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Abstract In a wide range of applications it is required to compute the nearest corre-
lation matrix in the Frobenius norm to a given symmetric but indefinite matrix. Of the
available methods with guaranteed convergence to the unique solution of this prob-
lem the easiest to implement, and perhaps the most widely used, is the alternating
projections method. However, the rate of convergence of this method is at best linear,
and it can require a large number of iterations to converge to within a given tolerance.
We show that Anderson acceleration, a technique for accelerating the convergence of
fixed-point iterations, can be applied to the alternating projections method and that in
practice it brings a significant reduction in both the number of iterations and the com-
putation time. We also show that Anderson acceleration remains effective, and indeed
can provide even greater improvements, when it is applied to the variants of the near-
est correlation matrix problem in which specified elements are fixed or a lower bound
is imposed on the smallest eigenvalue. Alternating projections is a general method
for finding a point in the intersection of several sets and ours appears to be the first
demonstration that this class of methods can benefit from Anderson acceleration.
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1 Introduction

In many data analysis applications one must construct a correlation matrix from
empirical or experimental data. A correlation matrix is symmetric, has unit diago-
nal, and is positive semidefinite. Frequently, asynchronous or missing observations
lead to the obtained matrix being indefinite. Furthermore, in some applications, such
as stress testing and risk aggregation in finance [2, 18, 40] or large-scale resource
assessment [6], individual elements of a valid correlation matrix are set or modified
by expert judgment, which can again result in an indefinite matrix.

A standard way to correct an invalid correlation matrix, by which we mean a
real, symmetric indefinite matrix with unit diagonal, is to replace it by the nearest
correlation matrix in the Frobenius norm, that is, by the solution of the problem

min{ ‖A − X‖F : X is a correlation matrix },

where ‖A‖2
F = ∑

i,j a2
ij . Other norms could be used, but almost all existing research

treats the Frobenius norm (possibly weighted), for which the problem has a unique
solution.

The first method for computing the nearest correlation matrix with guaranteed
convergence was the alternating projections method proposed by Higham [24].
Although a faster Newton algorithm was subsequently developed by Qi and Sun [39],
and practical improvements to it were made by Borsdorf and Higham [8], the alter-
nating projections method remains widely used in applications. Major reasons for its
popularity are its ease of coding and the availability of implementations in MATLAB,
Python, R, and SAS [25]. Recent examples of applications in which the alternating
projections method is being used include probabilistic forecasts of streamflows [51],
prediction of electricity peak-demand during the winter in England and Wales [34],
analysis of wind farms [19], modeling public health [13], simulation of wireless links
in vehicular networks [52], the analysis of carbon dioxide storage resources in the US
[6], and a modeling framework that combines different sources of variability in bio-
logical systems [45]. As well as being easy to understand and easy to implement, the
alternating projections method has the attractive feature that it is easily modified to
incorporate additional constraints on the matrix, in particular to fix certain elements
or to compute a strictly positive definite solution with a lower bound on the smallest
eigenvalue. Both of these problem variants commonly appear in practice.

Since each iteration of the alternating projections method requires a full eigen-
value decomposition and the rate of convergence is at best linear, the method can
potentially be very slow. The aim of this work is to reduce the number of iterations
required. We attempt to accelerate the alternating projections method by employing
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Anderson acceleration [1, 33, sec. 1.1.4], also known as Anderson mixing, which
is designed for fixed-point problems. While fixed-point iteration uses only the cur-
rent, kth, iterate to define the next one, Anderson acceleration uses the additional
information from the mk previous iterations and computes the new iterate as a spe-
cific linear combination of these mk + 1 quantities. The selected history length mk

is usually small. A discussion that puts Anderson acceleration in context with other
acceleration methods can be found in [50].

In quantum chemistry Anderson acceleration is known as Pulay mixing or direct
inversion in the iterative subspace (DIIS) [38] and it has been widely used in
electronic structure computations; see [43] and the references therein. Anderson
acceleration is related to multisecant methods (extensions of quasi-Newton methods
involving multiple secant conditions); in fact, Eyert [16] proves that it is equivalent to
the so-called “bad” Broyden’s method [11, 28], and a similar analysis is done by Fang
and Saad [17] and Rohwedder and Schneider [43]. For linear systems, if mk = k for
each k then Anderson acceleration is essentially equivalent to the generalized mini-
mal residual (GMRES) method [44], as shown by Potra and Engler [36], Rohwedder
and Schneider [43], and Walker and Ni [50]. For nonlinear problems Rohwedder and
Schneider [43] show that Anderson acceleration is locally linearly convergent under
certain conditions. Adding to the above convergence analysis is the recent work by
Toth and Kelley [46] concerning Anderson acceleration with mk = min(m, k), for a
fixed m, applied to contractive mappings.

Even though there are no general guarantees of its convergence, Anderson
acceleration has a successful record of use in electronic structure computations. Fur-
thermore, it significantly improved the performance of several domain decomposition
methods presented in [50] and has proved to be very efficient on various examples
in the above references. Hence Anderson acceleration has great potential for enhanc-
ing the convergence of the alternating projections method for the nearest correlation
matrix.

Recently, López and Raydan [29] have proposed a geometrically-based accelera-
tion scheme for the alternating projections method that builds a new sequence from
the original one by taking linear combinations of successive pairs of iterates. The new
sequence is tested for convergence and the original iteration remains unchanged. We
compare this method with Anderson acceleration in Section 4 (Experiment 9).

