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Abstract In this paper we present results on existence, uniqueness and convergence of so-
lutions to the Cauchy problem for abstract first order evolutionary inclusion which contains
two operators depending on the history of the solution. These results are applicable to a
dynamic contact problem for viscoelastic materials with a normal compliance contact con-
dition with memory and a friction law in which the friction bound depends on the magnitude
of the tangential displacement. The proofs are based on recent results for hemivariational in-
equalities and a fixed point argument.
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1 Introduction

The subject of our research is a contact model that involves history-dependent operators.
This model describes the dynamic frictional contact between a viscoelastic body and a foun-
dation. We consider the contact condition with a normal compliance and a memory effect of
the foundation. The research that we present in this paper concerns the study on existence
and uniqueness of solutions to the hemivariational inequalities with history-dependent op-
erators, and the investigation on the behaviour of solutions to such inequalities with respect
to perturbations of operators and functions.
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We note that the history-dependent operators have been considered for quasistatic
and evolutionary contact problems by several authors, for example, by Sofonea et al. in
[8, 21, 26–28] and [29], Migórski et al. in [5, 15, 19] and [20], Ogorzały in [23], Yao
et al. in [31], and Zhu in [33]. The normal compliance contact condition was introduced in
[13, 14, 22] and it was used in many papers, see, e.g., [3, 9, 25] and [29]. In [28], Sofonea and
Patrulescu considered a contact condition which describes a foundation that is rigid if the
penetration reaches a critical bound. Moreover, their model takes into account the memory
effect of the foundation. In turn, Farcas et al. in [8] studied the model which describes the
quasistatic contact between a viscoplastic body and a foundation. The authors used a contact
condition which involves both a normal compliance, a unilateral constraint and a memory
effect on the foundation. They proved that the problem under consideration has a unique
solution. In [25], Sofonea et al., the behaviour of the solutions of variational inequalities
with history-dependent operator is investigated. In our paper we use the contact condition
with the normal compliance and memory effect which was introduced in [5] in the study of
a quasistatic contact problem. In contrast to [5], our model is dynamic and we assume that
the magnitude of the friction force is bounded by a function, the so-called friction bound.
We also mention that various classes of hemivariational inequalities for contact problems
with slip-dependent friction have been studied, e.g., in [17] and [18].

In the present paper, we start with the study of an abstract evolutionary inclusion of the
first order with a history-dependent operator. We prove results on existence and unique-
ness of solution and a result on the convergence of solution of the inclusion with history-
dependent operators with respect to perturbations in the data. The existence result is obtained
by a technique used by Migórski and Kulig in [20] who studied second order subdifferential
inclusions with a Volterra-type operator. The unique solvability of the inclusion is proved
by a standard fixed point argument similar to those used in many papers, for instance in
[15, 19–21] and [23]. Furthermore, we note that the abstract convergence result of The-
orem 13 is based on arguments and assumptions similar to those exploited, for instance
in [2, 15, 25] and [27]. In the second part of the paper we analyze a mathematical model
of a contact problem for viscoelastic materials with history-dependent operators and a slip-
dependent friction. We provide its variational formulation and deliver results on existence,
uniqueness and convergence of solutions.

There are two main novel features of this paper. First novelty consists in the more
general form of the friction law. We study a contact model which involves the friction
condition with the friction bound depending on the magnitude of the tangential displace-
ment. Such dependence is met in several models of Contact Mechanics, for example, in
[1, 10–12, 16, 18] and [30]. In the analysis of frictional processes, such as modelling of mo-
tions of tectonic plates and earthquakes, it is necessary to consider the friction bound which
varies with the magnitude of the tangential displacement. In the aformentioned situations,
the constant friction bound is inadequate to model the dynamic frictional contact. Another
novel feature of this paper is the analysis of the dynamics. In contrast to other contributions
in the field, cf., e.g., [1, 12, 17, 27] and [31], we treat a dynamic contact problem for which
the mathematical techniques are less developed than for quasistatic evolutionary models. We
underline that there are no results on existence, uniqueness and convergence of solutions to
the dynamic hemivariational inequality in Problem 17, which models the contact problem
under consideration.

The rest of paper is structured as follows. In Sect. 2, we recall some preliminary material.
In Sect. 3, we state and prove our abstract existence, uniqueness and convergence results. In
Sect. 4, we study the dynamic contact problem for which we use the results obtained for the
abstract inclusion.
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2 Preliminaries

In this section we present a material which is helpful in the rest of the paper. Let X be a
Banach space with norm ‖ · ‖X and let X∗ be its dual. The notation 〈·, ·〉X∗×X stands for the
duality pairing between X∗ and X, and 2X∗

represents the collection of all subsets of X. We
denote by L(X,Y ) the space of linear and bounded operators defined on a Banach space X

with values in a Banach space Y with the usual norm ‖ · ‖L(X,Y ). For a set U ⊂ X, we define
‖U‖X = sup{‖u‖X|u ∈ U}.

In the paper we use the concepts of the generalized directional derivative and the Clarke
subdifferential, see, for example, [6, 7] and [21].

Definition 1 The generalized directional derivative (in the sense of Clarke) of a locally
Lipschitz function ϕ : X −→ R at the point x ∈ X in the direction v ∈ X, denoted ϕ0(x;v)

is defined by

ϕ0(x;v) = lim sup
y→x,λ↓0

ϕ(y + λv) − ϕ(y)

λ
.

Definition 2 Let ϕ : X −→ R be a locally Lipschitz function. The Clarke generalized gra-
dient (subdifferential) of ϕ at x ∈ X, denoted ∂ϕ(x), is the subset of a dual space X∗ defined
by

∂ϕ(x) = {
ζ ∈ X∗|ϕ0(x;v) � 〈ζ, v〉X∗×X for all v ∈ X

}
.

We have the following definition of regularity in sense of Clarke (see, for instance, [6]).

Definition 3 A locally Lipschitz function ϕ : X −→ R is called regular at x ∈ X, if for all
v ∈ X, the one-sided directional derivative ϕ′(x, v) exists and it satisfies ϕ0(x;v) = ϕ′(x, v)

for all v ∈ X.

The proof of the following result can be found in Theorem 2.3.10 in [6].

Proposition 4 Let X and Y be Banach spaces, L ∈ L(Y,X) and let ϕ : X −→ R be a
locally Lipschitz function. Then

(i) (ϕ ◦ L)0(x; z) � ϕ0(Lx;Lz) for x, z ∈ Y ,
(ii) ∂(ϕ ◦ L)(x) ⊆ L∗∂ϕ(Lx) for x ∈ Y ,

where L∗ ∈ L(X∗, Y ∗) denotes the adjoint operator to L. If, in addition, either ϕ or −ϕ is
regular, then (i) and (ii) hold with the corresponding equalities.

We recall the result which is a consequence of the Banach contraction principle (for the
proof see, for instance, [15]).

Lemma 5 Let X be a Banach space with a norm ‖ · ‖X and T > 0. Let Λ : L2(0, T ;X) −→
L2(0, T ;X) be an operator such that

‖(Λη1)(t) − (Λη2)(t)‖2
X � c

∫ t

0
‖η1(s) − η2(s)‖2

Xds

for every η1, η2 ∈ L2(0, T ;X), a.e. t ∈ (0, T ) with a constant c > 0. Then Λ has a unique
fixed point in L2(0, T ;X), i.e., there exists a unique η∗ ∈ L2(0, T ;X) such that Λη∗ = η∗.
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Here and subsequently c denotes a positive constant which value can change from line to
line.

Finally, we recall an existence and uniqueness result for the evolutionary inclusion of
first order. We assume that V and Z are separable and reflexive Banach spaces with the
duals V ∗ and Z∗, respectively. Let H denote a separable Hilbert space and we identify H

with its dual. We suppose that V ⊂ H ⊂ V ∗ and Z ⊂ H ⊂ Z∗ are Gelfand triples of spaces
where all embeddings are continuous, dense and compact (see, for instance, Chap. 23.4
of [32], Chap. 3.4 of [7]). Moreover, for 0 < T < ∞, we introduce the following spaces
V = L2(0, T ;V ) and W = {v ∈ V|v′ ∈ V∗}. The first order evolutionary inclusion reads as
follows.

Problem 6 Find u ∈ W such that
{

u′(t) + A(t,u(t)) + G(t,u(t)) � f (t) a.e. t ∈ (0, T ),

u(0) = v0.

We assume the following hypotheses on the data of Problem 6.

A : (0, T ) × V −→ V ∗ is such that

(a) A(·, u) is measurable on (0, T ) for all u ∈ V ,

(b) A(t, ·) is strongly monotone, i.e., there exists mA > 0 such that

〈A(t,u1) − A(t,u2), u1 − u2〉V ∗×V � mA‖u1 − u2‖2
V

for all u1, u2 ∈ V and a.e. t ∈ (0, T ),

(c) A(t, ·) is hemicontinuous, i.e., for all u, v, w ∈ V ,

the function t �−→ 〈A(u + tv),w〉V ∗×V is continuous on [0,1],
(d) ‖A(t,u)‖V ∗ � a0(t) + a1‖u‖V for all u ∈ V ,

a.e. t ∈ (0, T ) with a0 ∈ L2(0, T ) and a0, a1 � 0,

(e) A(t,0) = 0 for a.e. t ∈ (0, T ).

