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ABSTRACT

Cancer stem cells (CSCs), a subpopulation of tumor cells,
have self-renewal and multi-lineage differentiation abilities
that play an important role in cancer initiation, mainte-
nance, and metastasis. An accumulation of evidence
indicates that CSCs can cause conventional therapy fail-
ure and cancer recurrence because of their treatment
resistance and self-regeneration characteristics. There-
fore, approaches that specifically and efficiently eliminate
CSCs to achieve a durable clinical response are urgently
needed. Currently, treatments with chimeric antigen
receptor-modified T (CART) cells have shown successful
clinical outcomes in patients with hematologic malignan-
cies, and their safety and feasibility in solid tumors was
confirmed. In this review, we will discuss in detail the
possibility that CART cells inhibit CSCs by specifically
targeting their cell surface markers, which will ultimately
improve the clinical response for patients with various
types of cancer. A number of viewpoints were summarized
to promote the application of CSC-targeted CART cells in
clinical cancer treatment. This review covers the key
aspects of CSC-targeted CART cells against cancers in
accordance with the premise of the model, from bench to
bedside and back to bench.
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INTRODUCTION

Cancer stem cells (CSCs), a small population of tumor cells
first described in acute myeloid leukemia (AML), have been

identified in various types of solid tumors, including liver, gastric,
brain, breast, and prostate, and could promote tumorigenesis,
metastasis, and relapse because of their self-renewal and dif-
ferentiation capacity (Lapidot et al., 1994; Bonnet and Dick,
1997; Ma et al., 2007; Fukuda et al., 2009; Hemmati et al., 2003;
Al-Hajj et al., 2003; Collins et al., 2005; Gupta et al., 2009).
Although current anti-cancer treatments such as chemo- and
radio-therapy are effective in eliminatingmost tumor cells, tumor
relapseand/ormetastasis is still a high risk for patients due to the
insensitivity of CSCs to these conventional therapies, with new
tumors initiating from the remaining CSCs (Reya et al., 2001;
Honget al., 2015). In addition, CSCsare greatly correlated to the
clinical response of malignancies, which results in a poor prog-
nosis and a short survival time when the tumor tissue contains a
high ratio of CSCs (Frank et al., 2010). Altogether, an effective
approach to specifically eliminate CSCs is urgently required to
improve the clinical response of cancer treatment.

Recently, a new treatment strategy using chimeric antigen
receptor-modified T (CART) cells has shown unprecedented
clinical outcomes in hematologic malignancies, and its safety
and feasibility in solid tumors was confirmed (Wang et al.,
2014; Dai et al., 2015; Wang et al., 2015; Ahmed et al., 2015;
Lamers et al., 2013; Feng et al., 2016). It is well known that
CART cells can specifically target tumor cells by expressing
a chimeric antigen receptor (CAR) constructed with an
extracellular binding domain of a single-chain fragment of
the antibody variable region (scFv) and the intracellular
signaling domains of CD3zeta, coupled with or without co-
stimulatory molecules such as CD28 and CD137. Among
their properties, specific tumor recognition ability and
improvement of T cell activation, proliferation, and survival
are responsible for the effectiveness of anti-tumor treatment.

On the basis of the information mentioned, in theory,
targeting CSCs by using CART cells may be an effective
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cure strategy for cancers. CART cells can specifically rec-
ognize antigens expressed on the cell surface of CSCs, and
several potential antigens have been identified, such as
CD44, CD90, CD133, aldehyde dehydrogenases (ALDH),
and epithelial cell adhesion molecule (EpCAM) (Hong et al.,
2015). Thus far, several attempts using CART cells against
CSCs have been tested in several types of solid tumors in
animal models, including anti-CD133 CART cells in treating
glioblastoma, and anti-EpCAM CART cells for prostate can-
cer and peritoneal carcinomatosis from gastrointestinal and
gynecologic malignancies (Zhu et al., 2015; Deng et al.,
2015; Ang et al., 2017). In addition, a case report was pub-
lished on advanced cholangiocarcinoma treated with anti-
EGFR CART cells combined with anti-CD133 CART cells
(Feng et al., 2017). However, the research has just started,
and there is more work that needs to be implemented. To
improve the clinical response for cancers, the development
of CART cells for CSCs is imperative.

