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Abstract The phenotypic and phylogenetic diversity of
micro-algae capable of accumulating triacylglycerols pro-
vides a challenge for the accurate determination of bio-
technological potential. High-yielding strains are needed
to improve economic viability and their compositional
information is required for optimizing biodiesel proper-
ties. To facilitate a high-throughput screening programme,
a very rapid direct-derivatization procedure capable of
extracting lyophilized material for GC analysis was com-
pared with a scaled-down Folch-based method. This was
carried out on ten micro-algal strains from 6 phyla where
the more rapid direct-derivatization approach was found
to provide a more reliable measure of yield. The modi-
fied Folch-based procedure was found to substantially
underestimate oil yield in one Chlorella species (P<0.01). In
terms of fatty acid composition however, the Folch proce-
dure proved to be slightly better in recovering polyun-
saturated fatty acids, in six out of the ten strains. Therefore,
direct-derivatization is recommended for rapid determination
of yields in screening approaches but can provide slightly
less compositional accuracy than solvent-based extraction
methods.
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Introduction

Many micro-algae species have the ability to accumulate oil
to high levels in the form of non-polar glycerolipids such as
triacylglycerol (TAG) (Day et al. 2012; Hu et al. 2008).
This, along with high biomass yields, as well as their capac-
ity to photosynthesise efficiently, has attracted much recent
interest in algae as a feedstock for renewable energy fuels
and other biotechnological purposes. The taxonomic and
ecological diversity of micro-algae provides a resource that
can be explored using high-throughput screening approaches
to identify those with the most potential. For large-scale
production, most workers are focussing on strains able to
grow in seawater and/or under brackish conditions to avoid
competition for agricultural freshwater supplies (Day et al.
2012; Radakovits et al. 2012). Rapid and accurate methods
of evaluating oil content and composition are required for
high-throughput screening strategies. Fatty acid composition
affects key biodiesel characteristics such as cetane number,
oxidative stability and cold flow (Ramos et al. 2009).
Therefore, strain selection is essential in order to drive
down economic costs and optimize biodiesel properties
(Day et al. 2012).

Surveys using fluorescent stains such as Nile Red in
combination with flow cytometry, or plate assays have pre-
viously been undertaken (Chen et al. 2009; Sheehan et al.
1998). Nevertheless, when comparing oil content between
species, variation in dye absorption efficiency, cell size and
calibration issues must be taken into consideration (Chen et
al. 2009). Compositional information is also required there-
fore an alternative or complementary approach is rapid lipid
quantification via gas chromatographic (GC) analysis of

S. P. Slocombe (*) :Q. Zhang :K. D. Black : J. G. Day :
M. S. Stanley
Scottish Association for Marine Science, Scottish Marine Institute,
Oban, Argyll PA37 1QA, UK
e-mail: spslocombe@hotmail.com

Q. Zhang
e-mail: qyz500@gmail.com

K. D. Black
e-mail: Kenny.Black@sams.ac.uk

J. G. Day
e-mail: John.Day@sams.ac.uk

M. S. Stanley
e-mail: Michele.Stanley@sams.ac.uk

QY. Zhang : K. D. Black : J. G. Day :

J Appl Phycol (2013) 25:961–972
DOI 10.1007/s10811-012-9947-5

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/207384109?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


fatty acid methyl esters (FAMES), where GC-flame ioniza-
tion detector (GC-FID) provides the greatest quantitative
accuracy (Christie 1993). Here, the main potential caveats
are found in sample processing time and extraction efficiency.

Earlier surveys of micro-algal oil content and composition
based on GC analysis have employed solvent extraction of
fresh (Dunstan et al. 1992; Volkman et al. 1989) or lyophilized
material (Ben-Amotz et al. 1985; Shifrin and Chisholm 1981)
followed by derivatization to FAMEs. Most published extrac-
tion procedures applied to micro-algae have utilized chloro-
form–methanol based extraction according to Bligh and Dyer
(1959), or Folch et al. (1957). Of these, the Folch procedure
has been demonstrated to give better recoveries with high oil
content material (Iverson et al. 2001). This implies that the
Folch method should be more appropriate for many micro-
algae and this was observed by Griffiths et al. (2010) in a
methodological comparison on three algal strains. Neverthe-
less, many other methods employing different solvents have
been applied to algae. For instance, some micro-algal proce-
dures extract initially in isopropanol to reduce the possibility of
lipase activity (Hodgson et al. 1991; Volkman et al. 1989).

A further consideration in a screening strategy for oil
content is that these data are more informative when
expressed relative to dry weight (DW) rather than fresh
weight (FW). Methods that extract wet biomass, fresh or
un-dried material consequently require a separate DW de-
termination step. This adds to the processing time and can
introduce errors from FW measurement of the harvested
micro-algal material due to liquid carryover, especially at
small scale. Therefore, extraction of lyophilized material is
more suited to high-throughput screens, but can often be
resistant to lipid extraction (Christie 1993). Consequently,
additional steps are frequently incorporated into the solvent-
based extraction procedures for dried micro-algal samples.
For instance, with Nannochloropsis, such procedures have
included multiple solvent extractions, or extended sonica-
tion (Chiu et al. 2009; Hodgson et al. 1991). Although
extraction of fresh micro-algal samples can be faster, incom-
plete lipid extraction can also occur here, where additional
steps to aid extraction may be required for some taxa (e.g.
Nannochloris) (Volkman et al. 1989).