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1)

G : (0, T ) × V −→ 2Z∗
has nonempty, closed, convex values and

(a) G(·, v) is measurable on (0, T ) for all v ∈ V ,

(b) G(t, ·) is upper semicontinuous from V into w–Z∗ for a.e. t ∈ (0, T ),

where V is endowed with Z-topology,

(c) ‖G(t, v)‖Z∗ � d̃0(t) + d̃1‖v‖V for all v ∈ V , a.e. t ∈ (0, T ) with

d̃0 ∈ L2(0, T ) and d̃0, d̃1 � 0,

(d) 〈ζ1 − ζ2, v1 − v2〉Z∗×Z � −m2‖v1 − v2‖2
V for all ζi ∈ G(t, vi), vi ∈ V ,

i = 1,2, a.e. t ∈ (0, T ) with m2 � 0.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2)

(a) f ∈ V∗ and v0 ∈ V,

(b) mA > m2,

(c) mA > 2
√

3ced̃1, where ce > 0 is the embedding constant of V into Z,

i.e., ‖ · ‖Z � ce‖ · ‖V .

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(3)
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Theorem 7 Under assumptions (1)–(3), Problem 6 has a unique solution.

Proof It follows the lines of proof of Theorem 3 in [15], cf. Sects. 3.2.2 and 3.2.3 in
[15]. �

3 History-Dependent Subdifferential Inclusion

In this section we study the Cauchy problem for a subdifferential inclusion with history-
dependent operators. We provide an existence and uniqueness result and a theorem on the
dependence of solution on the data. Here, we use the spaces V , Z, H , V and W which are
defined in Sect. 2. Additionally, we denote by C(0, T ;H) the space of continuous functions
from [0, T ] into H . We consider the following abstract inclusion.

Problem 8 Find u ∈ W such that

{
u′(t) + A(t,u(t)) + (Su)(t) + F(t, (Ru)(t), u(t)) � f (t) for a.e. t ∈ (0, T ),

u(0) = v0.
(4)

We admit the following definition.

Definition 9 A function u ∈ W is a solution of Problem 8 if and only if there exists ζ ∈
L2(0, T ;Z∗) such that

⎧
⎪⎨

⎪⎩

u′(t) + A(t,u(t)) + (Su)(t) + ζ(t) = f (t) for a.e. t ∈ (0, T ),

ζ(t) ∈ F(t, (Ru)(t), u(t)) for a.e. t ∈ (0, T ),

u(0) = v0.

For operators R and S , we need the following hypotheses.
R : V −→ V is such that

‖(Ru1)(t) − (Ru2)(t)‖V � LR

∫ t

0
‖u1(s) − u2(s)‖V ds (5)

for u1, u2 ∈ V , a.e. t ∈ (0, T ) with LR > 0.
S : V −→ V∗ is such that

‖(Su1)(t) − (Su2)(t)‖V ∗ � LS

∫ t

0
‖u1(s) − u2(s)‖V ds (6)

for u1, u2 ∈ V , a.e. t ∈ (0, T ) with LS > 0.
In the case of operators (5) and (6), the values (Rv)(t) and (Sv)(t), respectively, at the

moment t depend on the history of the value of v at the moment 0 � s � t . For this reason
these operators are called the history-dependent operators. Some examples of the history-
dependent operators can be found, for instance, in [27].
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For the multifunction F in Problem 8, we need the following assumption.

F : (0, T ) × V × V −→ 2Z∗
has nonempty, closed, convex values and

(a) F(·, u, v) is measurable on (0, T ) for all u,v ∈ V ,

(b) F(t, ·, ·) is upper semicontinuous from V ×V into w −Z∗ for a.e. t ∈ (0, T ),

(c) ‖F(t, u, v)‖Z∗ � d0(t) + d1‖u‖V + d2‖v‖V for all u,v ∈ V , a.e. t ∈ (0, T ),

with d0 ∈ L2(0, T ) and d0, d1, d2 � 0,

(d) 〈ζ1 − ζ2, v1 − v2〉Z∗×Z � −mF1‖v1 − v2‖2
V − mF2‖v1 − v2‖V ‖u1 − u2‖V

for all ζi ∈F(t, ui, vi), ui, vi ∈ V, i =1,2, a.e. t ∈ (0, T ) with mF1,mF2 �0.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(7)

Additionally, we need the following smallness conditions

(a) mA > 2
√

3ced2,

(b) mA > mF1.

}

(8)

Theorem 10 Assume that (1), (3)(a) and (5)–(8) hold. Then Problem 8 has a unique solu-
tion.

Proof Let (η, ξ) ∈ V∗ × V be given. We consider the following auxiliary problem.

Problem 11 Find uηξ ∈ W such that

{
u′

ηξ (t) + A(t,uηξ (t)) + F(t, ξ(t), uηξ (t)) � f (t) − η(t) for a.e. t ∈ (0, T ),

uηξ (0) = v0.
(9)

We establish the existence of a unique solution to Problem 11 by using Theorem 7.
Let Gξ : (0, T ) × V −→ 2Z∗

be defined by Gξ(t, v) = F(t, ξ(t), v) for all v ∈ V and a.e.
t ∈ (0, T ). It easy to see that Gξ(·, v) is measurable on (0, T ) for all v ∈ V and Gξ(t, ·)
is upper semicontinuous from V into w–Z∗ for a.e. t ∈ (0, T ). From (7)(c), we infer that
‖Gξ(t, v)‖Z∗ = ‖F(t, ξ(t), v)‖Z∗ � d0(t) + d1‖ξ(t)‖V + d2‖v‖V . Hence Gξ satisfies hy-
pothesis (2)(c) with d̃0(t) = d0(t) + d1‖ξ(t)‖V , d̃0 ∈ L2(0, T ) and d̃1 = d2. Finally, from
(7)(d), we have

〈
Gξ(t, v1) − Gξ(t, v2), v1 − v2

〉
Z∗×Z

= 〈
F

(
t, ξ(t), v1

) − F
(
t, ξ(t), v2

)
, v1 − v2

〉
Z∗×Z

� −mF1‖v1 − v2‖2
V for all v1, v2 ∈ V, a.e. t ∈ (0, T ).

Hence, we deduce that the operator Gξ satisfies condition (2)(d) with m2 = mF1. Since
d2 = d̃1, condition (8)(a) implies (3)(c). Using the fact that m2 = mF1, from (8)(b), we
deduce (3)(b). Therefore, the hypotheses of Theorem 7 are verified. From this theorem, we
infer that Problem 11 has a unique solution uηξ ∈ W .

Next, we will establish an inequality which shows the dependence of the solution uηξ ∈
W of Problem 11 on η and ξ . Let uηiξi = ui ∈ W be the unique solution to Problem 11
corresponding to (ηi, ξi) ∈ V∗ × V for i = 1,2. Then, there exists ζi ∈ L2(0, T ;Z∗) such
that ζi(t) ∈ F(t, ξi(t), ui(t)) for a.e. t ∈ (0, T ), i = 1, 2, and we have

u′
1(t) + A

(
t, u1(t)

) + η1(t) + ζ1(t) = f (t), (10)
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u′
2(t) + A

(
t, u2(t)

) + η2(t) + ζ2(t) = f (t) (11)

for a.e. t ∈ (0, T ). Multiplying Eq. (10) by u2(t) − u1(t) and Eq. (11) by u1(t) − u2(t), and
adding the results, we obtain

〈
u′

1(t) − u′
2(t), u2(t) − u1(t)

〉
V ∗×V

+ 〈
A

(
t, u1(t)

) − A
(
t, u2(t)

)
, u2(t) − u1(t)

〉
V ∗×V

+ 〈
η1(t) − η2(t), u2(t) − u1(t)

〉
V ∗×V

+ 〈
ζ1(t) − ζ2(t), u2(t) − u1(t)

〉
Z∗×Z

= 0.

Integrating the above inequality over (0, t), for all t ∈ [0, T ], and next using the integration
by parts formula, the Cauchy-Schwartz inequality, conditions (1)(b) and (7)(d), we have

1

2
‖u1(t) − u2(t)‖2

H + mA

∫ t

0
‖u1(s) − u2(s)‖2

V ds − mF1

∫ t

0
‖u1(s) − u2(s)‖2

V ds

� mF2

∫ t

0
‖ξ1(t) − ξ2(t)‖V ‖u1(s) − u2(s)‖V ds

+
∫ t

0
‖η1(s) − η2(s)‖V ∗‖u1(s) − u2(s)‖V ds.

Omitting the first term on the left hand side, using condition (8)(b) and the Hölder inequality,
we obtain

‖u1 − u2‖L2(0,t;V ) � c(‖η1 − η2‖L2(0,t;V ∗) + ‖ξ1 − ξ2‖L2(0,t;V )) for a.e. t ∈ (0, T ). (12)

Next, we define the operator Λ : L2(0, T ;V ∗ × V ) −→ L2(0, T ;V ∗ × V ) by

Λ(η, ξ) = (Suηξ ,Ruηξ ) for (η, ξ) ∈ L2
(
0, T ;V ∗ × V

)
,

where uηξ ∈ W denotes the unique solution to Problem 11 corresponding to (η, ξ). Then,
from (5) and (6), we get

‖Λ(η1, ξ1)(t) − Λ(η2, ξ2)(t)‖2
V ∗×V = ‖(Su1)(t) − (Su2)(t)‖2

V ∗ + ‖(Ru1)(t) − (Ru2)(t)‖2
V

�
(

LS

∫ t

0
‖u1(s) − u2(s)‖V ds

)2

+
(

LR

∫ t

0
‖u1(s) − u2(s)‖V ds

)2

for a.e. t ∈ (0, T ). Using the Hölder inequality, we see that

‖Λ(η1, ξ1)(t) − Λ(η2, ξ2)(t)‖2
V ∗×V �

(
L2

S + L2
R

)
T

∫ t

0
‖u1(s) − u2(s)‖2

V ds

for a.e. t ∈ (0, T ). Combining the latter with (12), we obtain the following inequality

‖Λ(η1, ξ1)(t) − Λ(η2, ξ2)(t)‖2
V ∗×V � c

(‖η1 − η2‖2
L2(0,t;V ∗)

+ ‖ξ1 − ξ2‖2
L2(0,t;V )

)
. (13)

for a.e. t ∈ (0, T ). Based on Lemma 5 and estimate (13), we conclude that the operator Λ

has a unique fixed point (η∗, ξ ∗) ∈ V∗ × V . This implies that uη∗ξ∗ ∈ W is a solution of
Problem 8, which concludes the existence part of the theorem.