Therefore, in this review, we will briefly describe the
characteristics of CSCs and critically discuss the possibility
that CARTcells targeting CSCs increase the clinical efficacy
for various cancers. This review summarizes the key view-
points to state the potential and feasibility of CSC-targeted
CART cells for cancer treatment.

POSSIBILITY OF CSCS AS A THERAPEUTIC
TARGET FOR CART CELLS

Concise review of the identification and characteristics
of CSCs

In bulk tumors, there is a small population of tumor cells that
have the ability to self-renew and differentiate; thus, inducing
the current conventional anti-cancer therapies cannot fully
eliminate tumor cells (Lapidot et al., 1994). These self-re-
newing cells are called CSCs, and they play an important
role in tumorigenesis, metastasis, and relapse. CSCs were
first found in a leukemic cell transplanted mouse model in
the 1960s (Bruce and Van Der Gaag, 1963). At that time, a
detailed description of CSCs in AML was reported, in which
a population of CD34+CD38− had the ability to self-renew
and differentiate (Bonnet and Dick, 1997). Subsequently,
CSCs were identified in various types of solid tumors,
including liver, gastric, brain, breast, prostate, and some
other tumors (Bonnet and Dick, 1997; Ma et al., 2007;
Fukuda et al., 2009; Hemmati et al., 2003; Al-Hajj et al.,
2003; Collins et al., 2005; Gupta et al., 2009). On the basis of
the specific features, CSCs are correlated to cancer evolu-
tion, and the CSC model has been suggested to be one of
the tumor progression models (Dragu et al., 2015).

Current strategies of targeting CSCs in cancer
treatment

In the past several decades, cancer has become the major
cause of death worldwide compared with other diseases

(Stewart et al., 2014). Conventional therapies including
surgery, chemo- and radio-therapy have indicated promise
and efficacy for treating cancers, but ultimately resulted in
treatment resistance and cancer relapse due to CSC-
specific features. Thus, a strategy to effectively eradicate
CSCs is needed to improve the clinical outcome for various
cancers. Because CSCs express specific cell surface
markers, the idea that specifically killing CSCs with their
antibodies or other products can induce unexpected effects.
Recent attempts to target CSCs have indicated that the
approach can effectively improve the clinical response for
cancers. For example, a study reported that the antibody
CD44, one of the most established and common surface
markers of CSCs, can suppress tumor progression and
cause apoptosis of leukemic cells (Liu and Jiang, 2006;
Song et al., 2004). Another study reported that in vitro
proliferation and in vivo tumor growth of CD133-positive
cancer cells could be inhibited by the CD133 antibody
conjugated with drugs (Smith et al., 2008). A further study
of CD133 in colorectal cancer (CRC) treated with asym-
metric bispecific antibody (BiAb) consisting of CD133 and
CD3 antibodies indicated strong anti-tumor efficacy (Zhao
et al., 2015). In addition, interestingly, a number of reports
suggested that a CSC-specific antibody-incorporated lipo-
somal nanoparticle delivery system loaded with drugs or a
suicide gene could significantly improve anti-tumor ability in
solid tumors (Wang et al., 2012; Jain and Jain, 2008; Jain
et al., 2010). Among these available studies, the approach
of targeting CSCs is promising and effective for treating
cancers.

The possibility for tumor treatment using CSC-targeted
CART cells

The risk of relapse and treatment resistance is the major
problem of all recent cancer treatments. Taken together,
searching for efficient approaches to improve the clinical
response without severe toxicity is the ultimate purpose of
tumor therapy. More recently, CART cells have shown great
promise for treating various cancers, and they have become
one of the indispensable strategies for tumor therapy. CART
cells were first reported in the 1980s by the Eshhar group,
and they can directly target tumor cells in an MHC-inde-
pendent manner through expressing a CAR molecule, which
consists of an extracellular antigen recognition domain
(single-chain fragment of the variable region antibody), a
transmembrane domain, and a cytoplasmic signaling
domain (Gross et al., 1989; Kershaw et al., 2013; Sadelain
et al., 2013). Over almost two decades, numerous studies
have indicated success using CART cells in the treatment of
hematologic malignancies. For example, CD19-redirected
CART cells were used in patients with B-lineage cancer,
including multiple myeloma, chronic lymphoid leukemia,
acute lymphoid leukemia, and diffuse large B-cell lymphoma
(DLBCL) (Dai et al., 2015; Garfall et al., 2015; Porter et al.,
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2011; Grupp et al., 2013; Kochenderfer et al., 2015). Further,
anti-CD20 CART cells were used for non-Hodgkin lym-
phomas (NHL) and DLBCL (Wang et al., 2014; Till et al.,
2012). In addition, the strategy of using CARTcells has been
indicated to be safe and feasible in treating solid tumors
(Ahmed et al., 2015; Lamers et al., 2013; Feng et al., 2016).
Even so, CART cell products need to optimize the
improvement of clinical outcomes in the development of
biotechnology. For example, to the best of our knowledge,
the design of CART cells, including the selection of T-cell-
activated signaling molecules and types of T cells, can
induce different clinical results (Jensen and Riddell, 2015).

