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In this paper, we investigate a novel technique that reconstructs the observed time series and incorporates driving forces. Fur-
thermore, to illustrate and test the technique, we consider a couple of predictive experiments using ideal time series provided by 
the logistic and Lorenz systems with specific driving forces. The preliminary results show this approach can improve prediction 
proficiency to some extent, and the external forces play a similar role to that of state variables. 
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Short-term prediction is one of the difficult issues in climate 
change studies. Because of the complexity of short-term 
climate processes and lack of general knowledge underpin-
ning its mechanisms, proficiency in prediction remains at a 
stand-still [1,2]. As for climate change in the 21st century, 
global warming is the most important factor, with many 
studies devoted to the topic. The possible causes range from 
change in natural forces (such as solar activity and volcanic 
emission) to human activities (such as green-house gases, 
sulfate emission in aerosols, and land use). In addition, the 
internal variability of climate systems should not be ignored 
either. However, no matter the cause of climate change, 
global warming in fact gives notice that climate processes 
are non-stationary.  

So far many climate predictive theories formulated in 
statistics and in nonlinear science are based on the hypothe-
sis that the process is stationary, thus ergodicity theory can 
be used under such conditions to reconstruct the dynamics 
from an observed time series and establish predictive equa-
tions constructed from it.  

This reconstruction is at variance with the basic behavior 
of climate process. As is well-known for any weather or 
climate system, it is impossible to state the initial conditions 
incontrovertible. In fact, except for global warming, recent 
work has addressed the proper characterization of non-sta-      
tionarity using weather and climate data. For instance, Tsonis 
[3] analyzed low-frequency (decadal to multi-decadal) vari-
ation in global precipitation over the past century and found 
that fluctuations about the global mean have increased sig-
nificantly, implying that the second-order moment of the 
precipitation has changed on those scales, or that global 
precipitation process is non-stationary in the past century. In 
another case, Trenberth [4] found that the observed winter 
Pacific mean sea-level pressure underwent an abrupt change 
towards the end of the 70s; such a change in regime high-
lights the decline in the stationary behavior of the system. 
They noted that the behavior of these quantities is non-sta-     
tionary. Most real world time series have some degree of 
non-stationarity due to external perturbations of the ob-
served system [5]. 

However, there is as yet no general theory about non- 
stationary processes. What scientists can do for the moment 
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is to remove the non-stationarity or reduce its degree using 
certain special processes via adding assumptions, and to re- 
express it within a stationary theory framework.  

Recently, based on some climate observations, the con-
cept of a “climate hierarchy” that implied climate is a cas-
cade phenomenon originating from different hierarchies was 
proposed [6–9]. Techniques termed “compound reconstruc-
tion” and “segregated prediction” were applied to predict 
non- stationary time series; technically, though, these ap-
proximated the non-stationary contributions of the signals 
into stationary components. 

Hegger et al. [10] presented an over-embedding tech-
nique, using increased embedding dimensions to treat time- 
varying parameters as state parameters which removed the 
non-stationarity on its physical cause. Wang et al. [11] used 
other higher-dimensional embedding such as ‘the support 
vector machine’ to predict some non-stationary processes 
and obtained better prediction proficiency. 

In fact, the essential cause of non-stationarity is the time- 
dependent changes in the external forces, and the above 
embedding techniques are a patch up in the reconstructed 
dynamical system arising from lack of information from 
external forcing. Thus, from this point of view, a direct in-
corporation of external forces into a reconstructed model 
should fare better at predicting non-stationary time series. 
However, an important issue is obtaining the forcing data 
from time series. Certainly, we can find relationships among 
the various climatic factors, but these must be established 
through causal effects [12]; an incomprehensive correlation 
analysis can result in mistakes [13]. Based on this concern, 
this work presents an algorithm to predict these non-station-     
ary processes by using state space reconstruction theory 
combined with time-dependent driving forces. Considering 
that natural climate dynamics are complex enough and 
many other factors such as noise or data length will influ-
ence prediction proficiency. Thus we begin with time series 
from ideal non-stationary systems, since the data length and 
precision can be controlled and guaranteed.  

1  Methodology on establishing predictive model 

In the field of nonlinear time series analysis, the most im-
portant aspects are the state space reconstruction theory [14] 
and the embedding theorem [15]. According to the latter, 
developed by Takens [15], for a given single variable time 
series, one can use a couple of appropriate values of the 
embedding dimension and the delay time to convert the 
series into a phase trajectory in state space. The dynamics 
on the reconstructed trajectory is equivalent to that of the 
original system that generated the time series. Based on this 
trajectory, one can establish a model to predict the future 
state of the system; for details see [16–19]. It should be 
noted that the Takens embedding theorem is only appropri-
ate for an autonomous dynamical system. For a non-sta-     

tionary system, however, we can still embed the external 
force components in the same state space [20]. 

For convenience, assuming a non-stationary process com-   
posed of two series {xi}i=1,2,...,n and {i}i=1,2,...,n, the former 
being the state variable and the latter for an external forcing. 
With a selected time lag , we embed the time series in an 
m1 + m2 dimensional phase space and express the recon-
structed state trajectory as 
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Here m1 and m2 are the given embedding dimensions for 
{xi}i=1,2,...,n and {i}i=1,2,...,n, respectively, N = n (max (m1, 
m2) 1) is the number of phase points on the trajectory. We 
use the global approximation method [16] to establish a 
predictive model as:  
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where f̂ is a desired function and i are fitting errors. Our 

task is then to find such an f̂ that the cost function reaches 

its minimum. Here, f̂ is assumed to be a second-order 

polynomial, 
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2  Results 

For completeness, we describe the following prediction tests 
in the presence or not of external forcing which we call the 
“forcing model” and “stationary model”, respectively. 