The paper is organized as follows. We present the Anderson acceleration scheme
in Section 2. In Section 3 we recall the necessary results on the alternating projec-
tions method with Dykstra’s correction for computing the nearest correlation matrix
and the problem variants in which some elements remain fixed or the smallest eigen-
value of the solution must be above a given threshold, and we explain how to apply
Anderson acceleration to these problems. Numerical experiments presented in
Section 4 show that Anderson acceleration at least halves the number of iterations
required by the alternating projections method for the nearest correlation matrix prob-
lem, which results in a significant reduction in computation time for large problems.
The experiments also show that even greater improvements can be achieved for the
problem variants, which is especially important for the fixed elements constraint
since in this case there is no available Newton method. Concluding remarks are given
in Section 5.
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2 Anderson acceleration for fixed-point iteration

A basic method for the solution of the fixed-point problem g(x) = x for g : Rn →
R

n is fixed-point iteration, also known as the (nonlinear) Richardson iteration, Picard
iteration, or the method of successive substitution. It has the form

xk+1 = g(xk), k ≥ 1, x0 ∈ R
n given. (1)

To guarantee convergence of (1) assumptions must be made on the function g and
the starting vector x0, and in general convergence is at a linear rate [26, Chap. 4.2].
A method that attempts to encourage or accelerate convergence is Anderson accel-
eration, which redefines xk+1 to make use of the information from the mk previous
steps. We first briefly outline the original method derived by Anderson [1].

Algorithm 1 (Original Anderson acceleration) Given x0 ∈ R
n and an integer m ≥ 1

this algorithm produces a sequence xk of iterates intended to converge to a fixed point
of the function g : Rn → R

n

1 x1 = g(x0)

2 for k = 1, 2, . . . until convergence
3 mk = min(m, k)

4 Determine θ(k) = (θ
(k)
1 , . . . , θ

(k)
mk

)T ∈ R
mk that minimizes ‖uk − vk‖2

2,

where uk = xk+
mk∑

j=1

θj (xk−j −xk), vk = g(xk)+
mk∑

j=1

θj

(
g(xk−j ) − g(xk)

)
.

5 Set xk+1 = vk using the parameters from θ(k).
6 end

In [1] the final step is xk+1 = uk + βk(vk − uk), where uk and vk are defined
from the computed θ(k), and βk > 0 is empirically determined. The usual choice in
the literature is βk ≡ 1, which we use here. We have also taken the history length
parameter mk to be fixed, at m, once the first m iterations have been taken.

We can give some insight into Algorithm 1 by writing

uk =
⎛

⎝1 −
mk∑

j=1

θ
(k)
j

⎞

⎠ xk +
mk∑

j=1

θ
(k)
j xk−j =

mk∑

j=0

wjxk−j ,

vk =
⎛

⎝1 −
mk∑

j=1

θ
(k)
j

⎞

⎠ g(xk) +
mk∑

j=1

θ
(k)
j g(xk−j ) =

mk∑

j=0

wjg(xk−j ),

where
∑mk

j=0 wj = 1. Algorithm 1 minimizes ‖uk − vk‖2
2 subject to

∑mk

j=0 wj = 1.

If g is linear then the objective function is ‖uk − g(uk)‖2
2 and so vk = g(uk) is the
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vector from the affine subspace spanned by the current iterate and the previous mk

iterates that minimizes the residual of the fixed-point equation.
We will use an equivalent form of the method that stores in two matrices the differ-

ences of the successive iterates and their function values. These matrices are related
by simple update formulae that can be exploited for an efficient implementation. This
variant is given by Fang and Saad [17], Plasse [35], Walker [49], and Walker and
Ni [50]. Here, Anderson acceleration is applied to the equivalent problem f (x) = 0,
where f (x) = g(x) − x, instead of the fixed-point problem g(x) = x.

Algorithm 2 (Anderson acceleration) Given x0 ∈ R
n and an integer m ≥ 1 this

algorithm produces a sequence xk of iterates intended to converge to a zero of the
function f : R

n → R
n. The following notation is used: mk = min(m, k), �xi =

xi+1 − xi , Xk = [
�xk−mk

. . . �xk−1
]
, fi = f (xi), �fi = fi+1 − fi , and

Fk = [
�fk−mk

. . . �fk−1
]

1 x1 = x0 + f (x0)

2 for k = 1, 2, . . . until convergence
3 mk = min(m, k)

4 Compute γ (k) =
(
γ

(k)
k−mk

, . . . , γ
(k)
k−1

)T ∈ R
mk that solves

min
γ∈Rmk

‖fk − Fkγ ‖2
2.

5 xk = xk −
k−1∑

i=k−mk

γ
(k)
i �xi = xk − Xkγ

(k)

6 f k = fk −
k−1∑

i=k−mk

γ
(k)
i �fi = fk − Fkγ

(k)

7 xk+1 = xk + f k

8 end

Line 4 of Algorithm 2 consists of the following major computations. We assume
that Fk has full rank and that the least squares problem is solved using a QR
factorization of Fk .

1. Compute fk = f (xk).
2. Obtain a QR factorization of Fk from that of Fk−1. Since Fk is just Fk−1 with

the first column removed (for k ≥ m) and a new last column added this is a QR
factorization updating problem.

3. Solve the least squares problem using the QR factorization.
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Assume that k ≥ m. Since Fk−1 is n×m and its first column is removed in passing
to Fk , to update the R factor we need m2/2 flops and to update Q an additional 6mn

flops [21, p. 28]. Updating the QR factors after the last column has been added to the
matrix costs 4mn + 3n flops [21, sec. 2.5.1]. Hence the total cost for step 2 above is
at most m2/2+10mn+3n flops. The cost of step 3 (which forms and solves by back
substitution a triangular system involving R) is 2mn+m2 flops. Therefore, Anderson
acceleration takes an additional 3m2/2 + 12mn + 3n flops per step compared with
the unaccelerated iteration.

More details of the updating scheme, as well as a strategy that removes more than
one leading column of Fk , if necessary, in order to ensure that it does not become
too ill-conditioned are given in [49, 50, sec. 4]. A MATLAB implementation of
Algorithm 2, which we use in our numerical experiments, is given in [49].

