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Abstract The paper is devoted to the d-dimensional extension of the classical identity
of Stein and Weiss concerning the action of the Hilbert transform on characteristic
functions. Let (R j )

d
j=1 be the collection of Riesz transforms in R

d . For 1 ≤ p < ∞,
we determine the least constants cp,d , C p,d such that

∫

Rd

f (x)|R j f (x)|pdx ≤ cp,d || f ||L1(Rd ),

∫

Rd

(1 − f (x))|R j f (x)|pdx ≤ C p,d || f ||L1(Rd )

for any Borel function f : R
d → [0, 1]. The proof rests on probabilistic methods and
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A. Osȩkowski (B)
Department of Mathematics, Informatics and Mechanics,
University of Warsaw, Banacha 2, 02-097 Warsaw, Poland
e-mail: ados@mimuw.edu.pl

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/207385957?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1270 A. Osȩkowski

1 Introduction

The Hilbert transform H on the line is the operator defined by the principal value
integral

H f (x) = 1

π

∫

R

f (x − y)

y
dy. (1.1)

Let E ⊂ R be a measurable set of finite Lebesgue measure. A classical result of
Stein and Weiss [19] asserts that the distribution function of HχE depends only on
the measure of E and is non-sensitive to the inner structure of E . Precisely, for any
t > 0 we have the identity

∣∣{x ∈ R : |HχE (x)| > t}∣∣ = 2|E |
sinh(π t)

. (1.2)

This fact can be proved using various tools; for different approaches, consult Stein and
Weiss [19,20], Calderón [5] and the two recent papers: [6] by Colzani et al. and [14]
by Laeng. In fact, in the latter paper a stronger statement, concerning the behavior of
HχE restricted to E and R\ E , was established. Namely, it was shown that for any
t > 0,

∣∣{x ∈ E : |HχE (x)| > t}∣∣ = 2|E |
eπ t + 1

(1.3)

and

∣∣{x ∈ R\E : |HχE (x)| > t}∣∣ = 2|E |
eπ t − 1

. (1.4)

To accomplish this, Laeng proved that

∫

E

|HχE (x)|pdx = 2

∞∫

0

pt p−1

eπ t + 1
dt · |E |, 1 ≤ p < ∞, (1.5)

and

∫

R\E

|HχE (x)|pdx = 2

∞∫

0

pt p−1

eπ t − 1
dt · |E |, 1 < p < ∞, (1.6)

and combined it with the fact that any two functions f, g, which have the same p-th
norms for p lying in some interval (p1, p2), are equidistributed (cf. [6]).

The principal goal of this paper is to provide another proof of the identities (1.5)
and (1.6), with the use of probabilistic methods: the identities will be deduced from
their novel counterparts in martingale theory. In fact, it will allow us to study the more
general question concerning the action of the Hilbert transform on the class of bounded



Riesz Transforms 1271

functions. Our approach easily leads to appropriate higher-dimensional results, to
formulate which we require some additional background. Suppose that d ≥ 1 is a
given integer. The counterpart of the Hilbert transform in R

d is the collection of Riesz
transforms (R j )

d
j=1 (see e.g. Stein [18]). This family of singular integral operators is

given by

R j f (x) = �
( d+1

2

)
π(d+1)/2

∫

Rd

x j − y j

|x − y|d+1 f (y) dy, j = 1, 2, . . . , d.

Here the integrals, as in (1.1), are supposed to exist in the sense of Cauchy principal
values. When d = 1, the collection consists of only one element, the Hilbert transform
on the line. There is an alternative definition of (R j )

d
j=1, as the family of Fourier

multipliers with the symbols (−iξ j/|ξ |)d
j=1, ξ ∈ R

d\{0}. That is, we have the following
relation between the Fourier transforms of f and R j f :

R̂ j f (ξ) = − ξ j

|ξ | f̂ (ξ), for ξ ∈ R
d \{0}. (1.7)

We are ready to formulate the main result.

Theorem 1.1 Let d ≥ 1 be a given integer and suppose that f is a Borel function on
R

d taking values in the interval [0, 1]. Then for any j ∈ {1, 2, . . . , d} we have

∫

Rd

f (x)|R j f (x)|p dx ≤2

∞∫

0

pt p−1

eπ t + 1
dt · || f ||L1(Rd ), 1 ≤ p < ∞, (1.8)

and

∫

Rd

(1− f (x))|R j f (x)|p dx ≤2

∞∫

0

pt p−1

eπ t −1
dt · || f ||L1(Rd ), 1 < p < ∞. (1.9)

Both inequalities are sharp for each j and d. They are already sharp if f is assumed
to run over the class of characteristic functions of measurable sets.