The uniqueness of solution to Problem 8 is a consequence of the uniqueness of the fixed
point of Λ. Namely, let u ∈ W be a solution to Problem 8 and define the element (η, ξ) ∈
V∗ × V by (η, ξ) = (Su,Ru). It follows that u is the solution to Problem 11 and, by the
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uniqueness of solutions to Problem 11, we obtain that u = uηξ . This implies that Λ(η, ξ) =
(η, ξ). By the uniqueness of the fixed point of Λ, we have (η, ξ) = (η∗, ξ ∗), so u = uη∗ξ∗ .
This completes the proof of the theorem. �

Now, we study the dependence of solution of the history-dependent subdifferential inclu-
sion (4) with respect to the perturbations of the operators A, R, S and the function f . For
every ρ > 0, let Aρ , Rρ , Sρ , fρ and u0ρ be perturbations of A, R, S , f and u0, respectively.
We introduce the following hypotheses.

(a) the operators A, Aρ : (0, T ) × V −→ V ∗ satisfy (1) and

Aρ(t, v) −→ A(t, v) in V ∗ for all v ∈ V , a.e. t ∈ (0, T ), as ρ −→ 0,

(b) the operators S, Sρ : V −→ V∗ satisfy (6) with LS > 0 and LSρ > 0

for all ρ > 0, respectively and LSρ � L1 for all ρ > 0,

(c) there exists k1 : R+ −→R+ and g1 : V −→R+ such that

‖(Sρv)(t) − (Sv)(t)‖V ∗ � k1(ρ)g1(v) for all v ∈ V , a.e. t ∈ (0, T ) and

limρ→0 k1(ρ) = 0,

(d) the operators R, Rρ : V −→ V satisfy (5) with LR > 0 and LRρ > 0

for all ρ > 0, respectively and LRρ � L2 for all ρ > 0,

(e) there exists k2 : R+ −→R+ and g2 : V −→R+ such that

‖(Rρv)(t) − (Rv)(t)‖V � k2(ρ)g2(v) for all v ∈ V , a.e. t ∈ (0, T ) and

limρ→0 k2(ρ) = 0,

(f) f,fρ ∈ V∗ and fρ −→ f in V∗, as ρ −→ 0,

(g) v0, v0ρ ∈ V and v0ρ −→ v0 in V , as ρ −→ 0.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(14)

We consider the following perturbed version of Problem 8.

Problem 12 Find uρ ∈ W such that
{

u′
ρ(t) + Aρ(t, uρ(t)) + (Sρuρ)(t) + F(t, (Rρuρ)(t), uρ(t)) � fρ(t) for a.e. t ∈ (0, T )

uρ(0) = v0ρ.

We have the following convergence result.

Theorem 13 Under assumptions (7), (8)(a), (14), u0 ∈ V and

mA > L1T + mF1 + mF2L2T , (15)

the solution uρ of Problem 12 converges to the solution u of Problem 8 in the following
sense ‖uρ − u‖V + ‖uρ − u‖C(0,T ;H) −→ 0, as ρ −→ 0.

Proof We observe that hypothesis (15) implies condition (8)(b). From Theorem 10 there
exist uρ,u ∈ W unique solutions to Problems 12 and 8, respectively. From Definition 9, we
have

u′
ρ(t) + Aρ

(
t, uρ(t)

) + (Sρuρ)(t) + ζρ(t) = fρ(t), (16)
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u′(t) + A
(
t, u(t)

) + (Su)(t) + ζ(t) = f (t) (17)

for a.e. t ∈ (0, T ), where ζρ(t) ∈ F(t, (Rρuρ)(t), uρ(t)) and ζ(t) ∈ F(t, (Ru)(t), u(t)) for
a.e. t ∈ (0, T ). We substract the equality (17) from (16) and multiply obtained result by
u(t) − uρ(t). Integrating the result over (0, t), for all t ∈ [0, T ], we have

∫ t

0

〈
u′

ρ(s) − u′(s), u(s) − uρ(s)
〉
V ∗×V

ds

+
∫ t

0

〈
Aρ

(
s, uρ(s)

) − A
(
s, u(s)

)
, u(s) − uρ(s)

〉
V ∗×V

ds

+
∫ t

0

〈
(Sρuρ)(s) − (Su)(s), u(s) − uρ(s)

〉
V ∗×V

ds

+
∫ t

0

〈
ζρ(s) − ζ(s), u(s) − uρ(s)

〉
Z∗×Z

ds

=
∫ t

0

〈
fρ(s) − f (s), u(s) − uρ(s)

〉
V ∗×V

ds. (18)

We apply the integration by parts formula, properties (1)(b) and (7)(d), and obtain

1

2
‖uρ(t) − u(t)‖2

H + mA

∫ t

0
‖uρ(s) − u(s)‖2

V ds − mF1

∫ t

0
‖uρ(s) − u(s)‖2

V ds

�
∫ t

0
‖fρ(s) − f (s)‖V ∗‖u(s) − uρ(s)‖V ds

+
∫ t

0
‖Aρ

(
s, u(s)

) − A
(
s, u(s)

)‖V ∗‖u(s) − uρ(s)‖V ds

+
∫ t

0
‖(Sρuρ)(s) − (Sρu)(s)‖V ∗‖u(s) − uρ(s)‖V ds

+
∫ t

0
‖(Sρu)(s) − (Su)(s)‖V ∗‖u(s) − uρ(s)‖V ds

+ mF2

∫ t

0
‖(Rρuρ)(s) − (Rρu)(s)‖V ‖u(s) − uρ(s)‖V ds

+ mF2

∫ t

0
‖(Rρu)(s) − (Ru)(s)‖V ‖u(s) − uρ(s)‖V ds + 1

2
‖v0ρ − v0‖2

H (19)

for all t ∈ [0, T ]. Omitting the first term on the left hand side, using hypothesis (14)(b), (d)
and the Hölder inequality, we infer that

mA‖uρ − u‖2
V − mF1‖uρ − u‖2

V

� ‖fρ − f ‖V∗‖u − uρ‖V + ‖Aρ(·, u) − A(·, u)‖V∗‖u − uρ‖V

+ L1T ‖u − uρ‖2
V + ‖Sρu − Su‖V∗‖u − uρ‖V + mF2L2T ‖u − uρ‖2

V

+ mF2‖Rρu −Ru‖V‖u − uρ‖V + 1

2
‖v0ρ − v0‖2

H .
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Hence, by hypothesis (15) and the elementary property: x2 � ax + b implies x2 � a2 + b

for all x, a, b � 0, we get

‖uρ − u‖2
V � c

(‖fρ − f ‖V∗ + ‖Aρ(·, u) − A(·, u)‖V∗ + ‖Sρu − Su‖V∗ + ‖Rρu −Ru‖V
)2

+ ‖v0ρ − v0‖2
H

with a constant c independent of ρ. Since Aρ is a bounded operator (cf. (1)(d)), from condi-
tion (14)(a) and the Lebesgue dominated convergence theorem, we see that

Aρ(·, u) −→ A(·, u) in V∗, as ρ −→ 0. (20)

Moreover, from conditions (14)(c), (e), we have

‖Sρu − Su‖V∗ �
√

T k1(ρ)g1(u) and ‖Rρu −Ru‖V �
√

T k2(ρ)g2(u),

which imply

lim
ρ→0

‖Sρu − Su‖V∗ = 0 and lim
ρ→0

‖Rρu −Ru‖V = 0. (21)

These observations, together with assumptions (14)(f) and (g), lead to the following conclu-
sion

lim
ρ→0

‖uρ − u‖V = 0. (22)

Finally, from (19), the Hölder inequality and assumptions (1)(b), (6), (7)(d), (15), and
(14)(b), (d), we obtain

‖uρ(t) − u(t)‖2
H � c

(‖Aρ(·, u) − A(·, u)‖V∗ + ‖Sρu − Su‖V∗

+ ‖Rρu −Ru‖V + ‖fρ − f ‖V∗
)‖uρ − u‖V + c‖v0ρ − v0‖2

H ,

for all t ∈ [0, T ] with a constant c independent of ρ. Hence and from conditions (14)(f), (g),
and (20)–(22), we see that ‖uρ − u‖C(0,T ;H) −→ 0, as ρ −→ 0. This completes the proof of
the theorem. �

We note that the result of Theorem 10 on the existence and uniqueness of solution to
Problem 8 holds without any restriction on the size T of the time interval. On contrary, the
convergence result provided in Theorem 13 requires an essential smallness condition (15)
which relates the coercivity constant of the operator A with the monotonicity constants mF1

and mF2, the constants for the history-dependent operators L1 and L2, and the length of the
time interval. This condition can be violated when T is sufficiently large, and therefore, the
convergence result is only a local one. On the other hand, the convergence result presented in
Theorem 13 represents a crucial tool in the analysis of dynamic frictional contact problems
for viscoelastic materials.

4 A Viscoelastic Contact Model

This section is devoted to the analysis of a viscoelastic contact model with history-dependent
operators. First, we deliver a result on the unique weak solvability. Then, we present a result
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concerning the dependence of the solution of Problem 17 on perturbations of the viscosity
operator, the elasticity operator, the relaxation operator, the normal compliance function pν ,
the memory function b, body forces f0 and surface tractions f2. In the study of this model,
we use the abstract results that we obtained in Sect. 3.