3 Accelerating the alternating projections method for the nearest
correlation matrix

We now summarize the method to which we wish to apply Anderson acceleration:
the alternating projections method for computing the nearest correlation matrix in
the Frobenius norm. In its basic form the alternating projections method attempts
to find a point in the intersection of two closed subspaces that is nearest to a given
point by iteratively projecting onto each subspace. This simple idea is motivated by
the fact that it is often easier to compute the individual projections onto the given
subspaces than the projection onto their intersection. A detailed exposition of the
origins and generalizations of alternating projections methods is given by Escalante
and Raydan [15].

Let A be a given symmetric matrix of order n and define the sets

Sn = {X ∈ R
n×n : X is symmetric positive semidefinite }, (2)

Un = {X = XT ∈ R
n×n : xii = 1, i = 1 : n }. (3)

For the nearest correlation matrix problem, we are looking for the closest matrix
to A that lies in the intersection of Sn and Un. Since these are convex sets rather
than subspaces the alternating projections method has to be used in a modified form
proposed by Dykstra [14], in which each projection incorporates a correction; each
correction can be interpreted as a normal vector to the corresponding convex set. This
correction is not needed for a translate of a subspace [9], so is only required for the
projection onto Sn.

Denote the projections of a symmetric matrix X onto Sn and Un by PSn(X)

and PUn
(X), respectively. The projection PSn(X) is computed from an eigenvalue

decomposition of X by setting all the negative eigenvalues to zero and leaving the
eigenvectors unchanged [23] (see also Theorem 3.4 below), while PUn

(X) is obtained
by setting the diagonal elements of X to 1.

The use of alternating projections for computing the nearest correlation matrix
was proposed by Higham [24, Algorithm 3.3] in the following form.
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Algorithm 3 Given a symmetric matrix A ∈ R
n×n this algorithm computes the near-

est correlation matrix Y to A by alternating projections. It requires a convergence
tolerance tol

1 ΔS0 = 0, Y0 = A

2 for k = 1, 2, . . .

3 Rk = Yk−1 − ΔSk−1

4 Xk = PSn(Rk) % Project onto Sn.
5 ΔSk = Xk − Rk % Dykstra’s correction.
6 Yk = PUn

(Xk) % Project onto Un.
7 if ‖Yk − Xk‖F ≤ tol‖Yk‖F , Y = Yk , quit, end
8 end

It is known that Xk and Yk both converge to the nearest correlation matrix as
k → ∞, with a convergence rate that is linear at best [24]. The termination criterion
on line 7 is a simplification of the criterion

max

{‖Xk − Xk−1‖F

‖Xk‖F

,
‖Yk − Yk−1‖F

‖Yk‖F

,
‖Yk − Xk‖F

‖Yk‖F

}

≤ tol (4)

used by Higham [24], who notes that the three terms inside the max are usually of
similar size. We use only the last term, since the test on line 7 is equivalent to the
robust stopping criterion for Dykstra’s algorithm proposed by Birgin and Raydan [5]
and this choice works well in all our experiments.

Aitken extrapolation (see, for example, [10]) cannot be used to accelerate Algo-
rithm 3 because it requires the underlying sequence to be linearly convergent, which
is not guaranteed here. We therefore turn to Anderson acceleration. To use it we must
recast Algorithm 3 as a fixed-point method, that is, define the function g for the iter-
ation (1). We do this as follows, noting that two matrices are recurred: Yk and ΔSk ,
while Xk is only used for the convergence test.

Algorithm 4 (Fixed-point form of Algorithm 3) Given a symmetric matrix A ∈
R

n×n this algorithm computes the nearest correlation matrix Y to A. It requires a
convergence tolerance tol

1 ΔS0 = 0, Y0 = A

2 for k = 1, 2, . . .

3 [Xk, Yk, ΔSk] = g(Yk−1, ΔSk−1)

4 if ‖Yk − Xk‖F ≤ tol‖Yk‖F , Y = Yk , quit, end
5 end

where the computation of [Xk, Yk, ΔSk] = g(Yk−1, ΔSk−1) is effected by

5 Rk = Yk−1 − ΔSk−1
6 Xk = PSn(Rk)

7 ΔSk = Xk − Rk

8 Yk = PUn
(Xk)
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To apply Anderson acceleration (Algorithm 2) we write the matrices in terms of
vectors via the vec operator, which stacks the columns of a matrix one on top of the
other. We denote by unvec the inverse operation to vec. The complete algorithm is
then as follows.

Algorithm 5 Given a symmetric matrix A ∈ R
n×n this algorithm attempts to com-

pute the nearest correlation matrix Y to A by alternating projections with Anderson
acceleration. It requires a convergence tolerance tol

1 Run Algorithm 2 on the function f : R2n2 → R
2n2

given by f (z) = vec(g̃(Z)−
Z), where zk = vec(Zk), Zk = (Yk, ΔSk) ∈ R

n×2n and [Xk, g̃(Zk)] =
g(Zk) for the function g defined by Algorithm 4. Terminate the iteration when
‖Yk − Xk‖2/‖Yk‖2 ≤ tol. Denote the result by x∗.

2 Y = unvec(x∗)

Note that the convergence criterion in Algorithm 5 is equivalent to that in Algorithm 4.
Note also that, unlike Algorithms 3 and 4, Algorithm 5 is not guaranteed to converge,
since there are no suitable convergence results for Anderson acceleration. Whether
convergence can be proved under reasonable assumptions is an open question.