Here by sharpness we mean that neither of the constants 2
∫ ∞

0
pt p−1

eπ t+1 dt, 2
∫ ∞

0
pt p−1

eπ t−1 dt
in (1.8) and (1.9) can be replaced by a smaller number. One easily shows (cf. [14])
that these constants can be expressed in terms of Gamma and Riemann zeta functions:
we have

2

∞∫

0

pt p−1

eπ t + 1
dt = 1

πp

(
2 − 1

2p−2

)
�(p + 1)ζ(p)

(when p = 1, we take the limit: 2 log 2/π ) and
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2

∞∫

0

pt p−1

eπ t − 1
dt = 2

π p
�(p + 1)ζ(p).

If we put f = χE for a given Borel subset E ⊂ R
d with |E | < ∞, we obtain the

following d-dimensional analogues of (1.5) and (1.6): for 1 ≤ j ≤ d,

∫

E

|R jχE |pdx ≤ 2

∞∫

0

pt p−1

eπ t + 1
dt · |E |,

∫

Rd\E

|R jχE |pdx ≤ 2

∞∫

0

pt p−1

eπ t − 1
dt · |E |.

Adding these estimates, we get the inequality

∫

Rd

|R jχE |p dx ≤ 2

∞∫

0

pt p−1

sinh(π t)
dt · |E |, 1 < p < ∞. (1.10)

We will show that this estimate is also sharp, for any values of d and j .
Let us mention here two interesting related questions. First, can the Riesz transform

R j be replaced in (1.8), (1.9) and (1.10) by its vector version R = (R1, R2, . . . , Rd)

with no change in the constant? (We interpret |R f (x)| as
(∑d

j=1 |R j f (x)|2)1/2.)
Unfortunately, we have been unable to shed any light on this problem with the meth-
ods developed here. The second question, which we also did not manage to answer,
concerns the d-dimensional version of (1.3) and (1.4). This is closely related to a long-
standing open problem of Stein concerning the weak-type (1, 1) inequality for Riesz
transforms: it is not known whether this estimate holds with a constant independent
of the dimension.

The above results can be applied to the study of the so-called re-expansion operator.
Let Fc and Fs be the cosine and sine Fourier transforms on R+, respectively. That is,
for x > 0 and any Borel function f on R+,

Fc f (x) =
√

2

π

∫

R+

f (t) cos t x dt, Fs f (x) =
√

2

π

∫

R+

f (t) sin t x dt.

Both Fc and Fs are unitary and self-adjoint operators on L2(R+). We define the re-
expansion operator � on R+ by the identity � = FsFc. This operator is interesting
from the analytical point of view, as the object of spectral analysis and also appears nat-
urally in the scattering theory. For more on the subject, consult Birman [3], Gokhberg
and Krupnik [8] and Il’in [12,13].

The question about various norms of � has gathered some interest in the literature.
Hollenbeck et al. [11] proved that the re-expansion operator has the same p-th norm
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as the Hilbert transform: ||�||L p(R+)→L p(R+) = ||H||L p(R)→L p(R) for 1 < p < ∞.
Then it was shown by the author in [15] that the weak p-th norms of � and H coincide
for 1 ≤ p ≤ 2: ||�||L p(R+)→L p,∞(R+) = ||H||L p(R)→L p,∞(R). We continue this line
of research and study the action of � on L+∞.

Theorem 1.2 Suppose that f : R+ → [0, 1] is a given function. Then for any p ∈
[1,∞) we have

∫

R+

f (x)|� f (x)|p dx ≤ 2

∞∫

0

pt p−1

eπ t + 1
dt · || f ||L1(R+) (1.11)

and

∫

R+

(1 − f (x))|� f (x)|p dx ≤ 2

∞∫

0

pt p−1

eπ t − 1
dt · || f ||L1(R+). (1.12)

Both inequalities are sharp.

This result can be proved with the use of a well-known connection between the
inequalities for re-expansion operator and the estimates for Riesz transforms and
martingales. We omit the details, referring the interested reader to [11,15,16].