Direct-derivatization methods offer a rapid alternative for
high-throughput screening since extraction and derivatiza-
tion occur simultaneously (Carrapiso and García 2000). In
addition, extraction of dried samples could be facilitated
under the thermal conditions associated with derivatization.
Most procedures utilize anhydrous methanol with acid or
base catalysts. Acid catalysts are most appropriate for total
fatty acid screens with a view towards biodiesel production
because free fatty acids are also derivatized as well as those
esterified to glycerolipids (Christie 1993). In some cases,
direct-derivatization methods applied to micro-algae have
used boron trifluoride with methanol (Me-BF3) using the

original method of LePage and Roy (1984) or further devel-
opments (Griffiths et al. 2010). These have included extrac-
tion of marine Chlorella sp., for instance (Hsieh and Wu,
2009). The comparative study by Griffiths et al. (2010)
reported that their Me-BF3 based method produced slightly
higher yields than the Folch method on non-dried samples
of Chlorella vulgaris, Nannochloropsis and Selenastrum.
Unfortunately, reports indicate that the Me-BF3 is prone to
artefact generation in FAMES preparation (Carrapiso and
García 2000; Christie 1993).

Direct derivatization has also been carried out with 2% (v/v)
H2SO4 in methanol on Nannochloropsis sp. and Haematococ-
cus pluvialis (Recht et al. 2012). Concentrated HCl solution
combined with methanol has also been used as methanol/conc.
HCl/chloroform (10:1:1, v/v/v) applied to dried thraustrochrytid
samples (Lewis et al. 2000). In a similar procedure, a 2:1 (v/v)
chloroform/methanol pre-soak followed by 5 % (v/v) conc.
HCl/methanol was applied to Nannochloropsis sp., Chlorella
vulgaris and Phaeodactylum tricornutum (Laurens et al. 2012).
Nevertheless, the methanolic-HCl reagent (Me-HCl) is more
commonly employed in anhydrous form either as commercial
stock or prepared by adding acetyl chloride or HCl gas to
methanol (Carrapiso and García 2000; Christie 1993). Use as
methanol/acetyl chloride has been reported for the red marine
unicellular algae Porphyridium cruentum, the diatom P. tricor-
nutum (Cohen et al. 1988; Rodríguez-Ruiz et al. 1998) and as
dry HCl gas in methanol, for Pavlova lutheri and Chaetoceros
muelleri (Jacobsen et al. 2012). Methods using commercial
anhydrous Me-HCl stock have been reported for both fresh
(Browse et al. 1986) and dried (Larson and Graham 2001)
higher plant materials. The latter method is one of the
simplest since derivatization is carried out in the presence of
hexane; therefore, FAME recovery requires only the addition
of aqueous phase.

Although the direct-derivatization approach is becoming
more widely used, a wide variety of methods have been
applied to relatively few micro-algal species. Comparative
studies that examine a wide range of taxa have not been
carried out. Overall, the direct methods that included hexane
in the derivatization reaction were the simplest to carry out,
requiring only the addition of aqueous phase to recover
FAMEs (Larson and Graham, 2001; Rodríguez-Ruiz et al.
1998). The other methods reported for micro-algal or terres-
trial plant material all extracted FAMES by adding solvent
after derivatization, adding to handling time and some includ-
ed additional processing steps (Browse et al. 1986; Cohen et
al. 1988; Griffiths et al. 2010; Jacobsen et al. 2012; Laurens et
al. 2012; Lewis et al. 2000).

Therefore, the aim of this study was to compare one of the
most rapid direct-derivatization procedures with a scaled-down
modified Folch procedure on a representative set of micro-
algal strains from the major phylogenetic groupings. The ob-
jective was to select a method suitable for high-throughput
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screening that was applicable over a broad taxonomic group,
produced aminimum of artefacts andwas capable of extracting
lyophilized micro-algae samples with resilient cell walls.

Materials and methods

Ten marine micro-algae species from six different phyla were
analysed (Table 1). All strains were obtained from the Culture
Collection of Algae and Protozoa (CCAP, UK). Starter cul-
tures of 100 mL were incubated under a 12 h/12 h light/dark
(L/D) regime at 50–80 μmol photons m−2s−1 at 20 °C for 7–
10 d, without shaking (Innova 44, New Brunswick Scientific).
Cultures were monitored by dual measurement of in vivo
chlorophyll fluorescence using a Trilogy® Laboratory Fluo-
rometer (Turner Designs, USA) with Trilogy Module CHL-
INVIVO (GUI selection BLUE, #043) and cell turbidity by
absorbance at 735 nm (A735) using a NanoPhotometer™
(Implen, Germany). Starter cultures were used for subcultur-
ing once they had reached either an A735 of 0.34 or an in vivo
chlorophyll fluorescence of 10,000 RFU (Relative Fluores-
cence Units). In the case of Nannochloropsis oculata (CCAP
849/1) these values both equated to 1×107 cells mL−1. Sub-
samples were then inoculated at 5 % (v/v) into 3×500 mL
aerated Erlenmeyer flasks containing 400 mL F/2 medium
(Guillard and Ryther 1962) using artificial seawater at
33.5 g L−1 (Instant Ocean, Aquarium Systems, France). Each
flask was capped with a ported GL45 connection system
(Duran, Germany) enabling sterile filtration of input air
(HEPA-VENT, Whatman, UK). Aeration and culture mixing
was accomplished by bubbling air at 60 mL min−1 through a
4-mm bore silicone tube (Apex, UK) that reached to the base
of the flask. Each flask was exposed to 150±10 μmol photons
m−2s−1 (except for the rhodophyte Porphyridium purpureum
(CCAP 1380/1A), which was exposed to 50 μmol photons
m−2s−1) of photosynthetically active radiation (PAR, 400–
700 nm). Two types of fluorescent tubes were used (Osram
LumiluxWarmWhite L30W/830, and GECoolWhite F30W/
33-640) for 16 h/8 hL/D, at 20 °C throughout, in a controlled
environment room. Once the cultures reached stationary phase
(defined by no further increase in at least one of the dual
parameters of turbidity and in vivo chlorophyll fluorescence,
with sampling at 1–2-day intervals) they were harvested by
centrifugation at 4000×g for 15 min. The harvested cells were
then flash-frozen in liquid nitrogen, and then freeze-dried for
3 days. Freeze-dried algae were then transferred to individual
glass vials, with a Teflon-lined stopper, and stored in the dark,
under nitrogen gas at −80 °C.