It is well known that CART cells can be successfully used
for cancer treatment; however, the disadvantages must be
studied clinically. Several advantages of CART cells,
according to their features, include: (1) specific lysis; (2)
duration in vivo; and (3) recognition of tumor cells in a MHC-
independent manner. Nevertheless, the disadvantages may
be also triggered by CARTcell features. The disadvantages,
including on-targeted/off-tumor toxicity, cytokine release
syndrome (CRS), and soluble tumor syndrome, have a
tremendous risk to patient health. Therefore, preclinical tests
must be conducted before treating cancer patients with
CART cells.

After careful consideration, the hypothesis regarding the
treatment for CSCs using CART cells is feasible for cancer
therapy based on the characteristics of CART cells and
CSCs. Currently, the research on CART cells targeting
CSCs is limited. To date, three studies using CSC-targeted
CART cells have been reported in animal models (Zhu
et al., 2015; Deng et al., 2015; Ang et al., 2017). A study
has indicated that patient-derived glioblastoma stem cells
can be killed by anti-CD133 CART cells both in vitro and in
an orthotopic tumor model in vivo (Zhu et al., 2015). How-
ever, in this research, CART cells could be functionally
impaired by CSCs, because CD57 was rapidly up-regulated
on CART cells when they had direct contact with CD57-
positive target cells. CD57 has been described as a marker
associated with terminal or near-terminal T-cell differentia-
tion (Strioga et al., 2011; Focosi et al., 2010; Wu et al.,
2012). Another study of prostate cancer treatment by CART
cells, specific for EpCAM, indicated some evidence of anti-
tumor efficacy in vitro and in animal models (Deng et al.,
2015). A further study using anti-EpCAM CART cells for
local treatment of peritoneal carcinomatosis in xenograft
mice demonstrated the possibility of this approach for the
clinical treatment of gastrointestinal and gynecologic
malignancies (Ang et al., 2017). Further, a case report on a
patient with advanced cholangiocarcinoma treated with
anti-EGFR CART cells combined with anti-CD133 CART
cells indicated the safety and feasibility of clinical cancer
treatment with CSC-targeted CART cells (Feng et al.,
2017). The data from these tests suggest that the adoptive
transfer of CSC-specific CART cells is a potential and
promising treatment for cancers.

The preclinical evaluation of CSC-targeted CART cell
therapy

Before using CSC-targeted CART cells for clinical cancer
treatment, the effectiveness of these cells needs to be
evaluated. The surface expression of CAR molecules and,
specifically, cytolytic activities in vitro must be studied. To
better evaluate CSC-targeted CART cells, xenograft models
are important to test their anti-tumor activity in vivo. Recent
reports suggest that cell line-derived xenograft (CDX) and
patient-derived xenograft (PDX) models represent preclinical
efficacy models in oncology, whereas studies conducted with
PDX are more predictive of clinical outcome than those with
CDX (Rosfjord et al., 2014; Julien et al., 2012). In addition,
studies in which patient’s fresh tumor tissues are trans-
planted into immunodeficient mice offers possibilities for
preclinical evaluation of new cancer therapies (Julien et al.,
2012). In this proof-of-concept testing using CSC-targeted
CART cells to treat cancer, PDX may be a feasible animal
model to test the effectiveness of CART cells specifically
eradicating CSCs, providing predictive data to establish the
anti-tumor activity of CSC-targeted CART cells in clinical
cancer treatment.