A few words about the organization of the paper. Our first step is to establish
appropriate martingale inequalities, the probabilistic analogues of (1.8) and (1.9):
see the next section. Then, in Sect. 3, we exploit a certain version of the so-called
“background radiation process” of Gundy and Varopoulos [10], which enables us to
deduce (1.8) and (1.9). The final part of the paper is devoted to the second part of
Theorem 1.1, i.e., the optimality of the constants.

2 Martingale Inequalities

As mentioned in the Introduction, the results of this paper depend heavily on appro-
priate martingale inequalities. We start with introducing the necessary probabilistic
background and notation. Let (�,F , P) be a complete probability space, filtered by
(Ft )t≥0, a nondecreasing family of sub-σ -fields of F , with the property that F0 con-
tains all the events of probability 0. Assume that X, Y are two adapted real-valued
martingales with right-continuous paths that have limits from the left. We will denote
by [X, Y ] the quadratic covariance process of X and Y , see e.g. Dellacherie and Meyer
[7] for details. The martingales X, Y are said to be orthogonal if d[X, Y ] = 0 almost
surely (that is, the process [X, Y ] is constant with probability 1). Following Bañuelos
and Wang [1] and Wang [21], we say that Y is differentially subordinate to X , if the
process ([X, X ]t −[Y, Y ]t )t≥0 is nonnegative and nondecreasing as a function of t . As
an example, assume that B is a d-dimensional Brownian motion, H is a predictable
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process with values in R
d and A is a d×d matrix such that 〈Ax, x〉 = 0 and |Ax | ≤ |x |

for any x ∈ R
d . If we put

Xt =
t∫

0

HsdBs, Yt =
t∫

0

AHsdBs, t ≥ 0,

then Y is orthogonal and differentially subordinate to X . This follows immediately
from the identities

[X, Y ]t =
t∫

0

〈AHs, Hs〉 ds

and

[X, X ]t − [Y, Y ]t =
t∫

0

(|Hs |2 − |AHs |2
)

ds.

The differential subordination implies many interesting inequalities comparing
various sizes of X and Y . The literature on this subject is quite extensive and it is
not possible to review it here; we refer the reader to the survey [4] by Burkholder,
the paper of Wang [21] and the monograph [17] by the author. Here we only men-
tion one result, of Bañuelos and Wang [21], to be needed later. We use the notation
||X ||p = supt≥0 ||Xt ||p for 1 ≤ p ≤ ∞.

Theorem 2.1 Suppose that X, Y are orthogonal martingales such that Y is differen-
tially subordinate to X. Then for any 1 < p < ∞,

||Y ||p ≤ cot

(
π

2p∗

)
||X ||p,

where p∗ = max{p, p/(p − 1)}. The constant is the best possible.

The main result of this section is the following.

Theorem 2.2 Suppose that X, Y are orthogonal martingales such that X takes values
in [0, 1], Y is differentially subordinate to X and Y0 ≡ 0. Then for any 1 ≤ p < ∞,

EX∞|Y∞|p ≤ 1

π

∞∫

0

∣∣ 1
π

log s
∣∣p

sin(π ||X ||1)
s2 + 1 + 2s cos(π ||X ||1) ds (2.1)

and, for 1 < p < ∞,

E(1 − X∞)|Y∞|p ≤ 1

π

0∫

−∞

∣∣ 1
π

log(−s)
∣∣p

sin(π ||X ||1)
s2 + 1 + 2s cos(π ||X ||1) ds. (2.2)
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Both inequalities are sharp: for each of them there is a nontrivial pair (X, Y ) for
which both sides are equal.

Here X∞, Y∞ stand for the pointwise limits of X and Y as t → ∞; the existence
of these limits follows at once from the boundedness of X and Y in L2 (which is
guaranteed by the condition X ∈ [0, 1] and Theorem 2.1 above).

The proof of Theorem 2.2 will be based on the existence of certain special harmonic
functions. Let H = R × (0,∞) denote the upper half-space and let S = [0, 1] × R

stand for the vertical strip in R
2. Introduce the auxiliary functions U1, U2 : H → R

by the Poisson integrals

U1(α, β) = 1

π

∞∫

0

β
∣∣ 1
π

log t
∣∣p

(α − t)2 + β2 dt, 1 ≤ p < ∞,

and

U2(α, β) = 1

π

0∫

−∞

β
∣∣ 1
π

log(−t)
∣∣p

(α − t)2 + β2 dt, 1 < p < ∞.