Direct-derivatization procedure

The rapid small-scale direct-derivatization procedure was
carried out essentially according to Larson and Graham

(2001). Lyophilized micro-algae material (10 mg) was
weighed into 2 mL screw-top vials (Chromacol, UK)
and 200 μL hexane containing 0.01 % (w/v) butylated
hydroxytoluene (BHT) (Sigma) was added. This was fol-
lowed by 10 μL methyl tricosanoate (Larodan, Sweden)
internal standard (5 mg mL−1 in hexane) and 500 μL
anhydrous 1 N methanolic-HCl (Sigma). The vials were
flushed with nitrogen and capped with Teflon seals prior
to incubation at 85 °C for 2 h. After cooling at room
temperature, 250 μL of 0.88 % (w/v) KCl was added and
the upper hexane phase containing FAMES was removed
to Teflon-capped tapered vials (Chromacol) for GC anal-
ysis, flushing the sample with nitrogen gas before cap-
ping. Samples were either run immediately or stored under
nitrogen at −80 °C.

Modified Folch procedure

The extraction procedure was carried out according to Folch
et al. (1957) with modifications, and derivatized according
to Cook et al. (2000). Lyophilized micro-algal material
(25 mg) was ground in a chilled mortar and pestle with
5 mL of chloroform/methanol (2:1, v/v) with 0.01 % (w/v)
BHT and 10 μL methyl tricosanoate internal standard (5 mg
mL−1 in hexane). This was followed by the addition of
250 μL purified water (Purelab ULTRA, ELGA Process
Water, UK) and more grinding. Further homogenization
was carried out using a 15-mL glass Potter’s homogenizer
(Wheaton, USA) to achieve a fine suspension. Samples were
transferred to 8 mL Pyrex screw-capped tubes (Corning),
flushed with nitrogen and incubated for 3 d at 4 °C and
then re-extracted with the homogenizer. The solvent extract
was filtered through glass-wool using a glass Pasteur pi-
pette and mixed with 25 % vol of an aqueous wash of
0.88 % (w/v) KCl. This was allowed to partition and the
lower solvent phase was transferred to a 25-mL Pyrex
screw-capped tube and evaporated under a stream of nitro-
gen. The resultant lipid extract was derivatized by addition
of 1.5 mL toluene (containing 0.01 % (w/v) BHT) and
3 mL of a fresh stock of 1 % (v/v) H2SO4 in methanol
and incubated at 100 °C for 2 h, under nitrogen. On cool-
ing, 2 mL of 5 % (w/v) KCl was added and FAMES
partitioned twice into 2 mL hexane/ether (1:1, v/v) with
0.01 % (w/v) BHT. To the combined hexane–ether extracts,
2 mL of 2% (w/v) NaHCO3 was added for acid neutralization,
collecting the top solvent layer. This was evaporated under
nitrogen and resuspended in hexane (0.01 %w/v BHT) for
GC analysis.

Gas chromatography

Hexane phases containing FAMESwere transferred to Teflon-
capped tapered vials (McQuilkin, UK) and 1 μL aliquots were
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analysed by GC-FID (GC-2014, Shimadzu, Kyoto, Japan).
Injections were made into a 30-m, 0.25-mm ID ZB-wax
column (Phenomenex, Denmark) using helium as carrier at
1.56 mLmin−1 with a split ratio of 100:1. The oven was
ramped from 160 °C to 240 °C at 4 °C min−1 then run
isothermally at 240 °C for 10 min. Peak areas were
integrated using GC solution software (Shimadzu, Japan)
and quantified by reference to the internal standard when
expressing as %DW. Peak areas were also converted to moles
and expressed as a percentage of the total identified FA
(mol%). Defined classes such as total unsaturated FA were
expressed as the sum of individual mol% or %DW values
corresponding to individual FA. Blank runs were generated
from both extraction methods by performing the entire proce-
dures without biological material. Peak identities were ascer-
tained using external standards: 37 FAMES, PUFA2, PUFA3
(Sigma), methyl 9(Z), 12(Z) Hexadecadienoate (Larodan) and
Methyl 7(Z) hexadecadienoate (Cambridge Biosciences, UK).
Further analysis by GC-MS (Trace GC2000, Thermoquest CE
Instruments, USA) was carried out (conditions as above
except that He was 1.0 mLmin−1 with a split ratio 1:50)
to establish peak identity based on mass spectra (Xcalibur
software, Thermoquest, CE instruments) using DMOX-
derivatization of FAMEs samples to establish double-bond
position (Fay and Richli 1991).

Results

Strain selection and FAMES preparation

Ten marine micro-algae species from six different phyla
were selected for the comparison of lipid extraction methods
(Table 1). These included Chlorella and Nannochloropsis

strains where extraction issues were expected to arise (Chiu
et al. 2009; Doucha and Lívanský 2008). For the compari-
son, micro-algae cultures were grown in triplicate to station-
ary phase under controlled environment conditions. Each
replicate was harvested and lyophilized then extracted once
with a direct-derivatization method and a scaled-down mod-
ified Folch procedure.