We consider a body which occupies an open, bounded and connected set Ω ⊂ R
d , where

d = 2, 3. We assume that the set Ω has a Lipschitz continuous boundary Γ . The boundary Γ

is divided into three mutually disjoint and relatively open sets Γ1,Γ2 and Γ3. Moreover, we
assume that meas(Γ1) > 0 and the body is clamped on Γ1. Surface tractions of density f2

act on the part Γ2, whereas a force of density f0 acts in Ω . The body is in frictional contact
on Γ3 with a deformable foundation. We suppose that between the body and the foundation
there is no separation. The problem is dynamic and we study the evolution process of the
mechanical state of the body on the finite time interval [0, T ], where T > 0.

We denote by S
d the space of second order symmetric tensors on R

d . We will use
the symbols σ = σ(x, t) = (σij (x, t)) and u = u(x, t) = (ui(x, t)) to denote the stress
field and the displacement field, respectively. Moreover, by ν = (νi) we denote the out-
ward unit normal on Γ . Here, the indices i and j run between 1 and d . The functions
σ : Ω × [0, T ] −→ S

d and u : Ω × [0, T ] −→ R
d are the unknowns in the contact prob-

lem. We recall that in R
d and S

d , we consider the following canonical inner products and
corresponding norms.

u · v =
∑

i

uivi, ‖v‖Rd = (v · v)
1
2 for all u = (ui), v = (vi) ∈R

d ,

σ : τ =
∑

ij

σij τij , ‖τ‖Sd = (τ : τ)
1
2 for all σ = (σij ), τ = (τij ) ∈ S

d .

Moreover, u′ = ∂u
∂t

and u′′ = ∂2u

∂t2 represent the velocity field and the acceleration field, re-
spectively. We use the standard notation for Lebesgue and Sobolev spaces. Moreover, we
consider the following spaces.

H = L2
(
Ω;Rd

)
, H1 = H 1

(
Ω;Rd

)
,

H = {
τ = (τij ) | τij = τji ∈ L2(Ω)

}
, H1 =

{
τ ∈ H |

(∑

j

∂τij

∂xj

)

i

∈ H

}
,

V = {v ∈ H1 | v = 0 on Γ1}, Z = Hδ
(
Ω;Rd

)
,where δ ∈

(
1

2
,1

)
.

Recall that V ⊂ H ⊂ V ∗ and Z ⊂ H ⊂ Z∗ form the evolution triples of spaces and the
embedding V ⊂ Z is compact. We denote by ce > 0 the embedding constant of V into Z.
We define the deformation operator ε : H1 −→ H by ε(u) = (εij (u)), εij (u) = 1

2 (
∂ui

∂xj
+ ∂uj

∂xi
).

The spaces H , H and H1 are Hilbert spaces endowed with the canonical inner products given
by

〈u,v〉H =
∫

Ω

∑

i

uivi dx =
∫

Ω

u · v dx, 〈σ, τ 〉H =
∫

Ω

∑

ij

σij τij dx =
∫

Ω

σ : τ dx,

〈u,v〉H1 = 〈u,v〉H + 〈ε(u), ε(v)〉H
and the associated norms ‖ · ‖H ,‖ · ‖H,‖ · ‖H1 , respectively. The space V is a real Hilbert
space with the inner product given by 〈u,v〉V = 〈ε(u), ε(v)〉H for all u,v ∈ V and the
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corresponding norm defined by ‖v‖V = ‖ε(v)‖H for all v ∈ V . From the assumption
meas(Γ1) > 0, it follows that the space V is complete and the Korn inequality holds, i.e.,
there exists c̃ > 0, which depends on Ω and Γ1, such that ‖ε(v)‖H � c̃‖v‖H1 for all v ∈ V .
We denote by γ : Z −→ L2(Γ ;Rd) the trace operator, by ‖γ ‖ = ‖γ ‖L(Z;L2(Γ ;Rd )) its norm
and by γ ∗ : L2(Γ ;Rd) −→ Z∗ the operator adjoint to γ . The normal and the tangential
components of the displacement field on the boundary Γ are defined by vν = v · ν and
vτ = v − vν · ν, respectively. Under the assumption that σ is a regular function, we can de-
fine the normal and tangential components of the stress field σ on the boundary Γ as follows
σν = σν · ν and στ = σν − σνν. The following Green formula will be used in the derivation
of variational formulation of a contact problem.

〈σ, ε(v)〉H + 〈Divσ, v〉H =
∫

Γ

σν · γ vdΓ for all v ∈ H1 and σ ∈ H1, (23)

where Divσ = (σij,j ) denotes the divergence operator. Moreover, the following decomposi-
tion formula holds

σν · v = σνvν + στ · vτ . (24)

To shorten the notation, we write Q = Ω × (0, T ) and Σi = Γi × (0, T ) for i = 1,2,3.
We consider the classical formulation of the contact problem.

Problem 14 Find a displacement field u : Q −→ R
d and a stress field σ : Q −→ S

d such
that

σ(t) = A
(
t, ε

(
u′(t)

)) + B
(
t, ε

(
u(t)

)) +
∫ t

0
C(t − s)ε

(
u′(s)

)
ds in Q, (25)

u′′(t) − Divσ(t) = f0(t) in Q, (26)

u(t) = 0 on Σ1, (27)

σ(t)ν = f2(t) on Σ2, (28)

− σν(t) = p
(
t, uν(t)

) +
∫ t

0
b(t − s)uν(s)ds on Σ3, (29)

− στ (t) ∈ Fb

(‖uτ (t)‖Rd

)
∂jτ

(
t, u′

τ (t)
)

on Σ3, (30)

u(0) = u0, u′(0) = v0 in Ω. (31)

We present a short description of the equations and conditions in Problem 14. Equation
(25) represents the viscoelastic constitutive law in which A denotes the viscosity operator,
B is the elasticity operator and C stands for the relaxation operator. Equation (26) is the
equation of motion. Equations (27) and (28) are the displacement and the traction bound-
ary conditions, respectively. Condition (29) was introduced in [5] and represents the contact
condition. Here p and b are given functions which describe the instantaneous and the mem-
ory reaction of the obstacle, respectively. Condition (30) represents a friction law in which
the coefficient Fb = Fb(‖uτ (t)‖Rd ) is a friction bound. The latter is assumed to be dependent
on the magnitude of the tangential displacement. We refer to the tangential component uτ

as the slip, cf. [21] and [27]. The physical model of slip-dependent friction was introduced
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by Rabinowicz [24] in the geophysical context of earthquakes’ modelling. This model of
friction was studied in the literature by Ionescu and Paumier [12], Ionescu and Nguyen [10],
Ionescu et al. [11], Shillor et al. in Chap. 10.1 of [30], Migórski [16, 17], and Migórski and
Ochal [18]. The law 30 is a generalization of the Coulomb law with slip-dependent fric-
tion. In many geophysical publications the motion of tectonic plates is modeled with the
Coulomb law in which the friction bound is assumed to depend on the magnitude of the
tangential displacement. The friction bound Fb depends also explicitely on x which allows
to describe the nonhomogeneity of the contact surface. For concrete examples of the friction
law of the form (30), we refer to Sects. 6 and 7 in [21]. More detailed information about
the law (30) can be found, for instance, in [19, 21, 27, 30] and the references therein. Fi-
nally, Eqs. (31) are the initial conditions, in which u0 denotes the initial displacement and
v0 denotes the initial velocity.

In the study of Problem 14, we consider the following assumptions for operators and
functions.

A : Q × S
d −→ S

d is such that

(a) A(·, ·, ε) is measurable on Q for all ε ∈ S
d ,

(b) A(x, t, ·) is continuous on S
d for a.e. (x, t) ∈ Q,

(c) ‖A(x, t, ε)‖Sd � a0(x, t) + a1‖ε‖Sd for all ε ∈ S
d ,

a.e. (x, t) ∈ Q with a0 ∈ L2(Q) and a0, a1 � 0,

(d) (A(x, t, ε1) −A(x, t, ε2)) : (ε1 − ε2) � mA ‖ε1 − ε2‖2
Sd for all

ε1, ε2 ∈ S
d , a.e.(x, t) ∈ Q with mA > 0,

(e) A(x, t,0) = 0 for a.e. (x, t) ∈ Q.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(32)

B : Q × S
d −→ S

d is such that

(a) B(·, ·, ε) is measurable on Q for all ε ∈ S
d and B(·, ·,0) ∈ L2(Q;Sd),

(b) ‖B(x, t, ε1) − B(x, t, ε2)‖Sd � LB ‖ε1 − ε2‖Sd for all ε1, ε2 ∈ S
d ,

a.e. (x, t) ∈ Q with LB > 0.

⎫
⎪⎪⎬

⎪⎪⎭
(33)

C : Q × S
d −→ S

d is such that

(a) C(x, t, ε) = (cijkl(x, t)εkl) for all ε = (εij ) ∈ S
d , a.e. (x, t) ∈ Q,

(b) cijkl(x, t) = cjikl(x, t) = clkij (x, t) a.e. (x, t) ∈ Q,

for all i, j, k, l = 1, . . . , d,

(c) cijkl ∈ L∞(0, T ;L∞(Ω)) for all i, j, k, l = 1, . . . , d.

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(34)

p : Σ3 ×R−→R is such that

(a) p(·, ·, r) is measurable on Σ3 for all r ∈R and p(·, ·,0) ∈ L2(Σ3),

(b) |p(x, t, r1) − p(x, t, r2)| � Lp |r1 − r2| for all r1, r2 ∈R, a.e. (x, t) ∈ Σ3

with Lp > 0.