POTENTIAL TARGET ANTIGENS OF CSCS
FOR CART CELLS

CART cells can specifically recognize tumor cells and inhibit
their growth and proliferation, suggesting that cell surface
markers expressed on CSCs probably provide potential
targets for CART cell-based immunotherapy. Numerous
studies have indicated that various surface markers (Table 1)
such as CD133, CD90, ALDH, and EpCAM, are used to
identify and isolate CSCs in cancer types, and that their
expression levels are different from those of other bulk tumor
cells (Zhu et al., 2015; Deng et al., 2015; Pan et al., 2015).
Therefore, these markers could be important target antigens
for CARTcells in cancer treatment, making these genetically
modified cells specifically eliminate CSCs and inhibit tumor
relapse and metastasis.

CD133

CD133, a five-transmembrane glycoprotein that was first
found as a surface marker that localized at membrane pro-
trusions of CD34+ hematopoietic stem cells, has been widely
used to isolate CSCs from various tumors (Shmelkov et al.,
2005; Yin et al., 1997; Bidlingmaier et al., 2008). It has now
been confirmed to be highly expressed in many cancer
types, including brain, lung, liver, gastric, colorectal, and
ovarian (Yi et al., 2008; Alamgeer et al., 2013; Yamashita
and Wang, 2013; Hibi et al., 2010; Zhang et al., 2014; Baba
et al., 2009). Unfortunately, it is not yet clearly known whe-
ther the cellular stemness in other cancer types is main-
tained by the downstream intracellular signaling of CD133
(Su et al., 2015). Clinical studies suggested that CD133
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subpopulation in cancers has a positive correlation with
treatment resistance and poor prognosis (Dragu et al., 2015;
Zhang et al., 2010). Therefore, CD133 could be a potential
target for CSC treatment. Recently, numerous studies have
indicated that the strategies for CSC treatment by targeting
CD133, such as polymeric nanoparticles loaded with pacli-
taxel and anti-CD133 antibodies, have been formed to
effectively kill CSCs (Swaminathan et al., 2013; Skubitz
et al., 2013). On the basis of these anti-CD133 CSC thera-
pies, CART cells targeting surface marker CD133 can
probably effectively eliminate CSCs. However, thus far, there
is only one study that has used CD133-specific CART cells
to treat patient-derived glioblastoma stem cells (Zhu et al.,
2015).

CD90

CD90, another most important surface marker of CSCs, has
been found in brain, breast, lung, liver, pancreatic, and
esophageal cancer types (Woo et al., 2015; Wang et al.,
2015; Khan and Mukhtar, 2015; Sukowati et al., 2013; Zhu
et al., 2014; Tang et al., 2013). It is a glycophosphatidyli-
nositol-anchored glycoprotein that plays a key role in cell-to-
cell and cell-to-matrix interactions (Rege and Hagood, 2006).
Similar to CD133, CD90 also plays a role in self-renewal,
growth, and differentiation of CSCs, and is an important
regulatory factor of oncogenesis in many malignant diseases
(Sukowati et al., 2013). Concerning the surface marker of
CSCs, CD90 is correlated with tumor aggression and poor
prognosis (Sukowati et al., 2013; Lingala et al., 2010; Lu
et al., 2011). A recent study indicates that anti-CD90 therapy,
using its antibody-mediated, water-soluble CdSe core
nanocrystals loaded with photosensitizers, specifically killed
CD90-positive leukemia CSCs (Bakalova et al., 2004).
Therefore, it is reasonable that targeting CD90-CSCs by
CART cells is a therapeutic treatment for many cancers.

ALDH

On the basis of accumulating evidence, ALDH, defined as a
superfamily of enzymes that participate in the metabolism of

aldehyde derivatives, has been used as a specific biomarker
to identify CSCs in a large number of cancers (Ginestier
et al., 2007; Feldmann et al., 2007; Marchitti et al., 2008).
The high activation of ALDH was correlated with enhanced
tumorigenicity and chemoresistance (Ginestier et al., 2007).
ALDH was used as an indicator of poor outcome in patients
with breast cancer (Ginestier et al., 2007). A recent study
reported that the elimination of CSCs with ALDH-specific
CD8+ T cells could decrease the spontaneous burden of
pancreatic and breast cancers in vivo (Visus et al., 2011).
Thus far, ALDH has been suggested as a valid target for
cancer treatment using immunotherapy, particularly CART
cell-based therapy.