The first method involved co-incubation of dried ma-
terial with hexane, internal standard and the derivatiza-
tion reagent 1 N Me-HCl. This was followed by addition
of aqueous buffer and recovery of hexane (Larson and
Graham 2001). This was chosen because the anhydrous
Me-HCl reagent has widespread use with few reports of
artefacts and this particular method is one of the most
rapid and requires minimal handling. It was anticipated
that exposure to the 1 N Me-HCl reagent at 85 °C would
promote extraction, given its corrosive nature. An aque-
ous KCl wash facilitated separation of FAMEs from
polar by-products. Although the incubation period was
2 h, the rest of the process required less than 5 min handling
time per sample.

The scaled-down Folch procedure was optimized for
dried micro-algae material (Folch et al. 1957). This entailed
homogenization in methanol/chloroform (2:1, v/v) plus a
small quantity of water added to improve extraction of
lyophilized material. Extraction and purification of lipids
was followed by derivatization with methanolic sulphuric
acid and an acid neutralization step (Cook et al. 2000).
Handling time was 30 min per sample for both the extrac-
tion and derivatization steps. Suspension by homogeniza-
tion proceeded relatively rapidly in some strains such as
Porphyridium. In the case of marine Chlorella strains, more
intensive mechanical homogenization was needed for sus-
pension and prolonged incubation at 4 °C was required to

Table 1 Comparison of FAME yields (%DW) for direct-derivatization and Folch methods

Micro-algal strain Direct Folch Yield ratio

Class Genus Species CCAP No. Meana SD Meana SD

Chlorophyceae Chlorella ovalis 211/21A 51.0b 3.4 34.9b 3.9 1.46

Chlorella sp. 211/75 59.8 1.8 58.9 1.8 1.01

Dunaliella tertiolecta 19/27 9.9 2.2 11.1 2.4 0.90

Tetraselmis chui 66/21A 5.3 1.4 5.4 1.8 0.99

Tetraselmis sp. 66/60 12.6 0.3 12.9 0.4 0.98

Bacillariophyceae Thalassiosira pseudonana 1085/12 15.2b 0.3 16.2b 0.2 0.94

Eustigmatophyceae Nannochloropsis oculata 849/1 21.0 1.2 24.6 2.4 0.85

Cryptophyceae Rhinomonas reticulata 995/2 45.5 1.9 46.3 1.4 0.98

Prymnesiophyceae Isochrysis galbana 927/1 9.1 0.7 9.9 3.2 0.91

Rhodophyceae Porphyridium purpureum 1380/1A 7.6 0.7 8.1 1.0 0.94

aMean of three independent biological replicates, standard deviation (SD) indicated
b Significant difference determined by t test (P<0.01)
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remove chlorophyll from the pellet. The difficulty in remov-
ing chlorophyll from the marine Chlorella strains suggested
a general impediment against solvent extraction.

Oil content estimation

The objective was primarily to compare estimates of oil
content (as total FAMEs %DW) and fatty acid composition.
Both of the methods, as applied here, were adapted to small-
scale, high-throughput use, therefore total recovery was not
a prime consideration. Differences in total recovery were
obviated though the use of an internal standard in content
estimation, so the data presented here depend principally on
extractability and actual oil content. Comparisons were car-
ried out on triplicate cultures so error included biological
variability and extraction efficiency components. The total
FAMEs content (%DW) measurements are compared for the
two procedures in Table 1. Micro-algae oil contents at
stationary phase ranged from 5–60 %DW, with the highest
oil producers being the marine Chlorella strains, the crypto-
phyte Rhinomonas reticulata (CCAP 995/2) and N. oculata
(CCAP 849/1). These data were similar for the two methods
except in the case of Chlorella ovalis (CCAP 211/21A)
where the estimated content was 46 % higher with the
direct-derivatization method (P<0.01). In the case of the
diatom Thalassiosira pseudonana (CCAP 1085/12), oil
content was lower with the direct method compared with
the Folch method but only by about 5 % (P<0.01). With the
other 8 strains, no statistically significant changes were
observed in oil content.

Fatty acid composition

Representative traces are shown for two micro-algae spe-
cies, Dunaliella tertiolecta (CCAP 19/27) and T. pseudo-
nana (Fig. 1). Traces obtained using the two methods are
overlaid and all peaks that were identified as fatty acids
are indicated. With both methods, most non-fatty acid
peaks (identified as such from their mass spectra) eluted
between the 14:0 peak and the 16:1 peaks. The prominent
non-FA peaks eluting between 3.5–4.0 min were tentative-
ly identified as phytol and its derivatives and were present
in all the strains. Several non-FA peaks were specific to
the Folch extracts but were also present in blank runs
(Fig. 1c). The direct method was found to introduce
relatively few artefacts into the analysis and none were
present in blank runs. A single minor non-FA peak commonly
appeared between 16:0 and 16:1 (n−9) that was absent, or less
prominent, in Folch extracts, as previously noted with the
model terrestrial plant Arabidopsis (Browse et al. 1986). A
lesser number of solvent handling steps in the direct method
probably led to fewer artefacts overall, compared with the
Folch method.