The cost per step of the standard alternating projections method (Algorithm 3) is
dominated by the cost of computing PSn(Rk), which is 10n3 flops if we compute
a full eigendecomposition, or 14n3/3 flops if we use tridiagonalization followed by
bisection and inverse iteration (computing just the eigenpairs corresponding to the
positive eigenvalues or the negative ones, depending which are fewer in number).
One step of Anderson acceleration applied to the alternating projections method in
the fixed-point form (Algorithm 4) uses 2n2-sized vectors, so the method takes at
most an additional 3m2/2+24mn2+6n2 flops per step. Since we find experimentally
(see Section 4) that taking m ≤ 5 (say) is sufficient, the additional cost of Anderson
acceleration is O(n2) flops, which is negligible for large n. Anderson acceleration
also incurs an increase in storage of 2n2m elements.

We next consider two modifications of the alternating projections method for
computing the nearest correlation matrix. The first is the problem variant in which
specified elements of A have to remain fixed and the second requires the correlation
matrix to have smallest eigenvalue bounded below by a positive tolerance δ.

3.1 Fixing elements

The nearest correlation matrix problem with fixed elements was previously investi-
gated by Borsdorf [7, Chap. 7] and Lucas [30]. We first give some motivation for
fixing elements.

In statistical applications the data from � observations of n random variables is
collected in an � × n matrix and it is often the case that some of the observations are
missing. We may assume that the missing entries do not occur in the first n1 columns,
since we can permute the columns if necessary. One way to form correlations is via
the pairwise deletion method [30, sec. 2.2]. It calculates the correlation coefficient
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between a pair of vectors by using only the components available in both vectors
simultaneously and the result is a unit diagonal symmetric matrix C of the form

n1 n2

C = n1

n2

[
A Y

YT B

]

∈ R
n×n.

The leading block A is positive semidefinite (hence, a correlation matrix) because
it is constructed from the columns of X that have no missing values, but there is no
guarantee that the matrix C is positive semidefinite as well. Since the correlations in
A are considered exact we wish to compute the nearest correlation matrix to C with
this block unchanged.

In correlation stress testing [18], [40] the assets are split into two groups. Their
correlation matrix can then be block-partitioned as

C =
[

C11 C12

CT
12 C22

]

∈ R
n×n,

where the inter-group correlations correspond to the diagonal blocks C11 and C22 and
the off-diagonal block C12 carries the cross-group correlations. To see the effect of
pushing risk parameters toward extreme levels the block C22 is replaced with a new
correlation matrix Ĉ22 that reflects the changes to the second group of assets. If this
results in an indefinite modified matrix we can again compute its nearest correlation
matrix, but the C11 block should remain unchanged since the first group of assets was
not affected.

In risk aggregation [2], [27] and large scale resource assessment [6] we have a
generalization of the above constraint. Here, due to the methodology, we have a large
correlation matrix with block structure, where the diagonal blocks represent individ-
ual groups, for example markets or geographical regions. Correlations in each group
can be updated with more refined analysis locally and then the old diagonal blocks are
replaced with the new ones. This might destroy the definiteness of the global matrix
which we must then restore while keeping the new diagonal blocks unchanged.

In all of the above applications we are looking for the closest matrix in the
Frobenius norm to a matrix A that lies in the intersection of the set Sn from (2) and

En = { X = XT ∈ R
n×n : xii = 1, i = 1, . . . , n and xij = aij for (i, j) ∈ N },

where N denotes the index set of the fixed off-diagonal elements. Clearly, for (i, j) ∈
N we have (j, i) ∈ N . The intersection Sn ∩ En is nonempty, which is equivalent
to the problem having a unique solution, if N is chosen such that there exists a
correlation matrix with the prescribed fixed elements. This need not be true for every
N , as the following simple example shows. Take

A =

⎡

⎢
⎢
⎣

1 0 0 0
0 1 1 0
0 1 1 1
0 0 1 1

⎤

⎥
⎥
⎦ (5)

and N = {(2, 3), (3, 2), (2, 4), (4, 2), (3, 4), (4, 3)}. We cannot replace A with a
valid correlation matrix while keeping the elements prescribed by N fixed, since they
correspond to the trailing 3 × 3 block of A, which is indefinite.
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The Newton algorithm of [39] which solves the original nearest correlation matrix
problem does not generalize to the fixed elements variant. According to Qi and
Sun [41, p. 509], the Newton method that solves the so-called H -weighted nearest
correlation matrix problem

min{ ‖H ◦ (A − X)‖2
F : X is a correlation matrix }, (6)

where ◦ is the Hadamard (elementwise) matrix product and H a symmetric ele-
mentwise nonnegative matrix, could be extended to fix elements but the details are
not provided. Moreover, the documentation for the NAG [32] code g02aj/nag_
nearest_correlation_h_weight, which solves (6), notes that the algorithm
might not converge if the weights vary by several orders of magnitude.

The alternating projections method trivially generalizes to incorporate the fixed
elements constraint: we simply need to replace the projection PUn

by the projection
PEn

onto the set En. For a symmetric matrix X this projection is given by

PEn
(X)ij =

⎧
⎨

⎩

1, i = j,

aij , (i, j) ∈ N ,

xij otherwise.

Since we have assumed that N does not contain any indices corresponding to diag-
onal elements, PEn

remains well-defined even if A does not have unit diagonal.
Algorithm 3 can now be used to solve this problem with a trivial modification of step
6, where PUn

is replaced with PEn
. The extensive numerical experiments in [7, sec. 7]

show that having the additional constraint can result in a significant increase in the
number of iterations compared with solving the original problem, so using an accel-
eration method becomes even more appealing. The details of applying Anderson
acceleration are the same as in the original problem.

The possible non-existence of a solution of this variant of the nearest correlation
matrix problem must be reflected in the convergence test. For the matrix (5) it is easy
to see that Xk and Yk are both constant for k ≥ 1, so the first two terms in (4) are
zero. The last term of (4) is, however, of order 1 for all k. The convergence test on
line 7 of Algorithm 3 is hence suitable both for the original problem and for variants
that may not have a solution.