⎫
⎪⎬

⎪⎭
(35)

b ∈ L1
(
0, T ;L∞(Γ3)

)
, b(x, t) � 0 for a.e. (x, t) ∈ Σ3. (36)
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Fb : Γ3 ×R−→ R is such that

(a) Fb(·, r) is measurable for all r ∈R,

(b) |Fb(x, r1) − Fb(x, r2)| � LFb
|r1 − r2| for all r1, r2 ∈R, a.e. x ∈ Γ3 with

LFb
> 0,

(c) 0 � Fb(x, r) � F for all r ∈ R, a.e. x ∈ Γ3 with F > 0.

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(37)

jτ : Σ3 ×R
d −→ R is such that

(a) jτ (·, ·, ξ) is measurable on Σ3 for all ξ ∈ R
d , and jτ (·, ·,0) ∈ L1(Σ3),

(b) jτ (x, t, ·) is locally Lipschitz on R
d for a.e. (x, t) ∈ Σ3,

(c) ‖∂jτ (x, t, ξ)‖Rd � M for all ξ ∈R
d , a.e. (x, t) ∈ Σ3 with M > 0,

(d) ‖∂jτ (x, t, ξ1) − ∂jτ (x, t, ξ2)‖Rd � Ljτ ‖ξ1 − ξ2‖Rd for all ξ1, ξ2 ∈R
d , a.e.

(x, t) ∈ Σ3 with Ljτ > 0,

(e) jτ (x, t, ·) or − jτ (x, t, ·) is regular for a.e. (x, t) ∈ Σ3.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(38)

Below we provide concrete examples of the tangential potentials which satisfy the hypothe-
sis (38). For simplicity, we skip the dependence on the (x, t) variable.

Example 15 Let jτ : Rd −→ R be defined by

jτ (ξ) =
√

‖ξ‖2
Rd + ρ2 − ρ,

for ξ ∈ R
d , where ρ > 0 is a fixed regularization parameter. The function jτ is convex and

Gateaux differentiable with ∂jτ (ξ) = ξ√
‖ξ‖2+ρ2

for ξ ∈ R
d , and it satisfies hypothesis (38)

with M = 1 and Ljτ = 1
ρ

. In this case, the friction condition (30) reduces to the following
law

−στ (t) = Fb

(‖uτ (t)‖Rd

) u′
τ√

‖u′
τ (t)‖2

Rd + ρ2
on Σ3.

This condition represents a regularization of the Coulomb law which is used in the literature
for numerical reasons, cf. [30]. For more discussion, see Chap. 6 of [21].

Example 16 Let jτ : Rd −→ R be defined by

jτ (ξ) =
{ 1

2‖ξ‖2
Rd , if ‖ξ‖Rd � L0

L0‖ξ‖Rd − L2
0

2 , otherwise

for ξ ∈R
d , where L0 > 0. Then

∂jτ (ξ) =
{

ξ, if ‖ξ‖Rd � L0

L0
ξ

‖ξ‖
Rd

, otherwise

for ξ ∈ R
d . It is clear that jτ satisfies hypotheses (38) with M = L0 and Ljτ = 1. In this

case, the friction condition (30) takes the following form

−στ (t) = Fb

(‖uτ (t)‖Rd

)
R

(
u′

τ (t)
)

on Σ3,
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where R : Rd −→ R
d is the truncation operator given by

R(ξ) =
{

ξ, if ‖ξ‖Rd � L0

L0
ξ

‖ξ‖
Rd

, if ‖ξ‖Rd > L0

for ξ ∈R
d . The constant L0 is a limit bound constant, cf. [4] and [30].

Moreover, we assume that the body forces and tractions in Problem 14 have the following
regularity

f0 ∈ L2
(
0, T ;L2

(
Ω;Rd

))
, f2 ∈ L2

(
0, T ;L2

(
Γ2;Rd

))
. (39)

The initial displacement and the initial velocity are such that

u0, v0 ∈ V. (40)

Next, we present a variational formulation of Problem 14. Let (u,σ ) be a couple of
sufficiently smooth functions which satisfy Problem 14. Let t ∈ (0, T ) and v ∈ V . Using the
Green formula (23) and the equation of motion (26), we obtain

〈
u′′(t), v

〉
V ∗×V

+ 〈
σ(t), ε(v)

〉
H = 〈

f0(t), v
〉
H

+
∫

Γ

σ (t)ν · γ vdΓ. (41)

From conditions (27), (28) and the decomposition formula (24), we get
∫

Γ

σ (t)ν · γ vdΓ = 〈
f2(t), γ v

〉
L2(Γ2;Rd )

+
∫

Γ3

(
σν(t)vν + στ (t) · vτ

)
dΓ. (42)

Based on the definition of the Clarke subdifferential and the boundary condition (30), the
following inequality holds

∫

Γ3

στ (t) · vτdΓ � −
∫

Γ3

Fb

(‖uτ (t)‖Rd

)
j 0
τ

(
t, u′

τ (t);vτ

)
dΓ. (43)

On the other hand, from the boundary condition (29), we have

∫

Γ3

σν(t)vνdΓ =
∫

Γ3

p
(
t, uν(t)

)
vνdΓ +

∫

Γ3

(∫ t

0
b(t − s)uν(s)ds

)
vνdΓ. (44)

Let f : (0, T ) −→ V ∗ be given by

〈
f (t), v

〉
V ∗×V

= 〈
f0(t), v

〉
H

+ 〈
f2(t), γ v

〉
L2(Γ2;Rd )

(45)

for all v ∈ V and a.e. t ∈ (0, T ). Combining (41)–(45) and (25), we obtain the following
variational formulation of Problem 14.

Problem 17 Find a displacement field u ∈ V such that u′ ∈ W and

〈
u′′(t), v

〉
V ∗×V

+ 〈
A

(
t, ε

(
u′(t)

))
, ε(v)

〉
H + 〈

B
(
t, ε

(
u(t)

))
, ε(v)

〉
H

+
〈∫ t

0
C(t − s)ε

(
u′(s)

)
ds, ε(v)

〉

H
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+
∫

Γ3

p
(
t, uν(t)

)
vνdΓ +

∫

Γ3

(∫ t

0
b(t − s)uν(s)ds

)
vνdΓ

+
∫

Γ3

Fb

(‖uτ (t)‖Rd

)
j 0
τ

(
t, u′

τ (t);vτ

)
dΓ �

〈
f (t), v

〉
V ∗×V

(46)

for all v ∈ V and a.e. t ∈ (0, T ) with u(0) = u0 and u′(0) = v0.

Problem 17 has a general form of an evolutionary hemivariational inequality of second
order. Such inequalities were used to model various contact problems and studied in several
papers, cf. [21] and the references therein. We note that results on the unique solvability of
Problem 17 are not available in the literature. The main difficulty lies in the nonlinear term
involving the product of the functions Fb and j 0

τ . All results on the unique solvability of
several classes of hemivariational inequalities presented, e.g., in [21], assume that Fb is a
constant and ∂jτ satisfies the relaxed monotonicity condition and has a sublinear growth. In
comparison to other contributions, in the present paper, we reject the hypothesis that Fb is
a constant and assume that the friction bound Fb depends on the slip. For this reason, we
need to consider a more restrictive assumption than in [21], on the potential jτ , cf. (38).
The unique solvability of Problem 17 without the hypotheses (38)(c) and (d) represents an
interesting open problem.

Our main result on the unique solvability of Problem 17 reads as follows.

Theorem 18 Under assumptions (32)–(40) and the following smallness condition

mA > FLjτ c
2
e‖γ ‖2, (47)

Problem 17 has a unique solution.

Proof The proof is based on Theorem 10. To use it, we first rewrite Problem 17 in an equiv-
alent form of a first order hemivariational inequality for the velocity field. Let w = u′. Then,
by using the initial condition (40), we have

u(t) =
∫ t

0
w(s)ds + u0 for all t ∈ [0, T ]. (48)

We introduce the operators R, R1 : V −→ V defined by

(R1v)(t) =
∫ t

0
v(s)ds + u0, (Rv)(t) = (R1v)τ (t) (49)

for v ∈ V and a.e. t ∈ (0, T ). With this notation, Problem 17 can be formulated as follows.

Problem 19 Find a velocity field w ∈ W such that
〈
w′(t), v

〉
V ∗×V

+ 〈
A

(
t, ε

(
w(t)

))
, ε(v)

〉
H + 〈

B
(
t, ε

(
(R1w)(t)

))
, ε(v)

〉
H

+
〈∫ t

0
C(t − s)ε

(
w(s)

)
ds, ε(v)

〉

H
+

∫

Γ3

p
(
t, (R1w)ν(t)

)
vνdΓ

+
∫

Γ3

(∫ t

0
b(t − s)(R1w)ν(s)ds

)
vνdΓ

+
∫

Γ3

Fb

(‖(R1w)τ (t)‖Rd

)
j 0
τ

(
t,wτ (t);vτ

)
dΓ �

〈
f (t), v

〉
V ∗×V

(50)

for all v ∈ V and a.e. t ∈ (0, T ) with w(0) = v0.
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It is clear that w ∈ W satisfies (50) if and only if u ∈ V such that u′ ∈ W satisfies (46).
Next, we associate with Problem 19, an abstract evolutionary inclusion of the form as in

Problem 8. To this end, we introduce the notation for this abstract inclusion. Let A : (0, T )×
V −→ V ∗ be defined by

〈
A(t,u), v

〉
V ∗×V

= 〈
A

(
t, ε(u)

)
, ε(v)

〉
H for v,u ∈ V and a.e. t ∈ (0, T ). (51)

Exploiting Theorem 10 in [19], we infer, that under hypothesis (32), the operator A satis-
fies (1) with mA = mA, a0(t) = √

2‖a0(t)‖L2(Ω) and a1 = a1

√
2. Next, from the following

inequality

‖(Ru1)(t) − (Ru2)(t)‖V

= ‖(R1u1)τ (t) − (R1u2)τ (t)‖L2(Γ3)

� ‖γ (
(R1u1)(t) − (R1u2)(t)