Obviously, U1 and U2 are harmonic on H and satisfy

lim
(α,β)→(z,0)

U1(α, β) =
{

0 for z < 0,( 1
π

)p | log |z||p for z > 0
(2.3)

and

lim
(α,β)→(z,0)

U2(α, β) =
{( 1

π

)p | log |z||p for z < 0,

0 for z > 0.
(2.4)

Consider a conformal mapping ϕ(z) = −e−iπ z or, in real coordinates,

ϕ(x, y) = (−eπy cos(πx), eπy sin(πx)
)
.

This function maps (0, 1) × R onto H . Define U1, U2 in the interior of the strip S by
the formula

Ui (x, y) = Ui (ϕ(x, y)), i = 1, 2. (2.5)

As the compositions of harmonic functions with conformal mappings, U1, U2 are
harmonic on (0, 1) × R and, by (2.3) and (2.4), they can be extended to continuous
functions on the whole S using the equalities U1(0, y) = U2(1, y) = 0, U1(1, y) =
U2(0, y) = |y|p. Substituting t = seπy in the integrals defining U1 and U2, we easily
check that
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U1(x, y) = 1

π

∞∫

0

∣∣ 1
π

log s + y
∣∣p

sin(πx)

(s + cos(πx))2 + sin2(πx)
ds (2.6)

and

U2(x, y) = 1

π

0∫

−∞

∣∣ 1
π

log(−s) + y
∣∣p

sin(πx)

(s + cos(πx))2 + sin2(πx)
ds (2.7)

for 0 < x < 1 and y ∈ R. Further properties of U1, U2 are investigated in the lemma
below.

Lemma 2.3 (i) The constants on right-hand sides of (2.1) and (2.2) are equal to
U1(||X ||1, 0) and U2(||X ||1, 0), respectively.

(ii) Both U1xx and U2xx are nonpositive in the interior of S.
(iii) We have the majorizations

U1(x, y) ≥ x |y|p and U2(x, y) ≥ (1 − x)|y|p (2.8)

for any (x, y) ∈ S.
(iv) We have

U1y(x, 0) = U2y(x, 0) = 0 for x ∈ (0, 1). (2.9)

Proof (i) This is a consequence of the formulas (2.6) and (2.7).
(ii) By the harmonicity of U1 and U2 inside the strip S, it suffices to show that U1yy

and U2yy are nonnegative. But this is clear, in view of (2.6) and (2.7): for any
s ∈ R, the function y �→ ∣∣ 1

π
log |s| + y

∣∣p
is convex.

(iii) By (ii), all we need is to show the majorization for x ∈ {0, 1}. However, when
x = 0 or x = 1, then both estimates in (2.8) become equalities.

(iv) It suffices to substitute s := 1/s in (2.6) and (2.7) to get that U1(x, y) =
U1(x,−y) and U2(x, y) = U2(x,−y) on S. This clearly yields the claim.


�
Later on, we will require the following technical fact, which appears, in a slightly

different form, as Corollary 1 in Bañuelos and Wang [2].

Lemma 2.4 Suppose that X, Y are real-valued orthogonal martingales such that Y
is differentially subordinate to X. Then Y has continuous paths and is orthogonal and
differentially subordinate to Xc, the continuous part of X.

We are ready to study the martingale inequalities (2.1) and (2.2).

Proof of Theorem 2.2 We will focus on the inequality (2.1), the second estimate (and
its sharpness) can be shown in a similar manner. Fix t ∈ (0,∞) and introduce the
process (Zs)s≥0 = ((Xs, Ys))s≥0. Since U1 is of class C∞ in the interior of S, we
may apply Itô’s formula to obtain
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U1(Zt ) = U1(Z0) + I1 + 1

2
I2 + 1

2
I3 + I4,

where

I1 =
t∫

0+
U1x (Zs−) dXs +

t∫

0+
U1y(Zs−) dYs,

I2 = 2

t∫

0+
U1xy(Zs−) d[Xc, Y ]s,

I3 =
t∫

0+
U1xx (Zs−) d[X, X ]c

s +
t∫

0+
U1yy(Zs−) d[Y, Y ]s,

I4 =
∑

0<s≤t

{
U1(Zs) − U1(Zs−) − U1x (Zs−)
Xs

}
.

