) (105,0.038) (165,0.885) (80,0.0.913) (296,0.796) (0,1.000) (151,0.654)

7 (59,0.335) (79,0.680) (152,0.137) (109,0.721) (324,0.107) (151,0.654) (0,1.000)

Fig. 6 Optimal results of multi-

objective model for different

weighting preferences
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Similar experiments for the proposed model in multiple

allocation case result to the same solutions for both for-

mulations. Table 3 shows that average relative gap for the

proposed model is 0.021 whereas in Karimi and Bashiri

(2011) it is 0.065. Also, computational time in all experi-

ments is always less than that in Karimi and Bashiri (2011).

Effects of the second objective

We involve a second objective to force the model to choose

safer paths for connecting all O/D pairs. To represent

optimum results of the proposed multi-objective model for

a small-sized instance, a weighting method is applied for

obtaining Pareto solutions. Consider a problem with seven

nodes in which two hubs must be established. The covering

radius and discount factor are assumed to be 300 and 0.5,

respectively. Table 4 presents utility of covering and safety

probability of each O/D pair. Each time a given weight is

allocated to each objective, and GAMS22.2 is used to solve

the resulting single-objective problem.

Figure 6 demonstrates the optimal solutions from four

different weighting preferences. Case (a) shows optimal

solution when the only criterion is maximizing the total

utility (w1 ¼ 1;w2 ¼ 0). In this case, nodes 5 and 7 are

hubs, total covering utility is 3,796 and the path from 2 to

3 via hubs 5 and 6 is the weakest one with safety 0.003. In

case (b), the associated weights for both objectives are 0.5

(w1 ¼ w2 ¼ 0:5). Accordingly, nodes 4 and 6 are hubs,

total covering utility is 3,796 and the path from 2 to 7 via

hub 4 is the weakest one with safety 0.353. In case (c),

w1 ¼ 0:4 and w2 ¼ 0:6. As a result, total covering utility

is 2,723, node 2 is not connected to network, and the

weakest path is the one from 5 to 7 via hub 6 with safety

0.521. Finally, in case (d), the only criterion is maxi-

mizing safety of weakest path (w1 ¼ 0;w2 ¼ 1). Conse-

quently, nodes 5 and 6 are hubs with safety 0.988, the

other nodes are not connected to network, and total cov-

ering utility is 72.

The above results clearly show effects of the second

objective on forming the hub network (i.e. selecting hub

nodes and paths for linking non-hub nodes). Obviously, an

increase in the importance of second objective causes

selection of more reliable paths although the total covering

utility may be decreased.

Multi-objective metrics

Quality of solutions and their relative dispersion in Pa-

reto frontier are the most important properties of an

evolutionary algorithm. To compare modified versus

traditional NSGA-II, five multi-objective metrics are

introduced.

1. Quality metric (QM) More solutions in Pareto frontier

imply better performance of the algorithm (Schaffer

1985).

2. Best frontier members (BFM) Solutions with the best

fitness for each objective in Pareto frontier.

3. Average frontier fitness (AFF) Average fitness of

solutions in first frontier for each objective.

4. Mean ideal distance (MID) Average distance among

solutions in Pareto frontier and a hypothetical ideal

solution (Zitzler and Thiele 1998). Lower value of

MID shows better performance of the algorithm.

MID ¼

Pn
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð f1i�f best

1

f max
1;g

�f min
1;g

Þ2 þ ð f2i�f best
2

f max
2;g

�f min
2;g

Þ2

r

n
ð18Þ

where n is the number of Pareto solutions, fji is value of

jth objective for ith solution in Pareto frontier, and

Table 5 Desired levels for parameters and selected values

Parameters Factor levels Selected

value
1 2 3 4

Maximum number of

iterations (MaxIt)

60 70 100 150 70

Population size (nPop) 80 100 150 200 100

Crossover rate (Pc) 0.7 0.75 0.8 0.85 0.7

Mutation rate (Pm) 0.05 0.10 0.15 0.20 0.2

BIN 0.2 0.3 0.4 0.5 0.4

Table 6 L16 design and related response levels

Experiment Parameters Average

response level
MaxIt nPop Pc Pm BIN

1 60 80 0.7 0.05 0.2 17.5214

2 60 100 0.75 0.10 0.3 31.9664

3 60 150 0.8 0.15 0.4 7.76250

4 60 200 0.85 0.20 0.5 11.8583

5 70 80 0.75 0.15 0.5 16.4317

6 70 100 0.7 0.20 0.4 39.7856

7 70 150 0.85 0.05 0.3 24.7537

8 70 200 0.8 0.10 0.2 22.3217

9 100 80 0.8 0.20 0.3 19.4879

10 100 100 0.85 0.15 0.2 11.4221

11 100 150 0.7 0.10 0.5 9.24550

12 100 200 0.75 0.05 0.4 19.8328

13 150 80 0.85 0.10 0.4 17.5379

14 150 100 0.8 0.05 0.5 17.7215

15 150 150 0.75 0.20 0.2 21.6488

16 150 200 0.7 0.15 0.3 24.8538
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f max
i;g ; f min