)‖L2(Γ3;Rd ) � ce‖γ ‖‖(R1u1)(t) − (R1u2)(t)‖V

� ce‖γ ‖
∫ t

0
‖u1(s) − u2(s)‖V ds for u1, u2 ∈ V, a.e. t ∈ (0, T ), (52)

we deduce that the operator R satisfies (5) with LR = ce‖γ ‖. Subsequently, let S : V −→ V∗
be the operator given by

〈
(Su)(t), v

〉
V ∗×V

= 〈
B
(
t, ε

(
(R1u)(t)

))
, ε(v)

〉
H +

〈∫ t

0
C(t − s)ε

(
u(s)

)
ds, ε(v)

〉

H

+
∫

Γ3

p
(
t, (R1u)ν(t)

)
vνdΓ

+
∫

Γ3

(∫ t

0
b(t − s)(R1u)ν(s)ds

)
vνdΓ, (53)

for u ∈ V , v ∈ V and a.e. t ∈ (0, T ). From hypotheses (33)–(36) and (52), we obtain the
following inequalities

〈
B
(
t, ε

(
(R1u1)(t)

)) − B
(
t, ε

(
(R1u2)(t)

))
, ε(v)

〉
H � LB

(∫ t

0
‖u1(s) − u2(s)‖V ds

)
‖v‖V ,

〈∫ t

0
C(t − s)ε

(
u1(s)

) − ε
(
u2(s)

)
ds, ε(v)

〉

H

� ‖C‖L∞(Q;Sd )

(∫ t

0
‖u1(s) − u2(s)‖V ds

)
‖v‖V ,

∫

Γ3

(
p
(
t, (R1u1)ν(t)

) − p
(
t, (R1u2)ν(t)

))
vνdΓ

� Lpc2
e‖γ ‖2

(∫ t

0
‖u1(s) − u2(s)‖V ds

)
‖v‖V ,

∫

Γ3

(∫ t

0
b(t − s)

(
(R1u1)ν(s) − (R1u2)ν(s)

)
ds

)
vνdΓ

� ‖b‖L1(0,T ;L∞(Γ3))c
2
e‖γ ‖2

(∫ t

0
‖u1(s) − u2(s)‖V ds

)
‖v‖V
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for u1, u2 ∈ V , v ∈ V , a.e. t ∈ (0, T ). Hence, we infer that the operator S is well defined,
and since the sum of history-dependent operators is a history-dependent operator, it satisfies
(6) with LS = LB + ‖C‖L∞(Q;Sd ) + (Lp + ‖b‖L1(0,T ;L∞(Γ3)))c

2
e‖γ ‖2 (for more details, cf.

also [5]).
Next, we introduce the functional J : (0, T ) × L2(Γ3;Rd)2 −→R defined by

J (t,w, v) =
∫

Γ3

Fb

(
x,‖w(x)‖Rd

)
jτ

(
x, t, vτ (x)

)
dΓ (54)

for all w,v ∈ L2(Γ3;Rd), a.e. t ∈ (0, T ). Let j : Σ3 × R × R
d −→ R be given by

j (x, t, r, ξ) = Fb(x, r)jτ (x, t, ξ) for r ∈ R, ξ ∈ R
d , a.e. (x, t) ∈ Σ3. From hypotheses (37)

and (38), the function j has the following properties.

(a) j (·, ·, r, ξ) is measurable on Σ3 for all (r, ξ) ∈ R×R
d ,

jτ (·, ·,0,0) ∈ L1(Σ3),

(b) j (x, t, ·, ξ) is continuous for all ξ ∈ R
d , a.e. (x, t) ∈ Σ3,

(c) j (x, t, r, ·) is locally Lipschitz on R
d for all r ∈R, a.e. (x, t) ∈ Σ3,

(d) ‖∂j (x, t, r, ξ)‖Rd � FM for all (r, ξ) ∈R×R
d , a.e. (x, t) ∈ Σ3,

(e) either j (x, t, r, ·) or − j (x, t, r, ·) is regular for all r ∈R, a.e. (x, t) ∈ Σ3,

(f) j 0(x, t, ·, ·;η) is upper semicontinuous on R×R
d , for all η ∈R

d ,

a.e. (x, t) ∈ Σ3,

(g) (ξ 1 − ξ 2) · (ξ1 − ξ2) � −FLjτ ‖ξ1 − ξ2‖2
Rd − LFb

M‖ξ1 − ξ2‖Rd |r1 − r2|
for all ξ i ∈ ∂j (x, t, ri , ξi), (ri , ξi) ∈R×R

d , i = 1,2, a.e. (x, t) ∈ Σ3.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(55)

The properties (a)–(e) are obvious consequences of the hypotheses. We show the condition
(f). Let (rn, ξn), (r, ξ) ∈R×R

d , (rn, ξn) −→ (r, ξ) in R×R
d and η ∈R

d . We have

lim sup j 0(x, t, rn, ξn;η) = lim supFb(x, rn)j
0
τ (x, t, ξn;η)

� lim sup
(
Fb(x, rn) − Fb(x, r)

)
j 0
τ (x, t, ξn;η)

+ lim supFb(x, r)j 0
τ (x, t, ξn;η)

� lim sup |Fb(x, rn) − Fb(x, r)|‖∂j (x, t, ξn)‖Rd ‖η‖Rd

+ Fb(x, r) lim sup j 0
τ (x, t, ξn;η)

� Fb(x, r)j 0
τ (x, t, ξ ;η) = j 0(x, t, r, ξ ;η)

for a.e. (x, t) ∈ Σ3. In the last inequality, we have used the fact that j 0
τ (x, t, ·;η) is upper

semicontinuous for all η ∈ R, a.e. (x, t) ∈ Σ3, cf. Proposition 3.23 (ii) of [21]. This proves
the property (f).

Finally, the property (g) follows immediately from the following inequality

|(ξ 1 − ξ 2) · (ξ1 − ξ2)| � ‖Fb(x, r1)∂jτ (x, t, ξ1) − Fb(x, r2)∂jτ (x, t, ξ2)‖Rd ‖ξ1 − ξ2‖Rd

�
(|Fb(x, r1) − Fb(x, r2)|‖∂jτ (x, t, ξ1)‖Rd
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+ |Fb(x, r2)|‖∂jτ (x, t, ξ1) − ∂jτ (x, t, ξ2)‖Rd

)‖ξ1 − ξ2‖Rd

� (MLFb
|r1 − r2| + FLjτ ‖ξ1 − ξ2‖Rd )‖ξ1 − ξ2‖Rd ,

for all ξ i ∈ ∂j (x, t, ri , ξi), (ri , ξi) ∈R×R
d , i = 1,2.

From the properties (55)(a)–(f) of the function j , by applying Lemma 10 in [16], we ob-
tain that the functional J (t,w, v) = ∫

Γ3
j (x, t,‖w(x)‖Rd , vτ (x))dΓ for w, v,∈ L2(Γ3;Rd),

a.e. t ∈ (0, T ), has the following properties.

(a) J (·,w, v) is measurable on (0, T ) for all w,v ∈ L2(Γ3;Rd),

(b) J (t,w, ·) is locally Lipschitz on L2(Γ3;Rd)

(in fact, Lipschitz on bounded subsets of L2(Γ3;Rd))

for all w ∈ L2(Γ3;Rd), a.e. t ∈ (0, T ),

(c) ‖∂J (t,w, v)‖(L2(Γ3;Rd ))∗ � FMmeas(Γ3) for all w,v ∈ L2(Γ3;Rd),

a.e. t ∈ (0, T ),

(d) J 0(t,w, v; z) = ∫
Γ3

Fb(x,‖w(x)‖Rd )j 0
τ (x, t, vτ ; zτ )dΓ for all

w,v, z ∈ L2(Γ3;Rd), a.e. t ∈ (0, T ),

(e) ∂J (t, ·, ·) has a closed graph in L2(Γ3;Rd)2 × (w − L2(Γ3;Rd)) topology,

for a.e. t ∈ (0, T ),

(f) either J (t,w, ·) or − J (t,w, ·) is regular on L2(Γ3;Rd) for all

w ∈ L2(Γ3;Rd), a.e. t ∈ (0, T ).

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(56)

Moreover, the functional J satisfies the following condition.

〈η1 − η2, v1 − v2〉L2(Γ3;Rd ) � −c1J ‖v1 − v2‖2
L2(Γ3;Rd )

− c2J ‖v1 − v2‖L2(Γ3;Rd )‖w1 − w2‖L2(Γ3;Rd ) (57)

for all ηi ∈ ∂J (t,wi, vi), wi , vi , ηi ∈ L2(Γ3;Rd), i = 1, 2, a.e. t ∈ (0, T ) with c1J =
FLjτ and c2J = MLFb

. In order to show the condition (57), let wi , vi , ηi ∈ L2(Γ3;Rd),
ηi ∈ ∂J (t,wi, vi), i = 1, 2. From Theorem 3.47 in [21], we know that there exists ζi ∈
L2(Γ3;Rd) such that ζi(x) ∈ [∂j (x, t,‖wi(x)‖, viτ (x))]τ , i = 1,2, for a.e. (x, t) ∈ Σ3 and

〈ηi, z〉L2(Γ3;Rd ) =
∫

Γ3

ζi(x) · z(x)dΓ for all z ∈ L2
(
Γ3;Rd

)
.