Relative fatty acid composition data (mol%) are depicted
for five green-algae phyla (Table 2) and for five non-green
micro-algae phyla (Table 3) which were obtained using the
direct-derivatization and Folch methods. Fatty acids that
comprise >1 % total fatty acids (on a mol% basis) in any
one of the ten species are shown here. Overall mean relative
standard deviation for these quantified peaks was 7.8 %.
Significant differences in fatty acid mol% composition be-
tween the two extraction methods were of relatively low
occurrence for the major fatty acids. This was seen in the
two Chlorella strains and D. tertiolecta in Table 2; T. pseu-
donana, N. oculata and R. reticulata in Table 3. Although
the differences amounted to less than ±10 % peak area

Fig. 1 Representative GC-FID traces from aD. tertiolectaCCAP 19/27; b
T. pseudonana CCAP 1085/12 and c blank runs, focussing on the region
where minor non-fatty acid peaks were typically located. Overlaid traces
are from direct-derivatization (black) and Folch (grey) preparations from
the same cultures. The anti-oxidant BHT and FAMES peaks (identified
according to mass spectra and DMOX-derivatization) are labelled. Arrows
indicate non-FAMEs peaks that were specific to the Folch (grey) or direct-
derivatization (black) methods; open arrows indicate peaks also present in
blank runs and closed arrows indicate peaks absent from blank runs
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between the two methods, there was nevertheless a consis-
tent bias towards higher saturated FAs and MUFAs, with a
lower estimation of polyunsaturated fatty acid content with
the direct method.

To examine this further, the compositional data was
expressed in absolute values (%DW) in Tables 4 and
5. Individual FAME yields were compared between the
two methods. In the case of C. ovalis, where overall

Table 2 Green micro-algae FAME composition (mol%) at stationary phase comparing the direct and Folch methods

Fatty acid Chlorophyceae Prasinophyceae

C. ovalis Chlorella sp. D. tertiolecta T. chui Tetraselmis sp.

CCAP 211/21A CCAP 211/75 CCAP 19/27 CCAP 66/21A CCAP 66/60

Direct Folch Direct Folch Direct Folch Direct Folch Direct Folch

Saturated fatty acids

14:0 −a − − − 0.9 1.2 1.5 1.8 − −

16:0 14.5 14.6 16.7 16.6 24.6* 23.6* 31.8 30.4 34.1 33.5

18:0 1.5 1.4 − − − − − − 1.0 1.1

Total saturated 16.6 16.7 18.1 18.1 27.1 26.7 34.1 33.2 36.4 36.0

Monounsaturated fatty acids (MUFA)

16:1(n−9) 1.3 1.3 1.0 1.0 − − 4.7 4.9 3.5 3.4

16:1(n−7) − − 1.2 1.2 − − 1.6 1.6 − −

18:1(n−9) 48.4* 47.4* 50.3 49.7 10.6 10.3 22.7 23.6 35.2 35.4

18:1(n−7) 2.2 2.1 3.0** 2.9** 2.0 1.9 2.3 2.4 2.0 1.9

20:1(n−9) − − − − − − 3.4 3.2 1.3 1.2

Total MUFA 52.8** 51.7** 55.8* 55.0* 13.8 13.4 35.1 35.9 42.4 42.3

Polyunsaturated fatty acids (PUFA)

16:2(n−7) − − − − − − − − − −

16:2(n−6) 2.6 2.7 2.5 2.6 1.2 1.2 0.9 1.1 1.3 1.3

16:2(n−4) − − − − − − − − − −

16:3(n−6) − − − − − − 1.9 1.9 − −

16:3(n−4) − − − − − − − − − −

16:3(n−3) 5.7 6.2 6.1*** 6.6*** 2.0* 2.1* − − − −

16:4(n−3) − − − − 11.9 12.9 5.6 5.7 3.1 3.2

16:4(n−1) − − − − − − − − − −

18:2(n−6) 10.3 10.3 6.6 6.6 6.3 6.2 6.4 6.4 5.8 5.7

18:3(n−6) − − − − 2.9 2.9 − − − −

18:3(n−3) 11.8**** 12.2**** 10.8* 11.2* 31.4 31.3 7.4 7.6 5.9 6.1

18:4(n−3) − − − 1.6 1.6 1.3 1.3 − −

20:3(n−6) − − − − − − − − − −

20:4(n−6) − − − − − − 1.1 1.0 − −

20:5(n−3) − − − − − − 4.1 4.0 1.5 1.5

22:5(n−6) – − − − − − − − − −

22:6(n−3) − − − − − − − − − −

Total 5−3 PUFA 17.5*** 18.4*** 16.9** 17.7** 47.2 48.1 19.4 19.7 12.3 12.9

Total PUFA 30.6*** 31.6*** 26.1** 27.0** 59.1 59.9 30.8 30.8 21.2 21.7

Total unsatd. FA 83.4 83.3 81.9 81.9 72.9 73.3 65.9 66.8 63.6 64.0

Mean RSD (%)b 2.71 3.15 2.40 2.34 10.3 10.9 19.0 18.6 12.7 12.2

Mean values are shown for three biological replicates. Significant differences are shown for the two methods (t test)

*P<0.05; **P<0.02; ***P<0.01; ****P<0.001
a – FAMES <1.0 % total (mol%)
bMean relative standard deviation (RSD) determined from FAMES>1.0 % total (mol%)
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extraction efficiency was considerably higher with the
direct method (Table 1), individual FAME yields were
also significantly higher for this method as expected
(Table 4). Of the remaining strains, where there were

only minor or non-significant differences in total yields,
significant differences in yield for individual FAMES
were found in T. pseudonana, N. oculata and R. retic-
ulata (Table 5). In these three strains, virtually all

Table 3 Non-green micro-algal FAME composition (mol%) at stationary phase comparing the direct and Folch methods

Fatty acid Bacillariophyceae Eustigmatophyceae Cryptophyceae Prymnesiophyceae Rhodophyceae