EpCAM

It is well known that EpCAM is more widely expressed on
CSCs, and it is also regarded as a tumor-associated antigen
(TAA) (Munz et al., 2009). Its expression in the apical surface
of tumor cells was remarkable, but minimal in the basolateral
surface of normal epithelial cells (Ogura et al., 1998; Salomon
et al., 2014). Recent studies have established that EpCAM is
overexpressed on CSCs from several cancer types, including
breast, colon, pancreas, and prostate tumors (Bakalova et al.,
2004; Gires et al., 2009; Li et al., 2007; O’Brien et al., 2007;
Ricci-Vitiani et al., 2007). EpCAM plays an important role in
self-renewal, proliferation, and differentiation of CSCs; more-
over, its high-level expression can increase tumorigenesis in
breast, colon, and head and neck squamous cell carcinoma
(Van der Gun et al., 2010; Visvader and Lindeman, 2008) as
well as migration and invasion of cancers, such as breast
cancer and retinoblastoma (Mitra et al., 2010; Osta et al.,
2004). Accordingly, EpCAM has been considered to be a
potential therapeutic target to treat cancer. Several approaches
such as anti-EpCAM antibodies and synthetic oligonucleotide
were generated to target cancer (Schmidt et al., 2010; Shigdar
et al., 2011; Song et al., 2013). Interestingly, CART cells were
developed to target CSC-antigen EpCAM to eliminate prostate
cancer (Deng et al., 2015), demonstrating that EpCAM-specific
CART cells had tremendous therapeutic potential for cancer
treatment.

Table 1. Cell surface markers express on CSCs

Marker Cancer types

CD133 Brain, lung, liver, gastric, colorectal, and ovarian

CD90 Brain, breast, lung, liver, pancreatic, and esophageal

CD47 AML, NHL, ALL, MM, brain, breast, colon, ovarian, and bladder

CD44 Head and neck, breast, lung, liver, pancreatic, gastric, colorectal, bladder, cervical, ovarian, and prostate

CD24 Head and neck, breast, lung, liver, pancreatic, and colorectal

ALDH AML, MM, brain, breast, lung, liver, pancreatic, gastric, colorectal, and ovarian

EpCAM Breast, liver, pancreatic, colon, and prostate

AML, acute myeloblastic leukemia; ALDH, aldehyde dehydrogenase; ALL, acute lymphoblastic leukemia; EpCAM, epithelial cell adhesion

molecule; MM, multiple myeloma; NHL, non-Hodgkin lymphoma.
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Additional CSC identified targets

In addition to CD133, CD90, ALDH, and EpCAM, there are
several additional CSC identified target antigens. To the best
of our knowledge, various CD cell surface markers have
been used to identify and isolate CSCs in human cancer
cells. For example, CD47 is a transmembrane protein that
serves as a cell surface receptor for signal regulatory pro-
tein-alpha and secreted matricellular protein throm-
bospondin-1 (Naujokat, 2012). It was detected in nearly all
malignancies, including NHL, acute lymphocytic leukemia
(ALL), AML, glioblastoma, ovarian cancer, and colon cancer,
and was found to control cell survival and growth (Majeti
et al., 2009; Willingham et al., 2012; Chao et al., 2011a, b;
Kim et al., 2012). Moreover, high expression levels of CD47
were used to predict a poor clinical outcome in some solid
tumors (Willingham et al., 2012). Preclinical studies have
demonstrated that the strategy of using monoclonal antibody
(mAb) specific for CD47 could inhibit growth and metastasis
of tumor cells for cancer treatment (Willingham et al., 2012).
B6H12 and B6H12.2, two anti-CD47 mAbs, could effectively
prevent the growth of glioblastoma, ovarian cancer, breast
cancer, leiomysarcoma, and AML in xenograft mice models
(Majeti et al., 2009; Willingham et al., 2012; Edris et al.,
2012). Therefore, CD47 is a potential therapeutic target for
tumor therapy. In addition, CD44 and CD24 have recently
been identified as CSCs from almost all tumors (Hong et al.,
2015; Chen et al., 2015). The expression of CD44 and CD24
is closely correlated with tumorigenesis, tumor progression,
metastasis, and chemotherapy resistance (Chen et al.,
2015). Recent studies indicated CD44 and CD24 are ther-
apeutic targets for the treatment of various tumors (Hong
et al., 2015; Ma et al., 2015; Zhang et al., 2014). In conclu-
sion, one of these CD cell surface markers, CD47, CD44, or
CD24, can be an attractive new target for the elimination of
CSCs by CART cells in multiple cancer types.