i;g are maximum and minimum amounts of ith

objective among solutions in Pareto frontier. Notably,

coordinates of the ideal solution in all problems are

assumed to be ðf best
1 ; f best

2 Þ ¼ ð
P

i;j wij; 1Þ:
5. Spacing metric (SM) Distribution of solutions in Pareto

frontier as denoted in (19). Lower SM signs better

dispersion of the solutions in the frontier (Srinivas and

Deb 1994).

SM ¼
Pn�1

i¼1 di � �d
�� ��

ðn � 1Þ�d ð19Þ

where di is Euclidean distance between solutions i and

i?1 in sorted Pareto solutions and �d is average

Euclidean distance.

Parameter tuning

Parameter tuning has a salient effect on quality of solutions

and computational time of evolutionary algorithms. To set

parameters, Taguchi method is applied which is a frac-

tional factorial experiment design. Compared to the full

factorial experiments, fractional approaches focus on the

orthogonal arrays of data to analyze different levels of

factors which lead to a considerable reduction in number of

conducted experiments. For a comprehensive review on the

Taguchi approach, one may refer to Roy (2001).

As mentioned earlier, speed of convergence to actual

Pareto frontier and diversity of solutions in obtained

frontier are the main criteria in analyzing evolutionary

algorithms. Rahmati et al (2013) incorporate these

parameters and propose a single response metric for

Taguchi method namely multi-objective coefficient of

variation (MOCV).

MOCV ¼ QM

SM
ð20Þ

There are five parameters in NSGA-II that need to be

tuned, each of which is assigned four initial values as

Table 5 based on the previous experiments. At last, the

mentioned factors are analyzed with an L16 design. Larger

values of response are more desirable. Each experiment is

done four times and average response levels are given in

Table 6. Given the response levels, parameter levels are

provided in Table 5.

Performance of modified NSGA-II

To assess performance of the proposed NSGA-II, it is

compared with the traditional one. They are compared

regarding the multi-objective metrics introduced in 4.3.

Generally, hub location problems are among NP-hard ones

and they have a high computational complexity. Due to the

size of numerical examples in other papers (for a com-

prehensive list of instances, one may refer to Tables 1, 2 in

(Farahani et al. 2013)), we have divided our experiments

into small, medium, and large-sized problems. Small-size

instances have 20, 40, and 50 nodes, medium-sized prob-

lems have 70, 100, 150, and 200 nodes, and the large-sized

ones consist of 300, 400, 500 and 1,000 nodes. The

experiments were done on a PC with Core 2 Duo, CPU2.4

GHs and RAM 1 GB. MATLAB R2011b was used to code

both the traditional and modified NSGA-II. The number of

hubs in each experimental problem is randomly selected

from the number of nodes. The nodes are scattered on a

plane according to problem size, and Euclidian distance is

calculated for them. Hence, the distances among the nodes

satisfy triangle inequality. For problems of less than 100

nodes, between 100 and 500 nodes, and more than 500

Table 7 Computational results

for the QM1 and QM2

Size BFM AFF

NSGA-II Modified NSGA-II NSGA-II Modified NSGA-II

First

objective

Second

objective

First

objective

Second

objective

First

objective

Second

objective

First

objective

Second

objective

20 7,617 0.9708 7,654 0.9732 4,489.6 0.9151 4,640.3 0.9152

40 14,201 0.9236 17,353 0.9367 9,577.0 0.8933 10,048.4 0.8955

50 33,244 0.9164 35,117 0.9251 16,746.2 0.8593 16,981.9 0.8593

70 47,767 0.9006 49,273 0.9047 28,968.2 0.8459 29,709.5 0.8483

100 97,469 0.8702 104,518 0.8703 68,153.9 0.8357 68,577.3 0.8360

150 24,407 0.9292 30,317 0.9509 14,194.7 0.8956 15,014.2 0.8992

200 72,443 0.9035 86,538 0.9035 59,677.1 0.8728 61,254.3 0.8834

300 65,970 0.9042 72,630 0.9050 52,037.9 0.8714 55,272.2 0.8735

400 145,856 0.9012 151,884 0.9014 12,807.7 0.8594 126,212.7 0.8638

500 124,318 0.9016 134,912 0.9017 109,814.7 0.8766 114,249.5 0.8875

1,000 372,591 0.9002 375,304 0.9002 345,237.9 0.8675 347,650.6 0.8679
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nodes, coordinates of the network planes are selected at

random from [0,100], [0,300], and [0,500], respectively.