Here 
Xs denotes the jump of X at time s. Note that we have used above the equalities
Ys− = Ys and Y = Y c, which are due to the continuity of paths of Y . Let us analyze
the above terms separately. We start from observing that U1(Z0) = U1(X0, 0) =
U1(||X ||1, 0). The term I1 has zero expectation, since both stochastic integrals are
martingales. Next, we have I2 = 0, because of the orthogonality of Xc and Y . The
differential subordination together with Lemma 2.3 (ii) give

I3 ≤
t∫

0

U1xx (Zs−) d[X, X ]c
s +

t∫

0

U1yy(Zs−) d[X, X ]c
s = 0.

Finally, each summand in I4 is nonpositive, by the concavity of U1(·, y) for any fixed
y ∈ R (again, apply Lemma 2.3 (ii)). Therefore, using the majorization of that lemma,
we obtain the estimate

EXt |Yt |p ≤ EU1(Xt , Yt ) ≤ U1(||X ||1, 0)

and (2.1) is established, in view of Fatou’s lemma. To see that this estimate is sharp, pick
any pair X, Y of continuous-path orthogonal martingales satisfying d[X, X ] = d[Y, Y ]
and such that X∞ = limt→∞ Xt ∈ {0, 1} with probability 1. Then for any t ≥ 0 we
have EU1(Xt , Yt ) = U1(||X ||1, 0), so letting t → ∞ gives

EX∞|Y∞|p = EU1(X∞, Y∞) = U1(||X ||1, 0),

in view of Lebesgue’s dominated convergence theorem. This proves the claim. 
�

3 Inequalities for Riesz Transforms in R
d

There is a well-known representation of Riesz transforms in terms of the so-called
background radiation process, introduced by Gundy and Varopoulos in [10]. Let us
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briefly describe this connection. Throughout this section, d is a fixed positive integer.
Suppose that X is a Brownian motion in R

d and let Y be an independent Brownian
motion in R (both processes start from the appropriate origins). For any y > 0,
introduce the stopping time τ(y) = inf{t ≥ 0 : Yt ∈ {−y}}. For sufficiently regular
f (say, f ∈ L p(Rd) for some 1 ≤ p < ∞), let U f : R

d × [0,∞) → R stand for the
Poisson extension of f to the upper half-space. That is,

U f (x, y) := E f
(
x + Xτ(y)

)
.

For any (d + 1) × (d + 1) matrix A we define the martingale transform A∗ f by

A∗ f (x, y) =
τ(y)∫

0+
A∇U f (x + Xs, y + Ys) · d(Xs, Ys).

Let us stress here that A ∗ f (x, y) is a random variable for each x, y. Now, for any
f ∈ C∞

0 (Rd), any y > 0 and any matrix A as above, define T y
A f : R

d → R using
the bilinear form

∫

Rd

T y
A f (x)g(x) dx =

∫

Rd

E
[
A∗ f (x, y)g(x + Xτ(y))

]
dx, (3.1)

where g runs over C∞
0 (Rd). Less formally, T y f is given as the following conditional

expectation with respect to the measure P̃ = P ⊗ dx (dx denotes Lebesgue’s measure
on R

d ): for any z ∈ R
d ,

T y
A f (z) = Ẽ

[
A∗ f (x, y)|x + Xτ(y) = z

]
.

See Gundy and Varopoulos [10] for the rigorous statement of this equality. The inter-
play between the operators T y

A and Riesz transforms is explained in the following
theorem, consult [10] or Gundy and Silverstein [9].

Theorem 3.1 Let A j = [a j
�m], j = 1, 2, . . . , d be the (d + 1) × (d + 1) matrices

given by

a j
�m =

⎧⎨
⎩

1 if � = d + 1, m = j,
−1 if � = j, m = d + 1,

0 otherwise.

Then T y
A j f → R j f almost everywhere as y → ∞.

We shall require the following auxiliary fact, see Lemma 3.2 in [16].

Lemma 3.2 Let f ∈ C∞
0 (Rd) and A = A j for some j . Then (3.1) holds for all

g ∈ Lq(Rd), 1 < q < ∞.
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We are ready to establish the inequalities of Theorem 1.1.