The principles of CSC antigen selection for CART cell
therapy

Many cell surface antigens presenting on CSCs have been
reported, and they vary according to tumor type (Table 1).
Although a better understanding of CSC surface markers
was contributed recently, more work is needed to complete
the picture. The cell surface markers of CSCs are often
observed differently from other cell surface markers, and
normal cells also express these CSC surface markers
(Dragu et al., 2015). Therefore, antigen selection is extre-
mely important for CSC-targeted CART cell therapy. The
principles of CSC antigen selection should follow these
guidelines: (1) selection of a high level of antigen expression,
aiming to clear CSCs to prevent tumor relapse; (2) selection
of highly specific CSC antigen to avoid damaging normal
cells that express the same antigens; and (3) selection of the
same antigens that expressed on different tumor types,
because this will benefit the development of universal CSC-

targeted CART cells. Moreover, new CSC surface antigens
may be detected in the future. Large sample analyses need
to implemented in various tumor types to capture the new
surface antigens that have CSCs features.

POTENTIAL TOXICITY OF CSC-TARGETED CART
CELLS

The safety in clinical trials is vitally important for research
participants and for those with malignancies receiving CSC-
targeted CART cell treatment. The major difficulty and chal-
lenge for CART cells targeting CSCs is the development of
on-target/off-tumor toxicity that is caused by CART cells
killing normal cells, because CSC surface markers are also
found on normal cells. This toxicity had been reported in
previous studies. For example, durable B-cell aplasia was
caused after the administration of anti-CD19 CART cells
because of their robust expansion (Maude et al., 2014). In
another trial, a patient with metastatic colon cancer who
received lymphodepletion chemotherapy, followed by treat-
ment with ERBB2-specific CART cells combined with IL-2,
developed acute respiratory distress syndrome and died 5
days after the treatment (Morgan et al., 2010). The study
indicated that a large number of CART cells trafficked to the
lung and targeted the lung epithelial cells, which expressed a
low level of ERBB2. This led to the release of pro-inflam-
matory cytokines, which resulted in pulmonary toxicity and
the death of the patient. For the potential antigens that are
used for CART cells targeting CSCs, few are specific, such
as CD133 expressed in normal brain tissues, hematopoietic
stem cells, and endothelial progenitor cells, and ALDH
expressed in hematopoietic stem/progenitor cells (Corbeil
et al., 2010; Kastan et al., 1990). Therefore, there are sig-
nificant safety challenges associated with the use of CSC-
specific CART cells that are a concern and need to be
resolved. It is concluded that strategies to control target-
mediated toxicity need to be explored to enhance tumor
specificity of CSC-targeted CART cells.

There have been numerous studies recently that have
aimed to develop strategies for reducing on-target/off-tumor
toxicity by controlling activity and proliferation of CART cells.
One approach to control the toxicity is to encode suicide
genes in CART cells to selectively eliminate them in vivo
after their adverse events begin and become uncontrollable
(Khaleghi et al., 2012; Budde et al., 2013). Another approach
is to design bispecific CARs to enhance the tumor specificity
of CART cells. Examples include the tandem CAR (Tan-
CAR), one of the bispecific CARs which targets two TAAs
simultaneously using a CAR molecule with two antigen
recognition moieties joined in tandem (Grada et al., 2013).
This approach can protect normal tissue and avoid the risk of
immune escape by increasing tumor specificity of these cells
(Yee et al., 2002). Moreover, several studies have indicated
that a small molecule used as a “switch” can enable and
indirectly improve control activity of CART cells (Kim et al.,
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2015; Wu et al., 2015). This novel concept may ultimately
lead to the enhancement and safety of CARTcells for cancer
treatment. These strategies are also important for engi-
neering CSC-targeted CART cells to enhance the safety in
cancer treatment.

Adverse events other than on-target/off-tumor toxicity
have been reported in several clinical studies of CART cells
in treating tumors, for example, CRS (Kim et al., 2015).
These toxicities, too, may be experienced in cancer treat-
ment with CSC-targeted CART cells. It is known that the
administration of tocilizumab (an anti-IL-6 antibody), targeted
immunosuppressive agents, or steroid therapy enables
improved control of CRS (Lee et al., 2014). Thus far, with the
control of on-target/off-tumor toxicity and CRS, the safety of
CSC-targeted CART cells will be much improved in cancer
treatment.