T. pseudonana N. oculata R. reticulata I. galbana P. purpureum

CCAP 1085/12 CCAP 849/1 CCAP 995/2 CCAP 927/1 CCAP 1380/1A

Direct Folch Direct Folch Direct Folch Direct Folch Direct Folch

Saturated fatty acids

14:0 18.0 17.8 5.6 5.7 26.3 26.3 25.6 23.8 −a −

16:0 19.7 19.2 33.5*** 32.3*** 34.3* 33.7* 15.1 16.2 32.4 31.4

18:0 − − 1.8 1.7 4.4 4.4 − − 9.5 9.4

Total saturated 39.4** 38.4** 42.4**** 41.1**** 65.9 65.3 42.5 41.6 42.8 41.9

Monounsaturated fatty acids (MUFA)

16:1(n−9) − − − − − − − − − −

16:1(n−7) 27.7 27.5 30.3 30.8 1.3 1.3 2.5 2.6 − −

18:1(n−9) − − 10.4 9.9 8.0 7.9 18.3 17.3 4.2 4.4

18:1(n−7) − − − − 1.1 1.1 2.1 2.0 − −

20:1(n−9) − − − − − − − − − −

Total MUFA 29.3 29.2 40.9 40.9 10.6 10.5 23.7 22.6 4.7 5.0

Polyunsaturated fatty acids (PUFA)

16:2(n−7) 2.4 2.5 − − − − − − − −

16:2(n−6) − − − − − − − − − −

16:2(n−4) 3.6 3.6 − − − − 1.3 1.1 − −

16:3(n−6) − − − − − − − − − −

16:3(n−4) 7.7 8.1 − − − − − − − −

16:3(n−3) − − − − − − − − − −

16:4(n−3) − − − − − − − − − −

16:4(n−1) 1.8 2.0 − − − − − − − −

18:2(n−6) − − 3.9 3.9 8.7 8.7 3.0 2.8 24.1 24.2

18:3(n−6) − − − − − − − − 1.1 1.1

18:3(n−3) − − − − 8.5 8.8 6.9 6.7 − −

18:4(n−3) 3.6 3.7 − − 2.7 2.8 10.8 9.7 − −

20:3(n−6) − − − − − − − − 4.6 4.7

20:4(n−6) − − 2.9 2.9 − − − − 17.6 17.9

20:5(n−3) 9.2 9.3 8.4** 9.2** 1.4 1.4 − − 4.3 4.4

22:5(n−6) − − − − − − 2.2 2.3 − −

22:6(n−3) 2.0 1.9 − − 1.0 1.0 7.4 10.8 − −

Total 5−3 PUFA 15.0 15.3 8.7** 9.7** 13.7 14.3 26.5 28.6 4.4 4.5

Total PUFA 31.3* 32.3* 16.8 18.0 23.5 24.1 33.8 35.8 52.5 53.0

Total unsatd. FA 60.6** 61.6** 57.6**** 58.9**** 34.1 34.7 57.5 58.4 57.2 58.1

Mean RSD (%)b 4.49 4.15 4.33 3.72 3.11 2.32 14.4 5.51 10.3 9.45

Mean values are shown for three biological replicates. Significant differences are shown for the two methods (t test)

*P<0.05; **P<0.02; ***P<0.01; ****P<0.002
a – FAMES<1.0 % total (mol%)
bMean relative standard deviation (RSD) determined from FAMES>1.0 % total (mol%)
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significant differences were confined to PUFAs where it
was evident that the direct method was slightly less
effective at extracting, or retaining this class of fatty
acids. In both methods the anti-oxidant BHT was utilized,

but it was noted that BHT levels tended to accumulate
in the sample through the Folch procedure judging
from the GC-FID traces (Fig. 1). This was attributed to the
drying steps in the method concentrating BHT. Despite this

Table 4 Green micro-algal FAME composition at stationary phase expressed in absolute values (%DW) comparing direct and Folch methods

Fatty acid Chlorophyceae Prasinophyceae

C. ovalis Chlorella sp. D. tertiolecta T. chui Tetraselmis sp.

CCAP 211/21A CCAP 211/75 CCAP 19/27 CCAP 66/21A CCAP 66/60

Direct Folch Direct Folch Direct Folch Direct Folch Direct Folch

Saturated fatty acids

14:0 −a − − − − − 0.06 0.07 − −

16:0 6.74** 4.62** 9.20 9.03 2.16 2.30 1.42 1.32 3.92 3.84

18:0 0.75**** 0.50**** − − − − − − 0.13 0.13

Total saturated 7.82*** 5.35*** 10.0 9.85 2.39 2.60 1.52 1.44 4.20 4.14

Monounsaturated fatty acids (MUFA)

16:1(n−9) 0.61* 0.41* − − − − 0.22 0.23 0.40 0.39

16:1(n−7) − − 0.65 0.65 − − 0.07 0.07 − −

18:1(n−9) 24.8*** 16.5*** 30.5 29.7 1.06 1.15 1.16 1.18 4.47 4.47

18:1(n−7) 1.13*** 0.75*** 1.85 1.72 0.19 0.20 0.13 0.13 0.25 0.24

20:1(n−9) − − − − − − 0.18 0.17 0.18 0.17

Total MUFA 27.0*** 18.0*** 33.7 32.7 1.36 1.47 1.78 1.79 5.34 5.31

Polyunsaturated fatty acids (PUFA)