Proof of (1.8) and (1.9) Clearly, it suffices to establish the estimates for R1 and
f ∈ C∞

0 (Rd). We will only show (1.8), the argumentation leading to the second
bound is similar and left to the reader. Let A = A1, fix p ∈ [1,∞) and, for a given
smooth function f : R

d → [0, 1], denote g(x) = f (x)|T y
A f (x)|p−2T y

A f (x) (when
T y

A f (x) = 0, we set g(x) = 0). It is convenient to split the reasoning into two parts.
Step 1. First we will show that g belongs to Lr (Rd) for some 1 < r < ∞. This is

clear when p = 1, since then |g|2 ≤ f 2 ≤ f ∈ L1(Rd). So, suppose that 1 < p < ∞,
fix x ∈ R and y > 0. Consider the pair ξ = ξ x,y = (ξt )t≥0, ζ = ζ x,y = (ζt )t≥0 of
martingales given by

ξt = U f (x + Xτ(y)∧t , y + Yτ(y)∧t )

= U f (x, y) +
τ(y)∧t∫

0+
∇U f (x + Xs, y + Ys) · d(Xs, Ys)

and

ζt =
τ(y)∧t∫

0+
A j∇U f (x + Xs, y + Ys) · d(Xs, Ys),

for t ≥ 0. Then the martingale ζ is orthogonal and differentially subordinate to ξ ,
since 〈Ax, x〉 = 0 and |Ax | ≤ |x | for all x ∈ R

d (see the beginning of Sect. 2).
Therefore, by Theorem 2.1,

||ζτ(y)||p
p = ||ζ ||p

p ≤ cot p
(

π

2p∗

)
||ξ ||p

p = cot p
(

π

2p∗

)
||ξτ(y)||p

p, 1 < p < ∞.

Integrating both sides with respect to x ∈ R
d gives

∫

Rd

E|A∗ f (x, y)|pdx ≤ cot p
(

π

2p∗

) ∫

Rd

E| f (x + Xτ(y))|pdx

= cot p
(

π

2p∗

)
|| f ||p

L p(Rd )
,

by virtue of Fubini’s theorem. In addition, for any h ∈ Lq(Rd) (q = p/(p − 1) is the
harmonic conjugate to p),

∫

Rd

E|h(x + Xτ(y))|qdx = ||h||q
Lq (Rd )

.
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Combining these estimates with (3.1) and Hölder’s inequality yields

∣∣∣∣∣∣∣
∫

Rd

T y
A f (x)h(x) dx

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
∫

Rd

E
[
A∗ f (x, y)h(x + Xτ(y))

]
dx

∣∣∣∣∣∣∣
≤ cot p

(
π

2p∗

)
|| f ||L p(Rd )||h||Lq (Rd ),

which implies that T y
A f ∈ L p(Rd). This, in turn, gives g ∈ L p/(p−1)(Rd), since

f ∈ [0, 1].
Step 2. By the previous step and Lemma 3.2, we have∫

Rd

f (x)|T y
A f (x)|pdx =

∫

Rd

T y
A f (x)g(x)dx

=
∫

Rd

E
[
A∗ f (x, y)g(x + Xτ(y))

]
dx

≤
∫

Rd

E|A∗ f (x, y)|p f (x + Xτ(y))dx .

The latter passage is obvious when p = 1, while for remaining values of p follows
quickly from Hölder’s inequality. Introduce the martingales ξ x,y and ζ x,y as in Step
1. By (2.1), we get that

∫

Rd

E|A∗ f (x, y)|p f (x + Xτ(y))dx =
∫

Rd

Eξ
x,y∞ |ζ x,y∞ |pdx

≤
∫

Rd

U1(||ξ x,y ||1, 0)dx .

The function U1 is nonnegative, so by Fubini’s theorem, we may write

∫

Rd

U1(||ξ x,y ||1, 0)dx

=
∞∫

0

∣∣ 1
π

log |s|∣∣p

(s + 1)2

∫

Rd

sin(π ||ξ x,y ||1)
π ||ξ x,y ||1

(s + 1)2

s2 + 2s cos(π ||ξ x,y ||1) + 1
||ξ x,y ||1dx ds.

Since f is nonnegative and integrable, we have

lim
y→∞ sup

x∈R

||ξ x,y ||1 = lim
y→∞ sup

x∈R

U f (x, y) = 0.

Furthermore, an application of Fubini’s theorem gives
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∫

Rd

||ξ x,y ||1dx = || f ||L1(Rd ).

Thus, by Lebesgue’s dominated convergence theorem, Fatou’s lemma and Theorem
3.1, we get the bound

∫

Rd

f (x)|R1 f (x)|pdx ≤ 1

π p

∞∫

0

(log s)p

(s + 1)2 ds · || f ||L1(Rd ).