APPLICATION OF CSC-TARGETED CART CELLS
IN TRANSLATIONAL MEDICINE FOR CANCER
TREATMENT

CART cells, a recent hotspot of cancer therapy, have shown
durable clinical responses in hematologic diseases, offering
a novel vision for specific anti-CSC strategy in tumor treat-
ment after careful consideration of pre-studies. Neverthe-
less, few clinical trials on CSC-targeted CART cells were
reported in the last few decades. Therefore, more attention
and work are needed to translate CSC-directed CART cells
into clinical applications for tumor therapy.

The ultimate goal of cancer treatment is to be curative;
moreover, theoretically, the strategy using CSC-targeted
CART cells could be curative for tumors. However, this is
faced with several barriers, such as tumor microenvironment
that can inhibit immunotherapy. Tumor cells cannot be
completely and potently eliminated using CSC-targeted
CART cells alone. CART cells that are specific to CSCs
combined with other therapies will be effective to enhance
their anti-tumor efficacy (Fig. 1).

Several issues will be implemented for applying CSC-
targeted CARTcells to translational medicine in future tumor
treatment, including the following aims: (1) to complete
preclinical studies on CARTcells treating tumors by targeting
CSCs, for example optimal selection of CSC target antigen
expressed on tumor cells, cytotoxicity of CART cells in vitro
and in animal models, and monitoring and control of toxici-
ties; (2) to perform the detailed protocol and to have it
approved by a relevant ethics supervision department, and
to register the clinical trials on the website www.clinicaltrials.
gov; (3) to enroll appropriate patients to administer this
specific anti-CSC strategy, and to monitor the outcomes and
adverse events; (4) to optimize clinical protocol dependent
on clinical response; and (5) to analyze the mechanism of
CSC-targeted CART cells in tumor treatment from the basic
study.

The field of cancer therapy by CART cells has rapidly
developed, and more attention has been paid to it in recent
years. Safety and efficacy of CART cells are critical for
clinicians and patients, and current consistent and intensive
practice from the bench to the bedside and back to bench
could hardly improve the clinical outcome. For CART cells
specific for CSCs, data from the first clinical trial of cancer
therapy using this strategy are very important for future
research, possibly achieving an unexpected outcome in
accordance with the current protocol of CART cells for
malignancies. However, few clinical trials concerning CART
cells targeting CSCs registered on the website www.
clinicaltrials.gov indicate that this cancer therapy is still in
the exploration and development stage. More work, there-
fore, is needed to receive worldwide attention to strengthen
the research of CART cells for CSCs. Fortunately, the group
from Chinese PLA General Hospital had registered a clinical
trial on the treatment of multiple types of advanced malig-
nancies by using CSC marker CD133-directed CART cells
on this website in 2015. Further, the first clinical trial with
anti-CD133 CART cells from the group was reported, and
indicated that the infusion of anti-CD133 CART cells was
safe and feasible for cancer treatment (Feng et al., 2017).

CLINICAL RESPONSE EVALUATION CRITERIA
OF CSC-TARGETED CART CELLS IN CANCER
TREATMENT

It is well known that response evaluation criteria in solid
tumors (RECIST) and modified World Health Organization
(WHO) criteria could be the typical criteria to evaluate anti-
tumor responses of chemotherapeutic drugs. However,
unfortunately, it seems that these two types of response
evaluation criteria are not suitable for immunotherapies, due
to the latter cytotoxicity on cancer cells with distinct char-
acteristics in the clinic (Hoos et al., 2015). With the recent
increase in immunotherapeutic strategies for cancer treat-
ment, a unique response is needed for evaluation criteria to
provide appropriate criteria for clinical outcome evaluation.

Immune-related response criteria (irRC), a novel criterion
for immunotherapy in cancer treatment, was reported by
Wolchok and colleagues in Clinical Cancer Research in
2009, and was designed to better evaluate the responses of
immunotherapies (Wolchok et al., 2009). One of the most
important differences between irRC and RECIST or WHO
criteria is that irRC captures the responses in changes of all
tumor lesions assessed from baseline, not only target
lesions (Hoos et al., 2015; Wolchok et al., 2009; Ades and
Yamaguchi, 2015). In addition, several unique characteris-
tics of immunotherapies, including (1) appearance of new
lesions, (2) delay in onset of clinical responses, (3) increase
of tumor volume before tumor shrinkage, and (4) prolonged
stable disease, can be detected by irRC (Wolchok et al.,
2009; Hoos et al., 2010). Herein, irRC can help us to explain
why 20% to 25% of patients with metastatic melanoma had
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durable survival after receiving ipilimumab, whereas RECIST
or WHO criteria could not capture survival outcomes of
patients as the new patterns of response rates (Wolchok
et al., 2009; Hodi et al., 2010).