3.2 Imposing a lower bound on the smallest eigenvalue

For an invalid correlation matrix A with t nonpositive eigenvalues, from [24, Cor. 3.5]
it follows that the nearest correlation matrix to A will have at least t zero eigenvalues.
Singularity is an issue in applications where the inverse of a correlation matrix is
needed, for example in multivariate data analysis [42] or regression [22, 37]. Hence,
a common requirement in practice is to compute the nearest correlation matrix X to
A with λmin(X) ≥ δ, where λmin(X) denotes the smallest eigenvalue of X and δ is a
given positive tolerance. Since for a correlation matrix trace(X) = ∑

i λi(X) = n, it
follows that we must take δ ≤ 1.

The Newton algorithm [39] for the original nearest correlation matrix problem
can be used to compute the solution to the problem with the constraint on λmin.
We discuss this modification of the alternating projections method because it further
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demonstrates the flexibility of the method, which can easily incorporate both the
fixed elements constraint and the eigenvalue constraint, unlike the existing Newton
methods.

For a given 0 ≤ δ ≤ 1 we define the set

Sδ
n = { X = XT ∈ R

n×n : λmin(X) ≥ δ }. (7)

Clearly, S0
n is the original Sn from (2). We are looking for the nearest matrix in the

Frobenius norm to A from the intersection of Sδ
n and Un, where Un is defined in (3).

The set Sδ
n is closed and convex for each δ and since In ∈ Sδ

n for every 0 ≤ δ ≤ 1 the
closed convex set Sδ

n ∩ Un is nonempty, which implies that this modification of the
nearest correlation matrix problem has a unique solution. A formula for the projection
PSδ

n
of a symmetric matrix onto the set Sδ

n is given by the following result of Cheng
and Higham [12, Thm. 3.1].

Theorem 3.4 Let the symmetric matrix X ∈ R
n×n have the spectral decomposition

X = Qdiag(λi)Q
T and let δ ≥ 0. Then for the Frobenius norm the unique matrix

nearest to X with the smallest eigenvalue at least δ is given by

PSδ
n
(X) = Qdiag(τi)Q

T , τi =
{

λi, λi ≥ δ

δ, λi < δ.

Hence, to solve this version of the nearest correlation matrix problem we simply
replace the projection PSn in Algorithm 3 with PSδ

n
. If, in addition, some elements of

A must remain fixed, we replace PUn
with PEn

as well. However, note that the latter
problem variant does not have a solution for all possible sets N of fixed positions.

Finally, we briefly discuss how the use of the λmin(X) ≥ δ constraint can address
a subtle issue concerning methods for computing the nearest correlation matrix. The
resulting matrix is expected to be a positive semidefinite matrix with unit diagonal
closest to A. The Newton algorithm of [8] computes a positive semidefinite solution,
but to guarantee a unit diagonal the computed matrix is diagonally scaled, which
slightly increases the optimal distance to A. In the alternating projections method
(Algorithm 3) the diagonal elements of the returned matrix are exactly 1 but this
computed matrix might be indefinite since it is obtained by modifying the diagonal
(as well as any other fixed elements) of the positive semidefinite projection. We could
swap the order of the projections so that the result is a positive semidefinite matrix, up
to roundoff, but then this matrix will not have an exactly unit diagonal. Probably the
best solution to these problems is to impose a lower bound on λmin sufficiently large
that changes of order the convergence tolerance, tol, will not affect the definiteness.
For example, if tol ≈ 10−16 then δ ≈ 10−8 would be adequate.

4 Numerical experiments

Now we present experiments that explore the effectiveness of Anderson acceleration
at reducing the number of iterations, and the overall execution time, of the alternating
projections method for computing the nearest correlation matrix.
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Our experiments were carried out in MATLAB R2014a on a machine with an
Intel Core i7-4910MQ 2.90GHz processor and 16GB RAM. We use the following
algorithms.

1. nearcorr: the alternating projections method for the nearest correlation
matrix, Algorithm 3, modified to incorporate both the fixed elements constraint
and the lower bound δ on the smallest eigenvalue by replacing PUn

with PEn
and

PSn with PSδ
n
, as described in Sections 3.1 and 3.2. The number of iterations for

nearcorr is denoted by it. Our code is based on that from [25].
2. nearcorr AA: Algorithm 5 applied to nearcorr. We use the Anderson

acceleration implementation from [49], which employs QR factorization with
updating, as described in Section 2. The number of iterations is denoted by
itAA.

The convergence tolerance tol is set to nu, where n is the order of the matrix and
u ≈ 1.1 × 10−16 is the unit roundoff.

Convergence is guaranteed for the alternating projections algorithm assuming
there are no fixed off-diagonal elements, but could potentially be destroyed by
Anderson acceleration, for which we have no convergence guarantees. However, in
every test Anderson acceleration and the corresponding unaccelerated algorithm pro-
duced computed matrices X with values of ‖A − X‖F agreeing to within a small
multiple of the convergence tolerance.

In the first three experiments, we have no fixed elements and set δ = 0, that is, we
are solving the standard nearest correlation matrix problem.

Experiment 1 We first compare the number of iterations for nearcorr and
nearcorr AA as we vary the parameter m on four small examples of invalid cor-
relation matrices found in the literature. They are a matrix of order 4 from Turkay,
Epperlein, and Christofides [47], a matrix of order 5 from Bhansali and Wise [4],
a matrix of order 6 constructed from foreign exchange trading data supplied by the
Royal Bank of Scotland [31], and a matrix of order 7 from Finger [18], all of which
are listed in the appendix. The results are given in Table 1.