It remains to note that

1

π p

∞∫

0

|log s|p

(s + 1)2 ds = 1

π p

∫

R

|t |p

(et + 1)2 et dt

= 1

π p

∞∫

0

t pet

(et + 1)2 dt + 1

π p

∞∫

0

t pe−t

(e−t + 1)2 dt

= 2

π p

∞∫

0

t pet

(et + 1)2 dt = 2

π p

∞∫

0

pt p−1

et + 1
dt

= 2

∞∫

0

pt p−1

eπ t + 1
dt, (3.2)

so (1.8) follows. 
�

4 Sharpness

If d = 1 and f = χE for some E of finite and nonzero Lebesgue measure, then
equality holds in (1.10). This follows immediately from the identity (1.2). In the case
d > 1, we use a well-known transference-type argument, see e.g. [16] for a similar
reasoning. As previously, we focus on the sharpness of (1.10), which will in turn imply
the optimality of the constants appearing in (1.8) and (1.9). Clearly, it is enough to
deal with the Riesz transform R1 only. Suppose that for a fixed p ∈ [1,∞) we have

∫

R

|R1χE (x)|pdx ≤ C |E | (4.1)

for all Borel subsets E of R
d . For t > 0, define the dilation operator δt as follows: for

any function g : R×R
d−1 → R, we let δt g(ξ, ζ ) = g(ξ, tζ ); for any A ⊂ R×R

d−1,
let δt A = {(ξ, tζ ) : (ξ, ζ ) ∈ A}. By (4.1), the operator Tt := δ−1

t ◦ R1 ◦ δt satisfies
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∫

Rd

|TtχE (x)|pdx = td−1
∫

Rd

|R1χδ−1
t E |pdx

≤ Ctd−1|δ−1
t E | = C |E |. (4.2)

It is straightforward to check that the Fourier transform F satisfies the identity F =
td−1δt ◦ F ◦ δt , so the operator Tt is a Fourier multiplier such that

T̂t f (ξ, ζ ) = −i
ξ

(ξ2 + t2|ζ |2)1/2 f̂ (ξ, ζ ), (ξ, ζ ) ∈ R × R
d−1,

for f ∈ L2(Rd). By Lebesgue’s dominated convergence theorem, we have

lim
t→0

T̂t f (ξ, ζ ) = T̂0 f (ξ, ζ )

in L2(Rd), where

T̂0 f (ξ, ζ ) = −i sgn (ξ) f̂ (ξ, ζ ). (4.3)

Combining this with Plancherel’s theorem, we conclude that there is a sequence (tn)n≥1
decreasing to 0 such that Ttn f converges to T0 f almost everywhere. Thus, taking
f = χE and applying Fatou’s lemma together with (4.2), we obtain

∫

Rd

|T0χE (x)|dx ≤ C |E |. (4.4)

Now pick E = B × [0, 1]d−1, where B is a Borel subset of R with 0 < |B| < ∞.
Then T0χE (ξ, ζ ) = HχB(ξ)χ[0,1]d−1(ζ ), because of the identity (4.3),

T̂0χE (ξ, ζ ) = −isgn (ξ) χ̂B(ξ)χ̂[0,1]d−1(ζ ).

Plugging this into (4.4) and integrating out the variable ζ , we obtain

∫

R

|HχB(ξ)|pdξ ≤ C |B|,

which implies C ≥ 2
∫ ∞

0
pt p−1

sinh(π t)dt by the case d = 1. The proof is complete.
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17. Osȩkowski, A.: Sharp Martingale and Semimartingale Inequalities. Birkhäuser, Heidelberg (2012)
18. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University

Press, Princeton (1970)
19. Stein, E.M., Wiesz, G.: An extension of a theorem of Marcinkiewicz and some of its applications.

J. Math. Mech. 8, 263–284 (1959)
20. Stein, E.M., Wiesz, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton University

Press, Princeton (1971)
21. Wang, G.: Differential subordination and strong differential subordination for continuous time mar-

tingales and related sharp inequalities. Ann. Probab. 23, 522–551 (1995)


	On the Action of Riesz Transforms on the Class  of Bounded Functions
	Abstract
	1 Introduction
	2 Martingale Inequalities
	3 Inequalities for Riesz Transforms in Rd
	4 Sharpness
	Acknowledgments
	References