CSC-directed CART cell-based immunotherapy, as an
anti-CSC strategy, could probably produce amazing clinical
responses in future cancer treatment; nevertheless, there
are no recent anti-CSC response evaluating guidelines to
accurately assess patient outcome for this specific
immunotherapy (Savona et al., 2015). The recent broad use
of irRC has comprehensively captured responses with
immunotherapies in clinical trials, and has shown that irRC
could probably be a powerful tool to evaluate clinical
responses, combined with either RESICT or WHO criteria
(Hoos et al., 2015). This indicates that their concepts can be
used to assess CSC-targeted CART cell responses in can-
cer treatment. Beyond this combined response evaluation
pattern, several issues must be addressed, including (1)
percentage of CSCs determined in biopsied target lesions by
the immunohistochemistry method; (2) transgene copy
numbers of CAR vectors in peripheral blood and biopsied
lesions, monitoring in vivo persistence of CART-CSC cells;
and (3) release of cytokines such as IL-6, IFN-gamma, and

TNF-alpha, which assessed from baselines, will be also
followed (Feng et al., 2016). Thus, these guidelines set the
stage for a more accurate evaluation of clinical response in
future cancer treatment with CSC-targeted CART cells.

Even so, the development of clinical response evaluation
criteria is imperative to accurately present the effect on the
patient after receiving CSC-targeted CART cells in cancer
treatment. We would like to further update these guidelines
according to the clinical response in future trials.

FINAL THOUGHTS ON CSC-TARGETED CART
CELLS IN CANCER TREATMENT

Because of the characteristics of self-renewal and multi-lin-
eage differentiation of CSCs, the efficacy of conventional
cancer treatments including chemotherapy and radiotherapy
is often low. The few attempts using CART cells to eliminate
CSCs (e.g., using CART cells specific for CD133 or EpCAM
for cancer therapy) (Zhu et al., 2015; Deng et al., 2015)
indicated that the strategy of CART cells specific for CSCs
can probably be regarded as a considerable treatment in
various cancer types. Further, the impressive data generated
from CART cells to treat liquid and solid tumors provide a
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Figure 1. The potential roles of CSC-targeted CART cells in future cancer treatment. CART cells could effectively eliminate

CSCs through targeting CSC-specific surface markers (CD133, ALDH, CD90, and EpCAM) to prevent tumor relapse and/or

metastasis; furthermore, combinatorial therapies such as chemotherapy, radiotherapy, and immune checkpoint inhibitors could

probably eradicate tumor cells to achieve a curable stage. ALDH, aldehyde dehydrogenases; CART, chimeric antigen receptor-

modified T cells; CSCs, cancer stem cells; EpCAM, epithelial cell adhesion molecule; TAAs, tumor-associated antigens.
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novel concept for the use of CSC-targeted CART cells in
cancer treatment. However, there is not enough available
information to make a conclusion about the clinical response
of CART-CSC cells in cancer treatment, although a number
of in vitro and animal model studies suggest a therapeutic
benefit. Unfortunately, these explorations of CART-CSC cells
in cancer treatment are prohibited by ethics problems,
whereas successful cancer treatment is only measured on
patients in the clinic. Therefore, more detailed data about the
preclinical effect of CART-CSC cells on various types of
cancer will undoubtedly be in favor of the development of
this therapy in future clinical trials.

The majority of currently available information on CSCs,
in terms of their phenotypes, such as CD133, CD90, ALDH,
and EpCAM, could act as targets for genetically modified T
cells. To target these markers, CART cells could selectively
eliminate CSCs, preventing tumor relapse and/or metasta-
sis. However, currently, it remains unclear whether normal
stem/progenitor cells could be damaged by CSC-targeted
CARTcells. Strengthening the basic research can accelerate
CSC-targeted CART cells in cancer treatment and establish
the safety and feasibility in the clinic, ensuring their down-
stream research applications. We believe that combined
CSC-targeted CART cell therapy has great potential as a
strategy in future clinical cancer treatment studies.
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