Clearly, using Anderson acceleration leads to a significant decrease in the num-
ber of iterations, even for m = 1, with a 25-fold decrease achieved for the n = 6
matrix with m = 6. The number of iterations begins to stagnate as m grows, which is
consistent with the reported behaviour of Anderson acceleration in the literature.

Table 1 Iteration counts for four small examples for nearcorr and nearcorr AA, for varying m

(Experiment 1)

n it
itAA

m = 1 m = 2 m = 3 m = 4 m = 5 m = 6

4 39 15 10 9 9 9 9

5 27 17 14 12 11 10 10

6 801 305 212 117 126 40 31

7 33 15 10 10 10 9 9
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Table 2 Iteration counts and computation times in seconds for nearcorr and nearcorr AA with
m = 2 for six RiskMetrics matrices of order 387 (Experiment 2)

Matrix nearcorr nearcorr AA

it t itAA t t apm t AA

1 26 0.46 15 0.45 0.26 0.12

2 50 0.83 24 0.73 0.41 0.19

3 24 0.43 13 0.38 0.23 0.09

4 47 0.88 22 0.68 0.40 0.17

5 34 0.56 18 0.53 0.30 0.14

6 20 0.33 12 0.35 0.20 0.09

Experiment 2 Now we compare the iteration count and the computation time for
nearcorr and nearcorr AA with m = 2 for six matrices from the RiskMet-
rics database, as used in [8]. The documentation says that the underlying data sets
“contain consistently calculated volatilities and correlation forecasts for use in esti-
mating market risk. The asset classes covered are government bonds, money markets,
swaps, foreign exchange and equity indices (where applicable) for 31 currencies, and
commodities.” Each matrix has dimension 387.

In Table 2 we report the number of iterations along with t, the total run time in
seconds for each algorithm, and t apm and t AA for nearcorr AA, which are the
total time taken in calls to the function g from Algorithm 4 and in computing the
quantities for the convergence test, and the time taken to solve the least-squares prob-
lems, respectively. Anderson acceleration roughly halves the number of iterations and
the total computation time for nearcorr AA is a little less than for nearcorr in
the first 5 examples.

The missing time t − t_apm − t_AA for nearcorr AA represents MATLAB
overheads, such as in the vec and unvec conversions of Algorithm 5. Computing
the eigenvalue decomposition, which is the dominant cost for the alternating pro-
jections method, remains the main contributing factor to the computation time of
nearcorr AA, with the least-squares update and solve taking less than half as much
time.

Experiment 3 In the previous experiments our test matrices were small and the total
computation time was not an issue. In order to illustrate the dramatic improvement
Anderson acceleration can bring to nearcorr we next compare nearcorr and
nearcorr AA with m = 2 on two large invalid correlation matrices of stock
data provided by a fund management company. The first of order 1399 is highly
rank-deficient and the second of order 3120 is of full rank. The results are pre-
sented in Table 3. We again see a very sharp drop in the number of iterations, with
nearcorr AA taking less than a third of the iterations for nearcorr. This results
in a significant reduction in the computation time, with a speedup of as much as 2.9.
Comparing the times for the alternating projections part and the least-squares part of
nearcorr AA we see that the former heavily dominates the latter.
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Table 3 Iteration counts and computation times for nearcorr and nearcorr AA with m = 2 for
cor1399 and cor3120 (Experiment 3)

n
nearcorr nearcorr AA

speedup

it t itAA t t apm t AA

1399 476 219.0 124 75.0 49.6 16.0 2.9

3120 559 2746.4 174 999.5 778.5 137.7 2.7

We next focus on the nearest correlation matrix problem variant with some fixed
off-diagonal elements (δ = 0).

Experiment 4 We compare the performance of the methods on the following three
examples. The first is the matrix of order 7 that we have used in our first experiment.
The original requirement in [18] was to compute the nearest correlation matrix hav-
ing the same leading principal 3 × 3 submatrix. The second example is a symmetric
indefinite block 9 × 9 matrix with each block of order 10, provided by a finance
company. We need to compute the nearest positive semidefinite matrix to it while
preserving the (positive definite) (1,1) block, the (positive) diagonal, and the diago-
nals in each of the remaining blocks in the first block-row and block-column. The
large matrix does not have a unit diagonal but this makes no difference to the methods
since these elements are fixed. In our third example, we have an invalid correlation
matrix of order 94 for carbon dioxide storage assessment units for the Rocky Moun-
tains region of the United States that was generated during the national assessment
of carbon dioxide storage resources [48]. Due to the aggregation methodology con-
struction, the matrix has a natural block structure. Its twelve diagonal blocks, with
respective sizes 12, 5, 1, 14, 12, 1, 10, 4, 5, 9, 13, and 8, correspond to individual
basins in the region and are all positive definite. We wish to compute the nearest
correlation matrix to the large matrix while keeping all diagonal blocks unchanged.

Table 4 reports the number of iterations for nearcorr with no fixed elements
(it), the number of iterations for nearcorr with the required elements fixed
(it fe) and the number of iterations for Anderson acceleration applied to the latter
(itAA fe) with m varying from 1 to 5 for our three examples. Table 5 presents the
computation time in seconds, time fe and time fe AA, for the latter two algo-
rithms. We include nearcorr with no fixed elements only to demonstrate the effect