16:2(n−7) − − − − − − − − − −

16:2(n−6) 1.19*** 0.83*** 1.37 1.39 0.10 0.12 − − 0.14 0.15

16:2(n−4) − − − − − − − − − −

16:3(n−6) − − − − − − 0.08 0.09 − −

16:3(n−4) − − − − − − − − − −

16:3(n−3) 2.61* 1.92* 3.27 3.47 0.17 0.20 − − − −

16:4(n−3) − − − − 1.00 1.21 0.26 0.27 0.34 0.36

16:4(n−1) − − − − − − − − − −

18:2(n−6) 5.25*** 3.59*** 3.96 3.90 0.62 0.68 0.32 0.31 0.73 0.71

18:3(n−6) − − − − 0.27 0.30 − − − −

18:3(n−3) 5.97*** 4.19*** 6.48 6.58 2.94 3.27 0.39 0.39 0.74 0.76

18:4(n−3) − − − − 0.15 0.16 0.07 0.06 − −

20:3(n−6) − − − − − − − − − −

20:4(n−6) − − − − − − 0.06 0.06 − −

20:5(n−3) − − − − − − 0.23 0.22 0.20 0.20

22:5(n−6) − − − − − − − − − −

22:6(n−3) − − − − − − − − − −

Total ω−3 PUFA 8.60** 6.13** 9.77 10.1 4.28 4.86 1.00 1.01 1.50 1.56

Total PUFA 15.1*** 10.6*** 15.1 15.4 5.42 6.11 1.56 1.55 2.60 2.65

Total unsatd. FA 42.1*** 28.6*** 48.8 48.1 6.78 7.58 3.34 3.35 7.94 7.96

Mean RSD (%)b 7.18 12.0 4.04 4.31 24.5 22.9 33.6 41.4 12.7 12.1

Mean values are shown for three biological replicates. Significant differences are shown for the two methods (t test)

*P<0.05; **P<0.02; ***P<0.01; ****P<0.001
a – FAMES<1.0 % total peak area
bMean relative standard deviation (RSD) determined from FAMES peaks with >1.0 % total peak area
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observation, adjusting BHT concentrations in the hexane sol-
vent that was present throughout the direct-derivatization
procedure (from 0–0.1 %w/v) resulted in no significant
compositional change relative to the original concentration of

0.01 % (w/v) (data not shown). Therefore, extraction
differences rather than lipid peroxidation could be re-
sponsible for differences in PUFA yields between the
two methods.

Table 5 Non-green micro-algal FAME composition at stationary phase expressed in absolute values (%DW) comparing direct and Folch methods

Fatty acid Bacillariophyceae Eustigmatophyceae Cryptophyceae Prymnesiophyceae Rhodophyceae

T. pseudonana N. oculata R. reticulata I. galbana P. purpureum

CCAP 1085/12 CCAP 849/1 CCAP 995/2 CCAP 927/1 CCAP 1380/1A

Direct Folch Direct Folch Direct Folch Direct Folch Direct Folch

Saturated fatty acids

14:0 2.33 2.44 0.97* 1.18* 10.3 10.5 1.64 1.70 −a −

16:0 2.87 2.95 6.53 7.46 15.1 15.1 1.09 1.32 2.17 2.15

18:0 − − 0.39 0.43 2.17 2.17 − − 0.70 0.72

Total saturated 5.46 5.62 8.16 9.39 28.0 28.2 2.86 3.17 2.93 2.94

Monounsaturated fatty acids (MUFA)

16:1(n−9) − − − − − − − − − −

16:1(n−7) 4.00 4.20 5.86 7.06 0.55 0.56 0.18 0.21 − −

18:1(n−9) − − 2.22 2.53 3.88 3.93 1.45 1.53 0.31 0.34

18:1(n−7) − − − − 0.53 0.52 0.17 0.18 − −

20:1(n−9) − − − − − − − − − −

Total MUFA 4.23 4.47 8.11 9.63 5.07 5.14 1.86 1.97 0.35 0.38

Polyunsaturated fatty acids (PUFA)

16:2(n−7) 0.35* 0.37* − − − − − − − −

16:2(n−6) − − − − − − − − − −

16:2(n−4) 0.51** 0.55** − − − − − − − −

16:3(n−6) − − − − − − − − − −

16:3(n−4) 1.09 1.22 − − − − − − − −

16:3(n−3) − − − − − − − − − −

16:4(n−3) − − − − − − − − − −

16:4(n−1) 0.26 0.30 − − − − − − − −

18:2(n−6) − − 0.84 0.98 4.22 4.29 0.23 0.25 1.77 1.82

18:3(n−6) − − − − − − − − 0.08 0.08

18:3(n−3) − − − − 4.07*** 4.27*** 0.54 0.59 − −

18:4(n−3) 0.57 0.61 − − 1.28**** 1.37**** 0.84 0.84 − −

20:3(n−6) − − − − − − − − 0.36 0.38

20:4(n−6) − − 0.67* 0.79* − − − − 1.40 1.45

20:5(n−3) 1.57** 1.70** 1.92*** 2.51*** 0.73* 0.76* − − 0.34 0.35

22:5(n−6) − − − − − − 0.21 0.23 − −

22:6(n−3) 0.37 0.38 − − 0.56*** 0.60*** 0.69 1.11 − −

Total 5−3 PUFA 2.54 2.74 1.99*** 2.63*** 6.71*** 7.10*** 2.18 2.66 0.35 0.36

Total PUFA 4.87*** 5.32*** 3.77** 4.81** 11.5 12.0 2.79 3.31 4.02 4.15

Total unsatd. FA 9.11*** 9.79*** 11.9* 14.4* 16.5 17.1 4.64 5.29 4.37 4.53

Mean RSD (%)b 4.58 4.32 5.58 9.54 3.20 2.24 13.7 32.9 11.9 11.8

Mean values are shown for three biological replicates. Significant differences are shown for the two methods (t test)

*P<0.05; **P<0.02; ***P<0.01; ****P<0.001
a – FAMES<1.0 % total peak area
bMean relative standard deviation (RSD) determined from FAMES peaks with >1.0 % total peak area
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Discussion

A large number of diverse micro-algae species accumulate
oil to high levels in the form as TAG (Day et al. 2012; Hu et
al. 2008). Mining this diversity of micro-algae requires
high-throughput screening approaches to identify those with
the most potential. Most surveys of oil content and compo-
sition have used solvent extraction methods, of which the
Folch-based procedures are the most widely applied
(Iverson et al. 2001). Direct-derivatization methods offer a
rapid alternative, since extraction and derivatization occur
simultaneously (Christie 1993).