The above predictive approach is applied to two distinct 
groups of experiments. The first group is from the logistics 
map: 

  1 1 .t t t tx x x    (5) 

Here t represents a time-dependent external forcing. For 
the logistics model, if the value of t varies between 3.57 
and 4.0, the system should exhibit chaotic behavior. If we 
let t change according to the following two cases: 

 (1) 2.53.95 0.4e ,t
t

   (5.1) 

 (2) 1.53.45 0.5e ,t
t

   (5.2) 

we obtain two different non-stationary time series, denoted 
by S(1) and S(2) in Figure 1, that exhibit chaotic behavior; the 
length of both series is 2000. 

In the following tests, the initial 1900 data points are  
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Figure 1  Two different driving forces. 

used to build the predictive model, whereas the last 100 data 
points are used to test the prediction proficiency by using 
the root mean square error (RMSE). Here the lag τ is equal 
to one, while the embedding dimensions of the observations 
{xt} m1 are set to 1 and 2, and of the external force {t} m2 
are set to 0 and 1, respectively. For m2 zero, the external 
force was not taken into account in the predictive model; i.e. 
the predictions were based on stationarity. Table 1 shows 
the various RMSEs resulting from experiments using dif-
ferent m1 and m2 values. It is noted that the RMSE is im-
proved if an external force is considered. This indicates that 
introducing external forces into the predictive model can 
provide an effective means to predict non-stationary pro-
cesses. For more details and cases see Wang and Yang [21]. 

The second experiment required predicting a non-sta-    
tionary climate time series from the Lorenz system: 
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Table 1  RMSE comparison of the prediction experiments  

m2 m1 ES(1) (%) ES(2) (%) 

0 1 2.12 2.89 

0 2 1.39 1.69 

0 mean* 1.76 2.29 

1 1 0.61 0.63 

1 2 0.63 0.62 

1 mean 0.62 0.63 

* indicates the averaged values for m1=1 and m1=2. 

where r(t) is the time-varying Rayleigh external forcing that 
is assumed to take values in the range (28, 48) during a cy-
cle, and obeys one of the three different functions, see Fig-
ure 2. Here also  and b take fixed values 10 and 8/3 re-
spectively. Applying the fourth Runge-Kutta method to in-
tegrate eq. (6), we can get one trajectory with 8000 state 
numbers on its attractor, three different non-stationary time 
series denoted T (1), T (2)

, and T (3). In these tests, the first 7200 
data points are used to build the predictive model, while the 
last 800 data points are used to test the predicted RMSE, 
except for the embedding dimension m1 which ranges from 
3 to 5, all other parameters are all set to the same values as 
the above experiment. Table 2 shows cases of RMSE re-
sulting from these experiments. It is noted that (1) with the 
exception of special cases, the RMSE for the “forcing mod-
el” is less than that for the “stationary model”, indicating 
that introducing external forces into the predictive model 
can effectively improve prediction proficiency; and (2) in-
crease in the speed of the RMSE for the “forcing model” 
caused by increasing the iterations is lower than that for the 
“stationary model”, again showing that introducing external 
forces can improve predictability of the system. 

3  Discussion 

We have considered the notion that non-stationarity for cli-
mate systems can have an important effect on investigating 
the underlying mechanisms of climate change and devel-
oped new climate prediction theories and means. In this 
paper, we presented a novel approach incorporating driving 
forces; several experiments from ideal time series show that 
this approach can improve prediction proficiency. If exter-
nal forcing of a system is stationary, then the reconstructed 
system also has stationary characteristics; in other words,  

 

Figure 2  Rayleigh values with three different changes. 
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Table 2  RMSE comparison of the second prediction experiment 

Prediction 
steps 

m2 
m1  

(mean) 
ET(1) (%) ET(2) (%) ET(3) (%) 

1 0 3–5 0.76 2.44 2.50 

1 3–5 0.75 1.18 0.88 

2 0 3–5 1.14 5.48 1.66 

1 3–5 0.51 0. 84 1.14 

3 0 3–5 1.94 9.41 4.71 

1 3–5 0.82 1.46 1.51 

4 0 3–5 3.10 16.51 7.12 

1 3–5 0.95 2.63 2.06 

5 0 3–5 4.66 11.16 9.17 

1 3–5 1.25 2.35 2.88 

6 0 3–5 6.44 16.78 9.89 

1 3–5 1.23 3.69 3.65 

 

eq. (3) merely describes a stationary process composed of two 
hierarchal structures. By contrast, if external forcing is non- 
stationary, then other correlated external forces should be 
considered, adding consequentially a new hierarchy onto (3). 

To perfect this technique, three additional studies should 
be considered. The first is the development of techniques to 
find the external forces based on causality. Obtaining the 
causal relationships among variables is one of the most im-
portant issues in time series prediction. However, to our 
knowledge, no effective approaches have currently been 
provided. A recommended method, provided by Verdes   
et al. [22], suggests using a measure called ‘transfer entropy’ 
to analyze causality. As an application to climate science, 
this analysis pointed out that causal relationship exists be-
tween both solar radiation and carbon dioxide and the glob-
al averaged surface air temperature. The second is an exten-
sion of the Takens embedding theorem to non-stationary 
time series. As stated before, this theorem holds only for 
autonomous system although many real systems are not 
autonomous. Thus, it is necessary to modify this theorem so 
that it can be applied to non-stationary time series. The third 
includes the need to treat an increased embedding dimen-
sionality caused by external force factors and to apply and 
develop a proper model to deal with this kind of increased 
complexity. 
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