Table 4 Iteration counts for nearcorr, nearcorr with fixed elements, and Anderson acceleration of
the latter with varying m (Experiment 4)

n it it fe
itAA fe

m = 1 m = 2 m = 3 m = 4 m = 5

7 33 34 14 11 10 9 9

90 29 169 93 70 55 45 39

94 18 40 15 14 12 12 12
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Table 5 Computation times for nearcorr with fixed elements and Anderson acceleration applied to it,
with varying m (Experiment 4)

n time fe
time fe AA

m = 1 m = 2 m = 3 m = 4 m = 5

7 3.40e-3 2.51e-3 2.20e-3 2.11e-3 1.20e-3 1.14e-3

90 1.71e-1 1.33e-1 1.14e-1 9.06e-2 7.93e-2 8.02e-2

94 5.21e-2 2.06e-2 1.98e-2 1.87e-2 2.54e-2 2.19e-2

on the number of iterations of including this constraint, and as this method does
not solve our problem we do not run Anderson acceleration on it. The second and
third examples show that the constraint of having fixed elements can significantly
increase the number of iterations for the alternating projections method compared
with the standard nearest correlation matrix problem. From the number of iterations
for nearcorr with fixed elements and the accelerated algorithm we see that using
Anderson acceleration reduces the number of iterations by a similar factor as in the
experiments for accelerating the original nearcorr. Hence while the additional
constraint makes the problem harder to solve by alternating projections it does not
affect the speedup of the Anderson acceleration scheme.

Experiment 5 In our second experiment with fixed elements we generate random
invalid correlation matrices of order n, with n equal to 200, 400, 600, and 800 and
compare the computation time of nearcorr and nearcorr AA for varying m,
where for each matrix a leading block of size n/2 is kept fixed in computing the
nearest correlation matrix. We generate the leading block by the MATLAB function
call gallery(’randcorr’,n/2) and embed it into an indefinite unit diagonal
matrix of size n where the off-diagonal elements are taken from the uniform distribu-
tion on [−1, 1]. The results reported in Table 6 show that the time decreases for m up
to 2, but for m = 4 or 5 we have an increase in the computation time, which further
confirms the merit of keeping m very small. In each example Anderson acceleration
achieves a significant reduction in computation time.

Our third set of experiments concerns the nearest correlation matrix problem with
a lower bound on the smallest eigenvalue and no fixed elements.

Table 6 Computation times for nearcorr and nearcorr AA with varying m for four examples where
the leading n/2 × n/2 block of a random matrix of size n remains fixed (Experiment 5)

n time fe
time fe AA

m = 1 m = 2 m = 3 m = 4 m = 5

200 6.41 4.42 2.77 2.67 2.29 2.45

400 18.53 13.44 9.35 8.10 6.91 7.35

600 59.47 47.51 28.15 32.04 26.25 31.50

800 136.12 82.23 53.76 63.77 47.61 51.35
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Table 7 Iteration counts for four small examples for nearcorr and nearcorr AA, for varying m and
two values of δ. (Experiment 6)

δ = 10−8

n it
itAA

m = 1 m = 2 m = 3 m = 4 m = 5 m = 6

4 39 15 10 9 9 9 10

5 27 17 14 12 11 10 10

6 802 280 177 114 58 39 30

7 33 15 10 10 10 9 9

δ = 0.1

4 66 31 19 16 13 14 13

5 34 23 15 14 12 12 12

6 895 269 216 127 59 48 41

7 54 31 24 15 15 14 14

Experiment 6 We first run nearcorr on the four small test matrices already used
in Table 1 for δ = 10−8 and δ = 0.1. The results, reported in Table 7, show that
for the smaller value of δ = 10−8 the number of iterations is almost identical to
the data in Table 1, but here the positive definiteness of the solution is guaranteed.
For the larger value δ = 0.1, the number of iterations is increased compared with
δ = 0. As with the fixed elements constraint, we see that Anderson acceleration again
reduces the iteration number by a similar factor as in the unconstrained case, that is,
its performance is not affected by including the bound on the smallest eigenvalue.

Experiment 7 The benefits of Anderson acceleration in the positive definite case are
even more evident if we reproduce Experiment 2, now using nearcorr with δ =
0.1 and compare the results in Table 8 with those in Table 2. Computing the positive
definite solution takes between 30 and 90 times more iterations than computing the
semidefinite nearest correlation matrix but Anderson acceleration now reduces the
number of iterations by a factor between 3.6 and 4.6, compared with halving the
iterations in the original experiment, which shows that Anderson acceleration can be
even more effective for constrained nearest correlation matrix problems than for the
original problem. We also see that nearcorr AA requires approximately half the
time of nearcorr.

We now combine the constraints of keeping elements fixed and of positive
definiteness.

Experiment 8 We take the three matrices from Experiment 4 with fixed elements
and run nearcorr and nearcorr AA with δ = 0.1, with varying m. Note that in
this case we have no guarantee of the existence of a feasible point and in fact for the
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Table 8 Iteration counts and computation times in seconds for nearcorr with δ = 0.1 and
nearcorr AA with m = 2 for six RiskMetrics matrices of order 387 (Experiment 7)

nearcorr nearcorr AA

Matrix it t itAA t t apm t AA

1 1410 20.50 383 10.77 5.70 3.12

2 2100 33.93 513 15.83 8.52 4.56

3 1900 31.14 414 11.58 5.97 3.54

4 1586 29.06 369 12.83 7.09 3.54

5 1812 31.30 400 12.99 7.16 3.62

6 1794 29.08 393 11.63 6.20 3.40

second matrix (n = 90) the algorithms do not converge within 100,000 iterations for
the default tolerance and hence we exclude this example and present in Table 9 only
the results for the test matrices of order n = 7 and n = 94. We note the increase in
the number of iterations compared with the data in Table 4 where we only fixed the
elements. Anderson acceleration (with m = 5) reduces the iterations by a factor of
3.6 for the smaller matrix and 6.7 for the larger, while in the original experiment the
factors were 3.8 and 3.3.