A comparative study was carried out to evaluate a direct
method and solvent-based extraction on lyophilized material
with a representative number of strains and also take into
account compositional as well as oil yield effects. Ten
species from six different phyla were examined using a
scaled-down Folch procedure that was modified to reduce
handling time and improve extraction from dry material.
This was compared with a direct method that used commer-
cial anhydrous Me-HCl stock (Larson and Graham 2001).
This method was one of the simplest in terms of handling
steps and use of this catalytic reagent has few reported
artefacts (Christie 1993).

Micro-algal TAG contents ranged from 5–60 %DW, with
the highest producers being the marine Chlorella strains, the
cryptophyte R. reticulata and N. oculata (Table 1). There
was no substantial yield differences between the two meth-
ods except for one of the 2 Chlorella species (C. ovalis)
where the estimated content was 50 % lower with the
modified Folch method (P<0.01). This occurred despite
efforts to ensure complete homogenization followed by
incubation in solvent. Overall, these data suggest that the
direct method is the more reliable for oil content determina-
tion in high-throughput screens, whereas the Folch method
could potentially underestimate this value in some Chlorella
species. A similar finding was recently reported for C.
vulgaris showing incomplete extraction with the Soxhlet
procedure (Laurens et al. 2012). This is practically important
since Chlorella and other phenotypically similar chlorococca-
lean taxa are virtually ubiquitous in terrestrial, freshwater,
brackish and marine ecosystem environments and are con-
sidered to have much economic potential (Hu et al. 2008).
As Folch-based methods continue to be used in lipid
analysis of Chlorella, this may well be providing under-
estimates of lipid levels and therefore understating their
biotechnological potential.

Extraction difficulties might be connected to specific cell
wall characteristics of some Chlorella species that appear to
impede extraction (Doucha and Lívanský 2008). These fac-
tors could be compounded by harvesting the micro-algae at
stationary phase. For instance, in Haematococcus pluvialis,
entry into this phase leads to a strengthening of the cell wall

and eventual cyst formation as an adaptation to stress (Aflalo
et al. 2007). Factors specific to the Chlorella are thought likely
to impede uptake of dyes in this genus leading to underesti-
mation of oil content using Nile Red fluorescence (Chen
et al. 2009; Sheehan et al. 1998). It is notable that glucos-
amine polymers such as chitins and chitosan are found in some
Chlorella species (Kapaun and Reisser 1995; Sun et al. 1999)
and genes for chitin remodelling have been identified in the
genome of Chlorella variabilis (Blanc et al. 2010). Further
work is required to establish if there is a relationship between
the presence of chitins and obduracy towards extraction in the
Chlorella genus. How this relates towards the cessation of
growth, adaptation towards stress and accumulation of lipids
during stationary phase also requires investigation. Consider-
ing that the corrosive nature of acid-based derivatization
reagents can aid extraction (Browse et al. 1986), it appears that
the direct approach for FAME production overcomes these
problems in the case of Chlorella. From an industrial perspec-
tive, acid-catalyzed direct derivatization might be advanta-
geous at the large scale for biodiesel production with these
species (Haas and Wagner 2011).

Comparison of relative fatty acid composition between
the two methods (Table 2 and 3) revealed low but significant
differences (±10 % peak area), with a consistent bias to-
wards lower unsaturation with the direct method. This was
observed in the two Chlorella strains and D. tertiolecta
(Table 2); T. pseudonana, N. oculata and R. reticulata
(Table 3). When the data was expressed in absolute terms
(%DW), almost all significant differences were confined to
PUFAs where it was evident that the direct method was
slightly less effective at extracting, or preserving this class
of fatty acids (Tables 4 and 5). Adjusting BHT concentra-
tions in the hexane solvent present during derivatization in
the direct method had no effect, suggesting that extraction
differences rather than lipid peroxidation might be respon-
sible for differences in PUFA yields (data not shown). In a
similar comparison for red blood cells, more saturated fatty
acids were extracted with a direct method than with Folch
but not MUFAs or PUFAs (Clayton et al. 2012). Conversely,
two comparative studies using marine animal material reported
improved recovery of PUFAs in direct methods relative to
conventional two-step methods, however (Abdulkadir and
Tsuchiya 2008; Indarti et al. 2005). This was attributed to
greater oxidation associated with the extra handling steps in
the latter which was plausible as these studies did not employ
antioxidants, as used in the present study. Taken together, it
appears that the direct methods are less likely to be impeded in
extraction than the Folch-based methods by substrate depen-
dent factors such as cell wall structure but there might beminor
reagent based limitations to extraction that discriminate by
lipid class or fatty acid composition. The latter could depend
on the particular direct method employed and this requires
further study.

970 J Appl Phycol (2013) 25:961–972



The selection of future algae production strains for bio-
fuels, food, pharmaceutical, nutraceutical or cosmeceutical
purposes necessitates the use of robust efficient lipid analy-
ses suitable for high-throughput screening. In this study, a
rapid analytical method (Larson and Graham 2001) and a
scaled-down Folch-based procedure (Cook et al. 2000;
Folch et al. 1957) were evaluated. Overall, the rapid ap-
proach was found to be ideal for high-throughput screening
for yield determination, whereas the scaled-down Folch
procedure was slightly more accurate in terms of fatty acid
composition.
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