Then, we have ζi(x) = ziτ (x) with zi(x) ∈ ∂j (x, t,‖wi(x)‖, viτ (x)), i = 1, 2, for a.e.
(x, t) ∈ Σ3, and from the property (55)(g) of the function j and the Hölder inequality, we
obtain

〈η1 − η2, v1 − v2〉L2(Γ3;Rd )

=
∫

Γ3

(
ζ1(x) − ζ2(x)

) · (v1(x) − v2(x)
)
dΓ

=
∫

Γ3

(
z1τ (x) − z2τ (x)

) · (v1(x) − v2(x)
)
dΓ

=
∫

Γ3

(
z1(x) − z2(x)

) · (v1τ (x) − v2τ (x)
)
dΓ



126 J. Ogorzały

� −FLjτ

∫

Γ3

‖v1τ (x) − v2τ (x)‖2
Rd dΓ

− MLFb

∫

Γ3

‖v1τ (x) − v2τ (x)‖Rd |‖w1(x)‖Rd − ‖w2(x)‖Rd |dΓ

� −FLjτ ‖v1 − v2‖2
L2(Γ3;Rd )

− MLFb
‖v1 − v2‖L2(Γ3;Rd )‖w1 − w2‖L2(Γ3;Rd )

for a.e. t ∈ (0, T ). Hence J satisfies the condition (57).
Subsequently, we define the multifunction F : (0, T ) × V × V −→ 2Z∗

by

F(t, u, v) = γ ∗∂J (t, γ u, γ v) for u,v,∈ V, a.e. t ∈ (0, T ),

where, recall, γ : Z −→ L2(Γ3;Rd) denotes the trace operator. From the properties (56) and
(57) of the functional J and the properties of the Clarke generalized gradient, we infer the
following properties of the multifunction F .

(I) the values of F are nonempty, closed and convex sets in Z∗,
(II) F(·, u, v) is measurable for all u,v ∈ V ; cf. Proposition 3.44 of [21],

(III) F(t, ·, ·) is upper semicontinuous from V ×V to (w−Z∗) topology, for a.e. t ∈ (0, T );
this follows from property (56)(e) of the functional J and Theorem 5.13 of [21],

(IV) ‖F(t, u, v)‖Z∗ � ‖γ ∗‖FMmeas(Γ3) for all u,v ∈ V , a.e. t ∈ (0, T ); this follows from
property (56)(c) of the functional J and the continuity of the trace operator,

(V)

〈
F(t, u1, v1) − F(t, u2, v2), v1 − v2

〉
Z∗×Z

�
〈
γ ∗η1 − γ ∗η2, v1 − v2

〉
Z∗×Z

= 〈η1 − η2, γ v1 − γ v2〉L2(Γ3;Rd )

� −c1J ‖γ v1 − γ v2‖2
L2(Γ3;Rd )

− c2J ‖γ v1 − γ v2‖L2(Γ3;Rd )‖γ u1 − γ u2‖L2(Γ3;Rd )

� −c1J c2
e‖γ ‖2‖v1 − v2‖2

V − c2J c2
e‖γ ‖2‖v1 − v2‖V ‖u1 − u2‖V ,

where ηi ∈ ∂J (t, γ ui, γ vi), ηi ∈ L2(Γ3;Rd) for all ui , vi ∈ V , i = 1, 2, a.e. t ∈ (0, T ). Here,
we have used the property (57) of J . Hence, we deduce that the multifunction F satisfies
the hypothesis (7) with d0(t) = ‖γ ∗‖FMmeas(Γ3), d1 = d2 = 0, mF1 = FLjτ c

2
e‖γ ‖2 and

mF2 = MLFb
c2

e‖γ ‖2.
Next, we consider the following inclusion associated with Problem 19.

⎧
⎪⎨

⎪⎩

Find w ∈ W such that

w′(t) + A(t,w(t)) + (Sw)(t) + F(t, (Rw)(t),w(t)) � f (t) for a.e. t ∈ (0, T )

w(0) = v0.

(58)

From the definitions of F and J , we obtain that w ∈ W is a solution to (58) if and only if w ∈
W solves Problem 19. Indeed, let w ∈ W be a solution to Problem 19. From the definition of
the operator S and the property (56)(d), it is clear that w ∈ W solves the following inequality

〈
w′(t) + A

(
t,w(t)

) + (Sw)(t), v
〉
V ∗×V

+ J 0
(
t, (Rw)(t), γw(t);γ v

)
�

〈
f (t), v

〉
V ∗×V

for all v ∈ V , a.e. t ∈ (0, T ). Using Proposition 4 (i), this inequality is equivalent to

〈
f (t) − w′(t) − A

(
t,w(t)

) − (Sw)(t), v
〉
V ∗×V

� (J ◦ γ )0
(
t, (Rw)(t),w(t);v)
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for all v ∈ V , a.e. t ∈ (0, T ). This means, by the definition of the subdifferential, that

f (t) − w′(t) − A
(
t,w(t)

) − (Sw)(t) ∈ ∂(J ◦ γ )
(
t, (Rw)(t),w(t)

)

for a.e. t ∈ (0, T ). Exploiting Proposition 4 (ii) and the definition of F , we know that

∂(J ◦ γ )
(
t, (Rw)(t),w(t)

) = γ ∗∂J
(
t, (Rw)(t),w(t)

) = F
(
t, (Rw)(t),w(t)

)

for a.e. t ∈ (0, T ). Hence, we deduce that f (t) − w′(t) − A(t,w(t)) − (Sw)(t) ∈
F(t, (Rw)(t),w(t)) for a.e. t ∈ (0, T ). This proves that w ∈ W is a solution to Problem 19
if and only if u ∈ W is a solution to (58).

Therefore, it is enough to establish the existence of a solution to (58). Since the operators
A, R, S and the multifunction F satisfy (1), (5), (6) and (7), respectively, and the smallness
condition (47) implies (3) (recall that d2 = 0), we are in a position to apply Theorem 10
to Problem 58. We conclude that Problem 58 has a unique solution w ∈ W . Finally, we
obtain that there is a unique solution u ∈ V with u′ ∈ W defined by (48) to Problem 17. This
completes the proof of the theorem. �

Next, we study the behaviour of the solution of Problem 17 with respect to perturbations
of the data. For every ρ > 0, let Aρ , Bρ , Cρ , pρ , bρ and fρ be perturbations of A, B, C, p, b

and f , respectively. We need the following hypotheses.

(a) the operator Aρ satisfies (32) and Aρ(x, t, ε) −→ A(x, t, ε) in S
d

for all ε ∈ S
d , a.e. (x, t) ∈ Q, as ρ −→ 0

(b) the operator Cρ satisfies (34) and limρ→0 ‖Cρ − C‖L∞(Q;Sd ) = 0,

(c) the function bρ satisfies (36) and limρ→0 ‖bρ − b‖L1(0,T ;L∞(Γ3)) = 0.

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(59)

(a) the operator Bρ : Q × S
d −→ S

d satisfies (33) with LBρ > 0 for each ρ > 0

and LBρ � L3 for each ρ > 0,

(b) there exists B : R+ −→ R+ such that

‖Bρ(x, t, ε) − B(x, t, ε)‖Sd � B(ρ)‖ε‖Sd for all ε ∈ S
d , a.e. (x, t) ∈ Q,

for each ρ > 0 and limρ→0 B(ρ) = 0.

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(60)

(a) the function pρ : Σ3 ×R−→R satisfies (35) with Lpρ > 0 for each ρ > 0

and Lpρ � L4 for each ρ > 0,

(b) there exists P : R+ −→ R+ such that

|pρ(x, t, r) − p(x, t, r)| � P (ρ)|r| for all r ∈R a.e. (x, t) ∈ Σ3,

for each ρ > 0 and limρ→0 P (ρ) = 0.

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(61)

u0, u0ρ ∈ V and u0ρ −→ u0 in V, as ρ −→ 0. (62)

The perturbed version of Problem 17 is the following. Let ρ > 0.
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Problem 20 Find a displacement field uρ ∈ V such that u′
ρ ∈ W and

〈
u′′

ρ(t), v
〉
V ∗×V

+ 〈
Aρ

(
t, ε

(
u′

ρ(t)
))

, ε(v)
〉
H + 〈

Bρ

(
t, ε

(
uρ(t)

))
, ε(v)

〉
H

+
〈∫ t

0
Cρ(t − s)ε

(
u′

ρ(s)
)
ds, ε(v)

〉

H
+

∫

Γ3

pρ

(
t, uρν(t)

)
vνdΓ

+
∫

Γ3

(∫ t

0
bρ(t − s)uρν(s)ds

)
vνdΓ

+
∫

Γ3

Fb

(‖uρτ (t)‖Rd

)
j 0
τ

(
t, u′

ρτ (t);vτ

)
dΓ �

〈
fρ(t), v

〉
V ∗×V

(63)

for all v ∈ V , a.e. t ∈ (0, T ) and with uρ(0) = u0ρ, u′
ρ(0) = v0ρ .

We have the following convergence result.

Theorem 21 Under assumptions (7), (8)(a), (14)(f), (g), (15), (37), (38), (47) and (59)–(62),
the solution uρ of Problem 20 converges to the solution u of Problem 17, i.e.,

lim
ρ→0

(‖uρ − u‖V + ‖u′
ρ − u′‖V + ‖u′

ρ − u′‖C(0,T ;H)

) = 0.

Proof From Theorem 18, we deduce that, for every ρ > 0, Problem 20 has a unique solution
uρ ∈ V with u′

ρ ∈ W . We denote by wρ = u′
ρ the velocity field. For each ρ > 0, we define

the operator R1ρ : V −→ V by

(R1ρv)(t) =
∫ t

0
v(s)ds + u0ρ for all v ∈ V, a.e. t ∈ [0, T ]. (64)

With this notation, Problem 20 can be written in the following form.