Experiment 9 As a final experiment we use the four matrices from Experiment 1
to compare Anderson acceleration with the acceleration scheme from [29]. Table 10
shows the number of iterations, it 2, for that scheme, in which we set its safe-
guard parameter ε to 10−14 and use the same convergence tolerance as in all our
experiments. The number of iterations for the acceleration scheme is the same as
for the unaccelerated method in each case except for the matrix with n = 6, and
in that case we see a reduction in the number of iterations by a factor 1.1 versus
3.8 for Anderson acceleration. In all test cases, after a few initial iterations the mix-
ing parameter αk needed for the scheme [29] could not be computed because the
safeguard was triggered. We conclude that the acceleration scheme of [29] is not

Table 9 Iteration counts and computation times in seconds for nearcorr and nearcorr AA with
δ = 0.1 and varying m for two examples with fixed elements (Experiment 8)

nearcorr AA

nearcorr m = 1 m = 2 m = 3 m = 4 m = 5

n t it t it t it t it t it t it

7 2.98e-3 54 4.95e-3 31 4.57e-3 25 2.59e-3 16 2.74e-3 15 2.75e-3 15

94 1.25e-1 128 5.24e-2 36 4.10e-2 25 4.32e-2 24 3.91e-2 20 3.93e-2 19
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Table 10 Iteration counts for four small examples for nearcorr, nearcorr AA with m = 2, and the
acceleration scheme from [29] (Experiment 9)

n it itAA it 2

4 39 10 39

5 27 14 27

6 801 212 725

7 33 10 33

competitive with Anderson acceleration on this class of problems because it displays
the “orthogonality property” discussed in [29, Rem. 1].

To summarize, in these experiments we have found that Anderson acceleration of
the alternating projections method for the nearest correlation matrix, with an appro-
priate choice of m ∈ [1, 6], results in a reduction in the number of iterations by a
factor of at least 2 for the standard algorithm and a factor at least 3 when additional
constraints are included. The factors can be much larger than these worst-cases, espe-
cially in the experiments with additional constraints, where we saw a reduction in
the number of iterations by a factor 21.8 in Table 7. Acceleration therefore tends to
produce the greatest benefits on the problems that alternating projections finds the
hardest. Moreover, the reduction in the number of iterations is generally reflected in
the run times, modulo MATLAB overheads.

5 Conclusions

Although Anderson acceleration is well established in quantum chemistry applica-
tions and has recently started to attract the attention of numerical analysts, the method
is still not well known in the numerical analysis community. Indeed it has not, to our
knowledge, previously been applied to alternating projections methods. The main
contribution of this work is to show that Anderson acceleration with history length m

equal to 2 or 3 works remarkably well in conjunction with the widely used alternat-
ing projections method of Higham [24] for computing the nearest correlation matrix,
both in its original form and in the forms that allow elements of the matrix to be
fixed or a lower bound to be imposed on the smallest eigenvalue. This is particularly
significant for the nearest correlation matrix problem with fixed elements because
no Newton method is available for it. Our recommendation for m is based on the
balance between the reduction in both the number of iterations and the computation
time: even though larger values of m in some examples lead to a further decease in
the number of iterations the computation time sometimes increases for m larger than
2 or 3. MATLAB implementations of the algorithms can be found at https://github.
com/higham/anderson-accel-ncm.

The success of Anderson acceleration in the nearest correlation matrix context
suggests the possibility of using it in conjunction with other projection algorithms,

https://github.com/higham/anderson-accel-ncm
https://github.com/higham/anderson-accel-ncm
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such as those for feasibility problems, that is, finding a point (not necessarily the
nearest one) in the intersection of several convex sets. Such algorithms include the
(uncorrected) alternating projections method and the Douglas–Rachford method [3].
Gould [20, p. 10] states that an efficient acceleration scheme is needed for projection
methods if they are to be successfully applied to real-life convex feasibility prob-
lems. Our work suggests that Anderson acceleration could make projection methods
competitive in this context, and in future work we intend to investigate this possibility.
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Appendix A

We list the four invalid correlation matrices used in Experiment 1.

1. Turkay, Epperlein, and Christofides [47]:

A =

⎡

⎢
⎢
⎣

1 −0.55 −0.15 −0.10
−0.55 1 0.90 0.90
−0.15 0.90 1 0.90
−0.10 0.90 0.90 1

⎤

⎥
⎥
⎦ .

2. Bhansali and Wise [4]:

A =

⎡

⎢
⎢
⎢
⎢
⎣

1 −0.50 −0.30 −0.25 −0.70
−0.50 1 0.90 0.30 0.70
−0.30 0.90 1 0.25 0.20
−0.25 0.30 0.25 1 0.75
−0.70 0.70 0.20 0.75 1

⎤

⎥
⎥
⎥
⎥
⎦

.

3. Minabutdinov, Manaev, and Bouev [31]: D−1/2AD−1/2, where D = diag(A)

with

A=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.010712 0.000654 0.002391 0.010059 −0.008321 0.001738
0.000654 0.000004 0.002917 0.000650 0.002263 0.002913
0.002391 0.002917 0.013225 −0.000525 0.010834 0.010309
0.010059 0.000650 −0.000525 0.009409 −0.010584 −0.001175
−0.008321 0.002263 0.010834 −0.010584 0.019155 0.008571
0.001738 0.002913 0.010309 −0.001175 0.008571 0.007396

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

http://creativecommons.org/licenses/by/4.0/
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4. Finger [18]:

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0.18 −0.13 −0.26 0.19 −0.25 −0.12
0.18 1 0.22 −0.14 0.31 0.16 0.09
−0.13 0.22 1 0.06 −0.08 0.04 0.04
−0.26 −0.14 0.06 1 0.85 0.85 0.85
0.19 0.31 −0.08 0.85 1 0.85 0.85
−0.25 0.16 0.04 0.85 0.85 1 0.85
−0.12 0.09 0.04 0.85 0.85 0.85 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
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