Also, the distance matrix is symmetric. Covering each node

in HMCPs creates a certain utility according to some

properties of that node. Utility is selected randomly from

[0,350]. Comparative results on traditional and modified

NSGA-II algorithms for all multi-objective metrics are

provided in Tables 7 and 8.

It is obvious that modified NSGA-II surpasses the tra-

ditional one according to BFM metric in all experimental

problems. For first objective, the most deviation of tradi-

tional NSGA-II from modified one is 24.21 % for problems

of size 150, and the average deviation is 9.58 %. For

second objective, corresponding most deviation is 2.29 %

for problems of size 150, and the average is 0.5 %.

AFF in modified NSGA-II surpasses that of traditional

one which shows better performance of proposed algo-

rithm. Considering Table 7 for the first objective, the most

and mean AFF deviation of traditional NSGA-II from the

modified one are 5.85 % (problem of size 300) and 3.2 %,

respectively. The corresponding deviations for second

objective are 1.23 % (problem of size 500) and 0.38 %,

respectively.

Table 8 summarizes the values of QM, SM and MID in

experimental problems. As mentioned earlier, larger values

for QM and smaller values for SM and MID are more

desirable. In all experimental problems, QM and SM in

modified NSGA-II are better than those in traditional

algorithm. This is also evident in Figs. 7 and 8. For MID

Table 8 Computational results

for QM, SM and MID metrics
Size QM SM MID

NSGA-II Modified NSGA-II NSGA-I Modified NSGA-II NSGA-II Modified NSGA-II

20 17 25 0.8087 0.7147 4.43 2.64

40 10 15 0.8728 0.5654 10.56 9.75

50 22 25 0.8121 0.7631 7.31 6.76

70 19 24 0.8166 0.6917 10.22 10.53

100 14 18 0.6987 0.5454 15.37 11.61

150 17 22 0.6693 0.6691 92.39 69.64

200 13 19 0.9695 0.8631 82.77 59.61

300 16 18 0.8517 0.7740 16.81 16.93

400 11 16 1.0470 0.8465 13.29 9.65

500 12 12 0.7820 0.7612 52.33 35.11

1,000 14 16 0.9158 0.8660 62.88 46.71
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Fig. 7 QM in NSGA-II versus modified NSGA-II
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Fig. 8 SM in NSGA-II versus modified NSGA-II
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Fig. 9 MID in NSGA-II versus modified NSGA-II

Table 9 ANOVA results in 5 % risk level

Metric F statistic Pvalue Decision on null hypothesis

QM 5.7365 0.0271 Rejected

SM 5.2741 0.0348 Rejected

MID 0.4474 0.5052 Not enough evidence to reject
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metric, except problems with 100 and 300 nodes, modified

NSGA-II shows a better performance than NSGA-II. Fig-

ure 9 compares MID metric of NSGA-II with that of

modified NSGA-II.

Results of ANOVA established for two algorithms in

terms of QM, SM and MID are provided in Table 9. Null

hypothesis is that there is no significant deviation among

the three metric values of two algorithms. According to

Table 9 with a 5 % significance level, null hypothesis is

rejected for QM and SM which means that modified

NSGA-II outperforms NSGA-II. Although in most cases

MID in the proposed algorithm is less than the original one,

but the respective gap is not significant. As a sample, Pa-

reto frontiers of problem with 20 nodes for both algorithms

are displayed in Fig. 10. Horizontal and vertical axes stand

for first and second objectives, respectively. The diagram

confirms the monotony and higher quality of Pareto fron-

tier of the modified NSGA-II.

Concluding remarks and directions for future research

In this paper, we proposed new formulations for single

and multiple allocation hub maximal covering problems. It

was shown that proposed non-linear model and linearized

versions outperform the existing formulations from the

literature. Also, the considered problems were investigated

under uncertainty in transmitted loads to destinations via a

bi-objective mixed-integer model. Such models are

applied in martial transportation networks, message

delivery in telecommunication systems and air transport

systems. Along with maximization of coverage, selecting

safer paths for transmitting loads was considered as

another objective. To solve the proposed model, a modi-

fied version of NSGA-II was developed in which new

crossover and mutation operators are introduced to adapt

with structure of the considered problem. Moreover, a new

immigration operator was involved. The modified NSGA-

II and NSGA-II were compared using five multi-objective

metrics, four of which proved the supremacy of the pro-

posed algorithm. In this paper, the probability of disrup-

tion in a link was investigated; however, an interesting

direction for future research is addressing probability of

disruption for nodes.

Open Access This article is distributed under the terms of the

Creative Commons Attribution License which permits any use, dis-

tribution, and reproduction in any medium, provided the original

author(s) and the source are credited.
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