Problem 22 Find a velocity field wρ ∈ W such that

〈
w′

ρ(t), v
〉
V ∗×V

+ 〈
Aρ

(
t, ε

(
wρ(t)

))
, ε(v)

〉
H + 〈

Bρ

(
t, ε

(
(R1ρwρ)(t)

))
, ε(v)

〉
H

+
〈∫ t

0
Cρ(t − s)ε

(
wρ(s)

)
ds, ε(v)

〉

H
+

∫

Γ3

pρ

(
t, (R1ρwρ)ν(t)

)
vνdΓ

+
∫

Γ3

(∫ t

0
bρ(t − s)(R1ρwρ)ν(s)ds

)
vνdΓ

+
∫

Γ3

Fb

(‖(R1ρwρ)τ (t)‖Rd

)
j 0
τ

(
t,wρτ (t);vτ

)
dΓ �

〈
fρ(t), v

〉
V ∗×V

(65)

for all v ∈ V and a.e. t ∈ (0, T ) with wρ(0) = v0ρ .

We apply Theorem 13 for Problem 22. Now, for every ρ > 0, we introduce the operator
Aρ : (0, T ) × V −→ V ∗ defined by

〈
Aρ(t, v), z

〉
V ∗×V

= 〈
Aρ

(
t, ε(v)

)
, ε(z)

〉
H (66)
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for all v, z ∈ V and a.e. t ∈ (0, T ). Using (59)(a), we have

‖Aρ

(
x, t, ε(v)

) −A
(
x, t, ε(v)

)‖2
Sd −→ 0, as ρ −→ 0

for all v ∈ V , a.e. (x, t) ∈ Q. From (32)(c), we deduce

‖Aρ

(
x, t, ε(v)

) −A
(
x, t, ε(v)

)‖2
Sd � 4

(
a2

0(x, t) + a2
1‖ε(v)‖2

Sd

)

for a.e. (x, t) ∈ Q. Hence, by the Lebesgue dominated convergence theorem, we obtain

‖Aρ

(
x, t, ε(v)

) −A
(
x, t, ε(v)

)‖2
H =

∫

Ω

‖Aρ

(
x, t, ε(v)

) −A
(
x, t, ε(v)

)‖2
Sd dx −→ 0,

as ρ −→ 0.

On the other hand, by Hölder inequality, we have

〈
Aρ(t, v) − A(t, v), z

〉
V ∗×V

=
∫

Ω

(
Aρ

(
x, t, ε(v)

) −A
(
x, t, ε(v)

)) : ε(z)dx

� ‖Aρ

(
x, t, ε(v)

) −A
(
x, t, ε(v)

)‖2
H‖z‖V

for all v, z ∈ V , a.e. t ∈ (0, T ). Hence, we have Aρ(t, v) −→ A(t, v) for all v ∈ V , a.e.
t ∈ (0, T ), which implies (14)(a).

Subsequently, for every ρ > 0, we define the operator Rρ : V −→ V by

(Rρv)(t) = (R1ρv)τ (t) for all v ∈ V and a.e. t ∈ (0, T ) (67)

and the operator Sρ : V −→ V∗ by

〈
(Sρv)(t), z

〉
V ∗×V

= 〈
Bρ

(
t, ε(R1ρv)(t)

)
, ε(z)

〉
H +

〈∫ t

0
Cρ(t − s)ε

(
v(s)

)
ds, ε(z)

〉

H

+
∫

Γ3

pρ

(
t, (R1ρv)ν(t)

)
zνdΓ

+
∫

Γ3

(∫ t

0
bρ(t − s)(R1ρv)ν(t)ds

)
zνdΓ (68)

for all v ∈ V, z ∈ V , a.e. t ∈ (0, T ).
Now, we show that the operators Rρ and Sρ satisfy hypotheses (14)(b)–(e). Using (67),

we observe that

‖(Rρuρ)(t) − (Rρu)(t)‖V � ce‖γ ‖
∫ t

0
‖uρ(s) − u(s)‖V ds

and

‖(Rρu)(t) − (Ru)(t)‖V � ce‖γ ‖‖u0ρ − u0‖V

for a.e. t ∈ (0, T ). Hence, the conditions (14)(d) and (e) hold with LRρ = ce‖γ ‖, k2(ρ) =
ce‖γ ‖‖u0ρ − u0‖V and g2(u) = 1. Using (62), it easy to see that k2(ρ) −→ 0, as ρ −→ 0.
Hence (14)(d) and (e) hold.
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Note that, using (59)–(62) in (68), we obtain

‖(Sρuρ)(t) − (Sρu)(t)‖V ∗ �
(
LBρ + ‖Cρ‖L∞(Q;Sd )

+ c2
e‖γ ‖2(‖bρ‖L1(0,T ,L∞(Γ3)) + Lpρ )

)∫ t

0
‖uρ(s) − u(s)‖V ds

for a.e. t ∈ (0, T ). From this, (60)(a) and (61)(a), we obtain

‖(Sρuρ)(t) − (Sρu)(t)‖V ∗ �
(
L3 + ‖Cρ‖L∞(Q;Sd )

+ c2
e‖γ ‖2(‖bρ‖L1(0,T ,L∞(Γ3)) + L4)

)∫ t

0
‖uρ(s) − u(s)‖V ds

for a.e. t ∈ (0, T ). From the above calculations, we deduce that (14)(b) holds with L1 = L3 +
‖Cρ‖L∞(Q;Sd ) +ce‖γ ‖2(‖bρ‖L1(0,T ,L∞(Γ3)) +L4). On the other hand from (60)(b), (61)(b) and
(68), we have

‖(Sρu)(t) − (Su)(t)‖V ∗

� L3‖u0ρ − u0‖V + B(ρ)‖(R1u)(t)‖V

+ ‖Cρ − C‖L∞(Q;Sd )

∫ t

0
‖u(s)‖V ds + L4‖γ ‖2c2

e‖u0ρ − u0‖V

+ P (ρ)‖γ ‖2c2
e‖(R1u)(t)‖V + ‖bρ‖L1(0,T ;L2(Γ3))c

2
e‖γ ‖2‖u0ρ − u0‖V

+ ‖bρ − b‖L1(0,T ;L2(Γ3))c
2
e‖γ ‖2‖(R1u)(t)‖V

for a.e. t ∈ (0, T ). Hence, we see that the condition (14)(c) is satisfied with

k1(ρ) = L3‖u0ρ − u0‖V + B(ρ) + ‖Cρ − C‖L∞(Q;Sd ) + L4‖γ ‖2c2
e‖u0ρ − u0‖V

+ P (ρ)‖γ ‖2c2
e + ‖bρ‖L1(0,T ;L2(Γ3))c

2
e‖γ ‖2‖u0ρ − u0‖V

+ ‖bρ − b‖L1(0,T ;L2(Γ3))c
2
e‖γ ‖2

and g1(u) = max{1,
∫ t

0 ‖u(s)‖V ds,‖(R1u)(t)‖V }. Using conditions (59)(b) and (c), (60)(b),
(61)(b) and (62), we have k1(ρ) −→ 0, as ρ −→ 0.

Finally, we define the functional J : (0, T ) × L2(Γ3;Rd)2 −→ R as in (54). This func-
tional satisfies (56) and (57). Using (66)–(68) in Problem 22, and a reasoning analogous as
in the proof of Theorem 18, we associate with Problem 22, the following subdifferential
inclusion.

Problem 23 Find wρ ∈ W such that

w′
ρ(t) + Aρ

(
t,wρ(t)

) + (Sρwρ)(t) + F
(
t, (Rρwρ)(t),wρ(t)

) � fρ(t)

for a.e. t ∈ (0, T ) (69)

wρ(0) = v0ρ. (70)

Based on Theorem 13, we deduce that

‖wρ − w‖V + ‖wρ − w‖C(0,T ;H) −→ 0, as ρ −→ 0,
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where w, wρ ∈ W are the unique solutions to Problem 58 and Problem 12, respectively.
Hence and from the fact that u′

ρ(t) = wρ(t) and u′(t) = w(t), we have

lim
ρ→0

(‖u′
ρ − u′‖V + ‖u′

ρ − u′‖C(0,T ;H)

) = 0. (71)

Note that from (48), we obtain ‖uρ − u‖V �
√

2T ‖u′
ρ − u‖V + √

2T ‖u0ρ − u0‖V . This
inequality combined with (62) and (71) implies that

lim
ρ→0

‖uρ − u‖V = 0. (72)

This completes the proof of the theorem. �

In addition to the mathematical interest in the convergence results (71) and (72), they
are of importance from the mechanical point of view, since they provide a dependence of
the weak solution of the Problem 14 on the viscosity operator, elasticity operator, relaxation
operator, normal compliance function, the surface memory function, as well. Moreover, it is
clear that if f0ρ −→ f0 in L2(0, T ;L2(Ω;Rd)) and f2ρ −→ f2 in L2(0, T ;L2(Γ2;Rd)), as
ρ −→ 0, then from the definition (45), we obtain that fρ −→ f in V , as ρ −→ 0.

We conclude this paper with a simple example of a normal compliance function for which
the condition (61) holds. Let cνρ, cν > 0 be such that cνρ −→ cν , as ρ −→ 0. Assume that
the functions p and pν are defined by

p(r) = cνr+, pρ(r) = cνρr+ for all r ∈R,

where r+ = max{0, r} and cν , cνρ represent the surface stiffness coefficients. We remark that
the dependence of these functions on stiffness coefficients is important in contact problems.
When cν is larger the reaction force of the foundation to penetration is larger and so the same
force will result in a smaller penetration, which means that the foundation is less deformable.
When cν is smaller the reaction force of the foundation to penetration is smaller, and then the
foundation is less stiff and more deformable. For more discussion, we refer to (see Chap. 4
in [27]). It easy to see that |pρ(r) − p(r)| � |cνρ − cν ||r| � P (ρ)|r| for all r ∈ R with
P (ρ) = |cνρ − cν | −→ 0, as ρ −→ 0. Since the function r → r+ is Lipschitz continuous, we
conclude that the condition (61) is satisfied.
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national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
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