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1 Introduction

The principle of holographic duality states that quantum gravity in a spacetime M is

equivalent to a quantum field theory on the boundary ∂M [1, 2]. Both conceptually and

mathematically, it provides one of the most powerful tools to understand non-perturbative

quantum gravity (via its dual quantum field theory description). The most prominent

and tractable holographic duality arises when the spacetime is anti-de Sitter (AdS), where

we have the AdS/CFT correspondence [3]: quantum gravity in an asymptotically AdS

spacetime is equivalent to a conformal field theory (CFT) living on the boundary of the

AdS spacetime.

While the duality was first engineered from string theory, the Area Law of black holes

and general arguments based on the entropy bound suggest that the holographic principle

is independent from string theory [1, 2]. How to understand holographic dualities indepen-

dent of the string theory framework? What is the underlying mechanism of AdS/CFT?

Proving AdS/CFT would be very difficult because (in most of its parameter regime) it is

a strong/weak duality. However, short of proving AdS/CFT, is it at least possible to see

it emerge from some constructions (other than string theory), i.e. without inputing it as

an assumption?

– 1 –
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Above is the background motivation of the current work. Based on the holographic en-

tropy formula by Ryu and Takayanagi, it was noticed by Swingle that certain types of tensor

networks can have features of a holographic correspondence [5]. The observation stimu-

lated a surge of investigations [6–26] on various other types of tensor networks and there

is increasing evidence that tensor networks can capture essential features of AdS/CFT.

An important recent development is the proposal of the holographic code based on

perfect tensors on a network embedded in a negatively-curved space [19],1 which recov-

ers the RT formula naturally and exhibits the causality that mimics an error correcting

code. Perturbing away from perfect tensors, other features of AdS/CFT, such as structures

similar to Witten diagrams in the computation of correlation functions, also emerge [21].

To further proceed, the study of holographic tensor networks needs to address some

conceptual questions. A tensor network lives on a discrete space. To which extent can it

capture the AdS/CFT correspondence, which has only been defined for continuous space-

times? Does there exist a discrete version of the AdS/CFT correspondence which tensor

networks can capture fully?

To answer these questions, in this paper we try to realize the following two impor-

tant aspects of holography in tensor networks: (1) reconstruction of bulk operators and

(2) holographic computation of boundary correlators.

There are two main differences from previous studies of holographic tensor networks.

First of all, we use rather generic tensors. The restriction to perfect tensors in [19] makes

it easy to do explicit computations in tensor networks. However it was later found that in

order to have non-trivial correlation functions we need to use imperfect tensors [21].

Second, we propose to put the tensor network on the Bruhat-Tits (BT) tree, which

is a geometrical presentation of the p-adic expansion of a p-adic number. Thus far, the

lack of symmetry has been a bottleneck in the development of tensor networks.2 The main

problem is that if we assume that the tensor network realizes a “naive” discretization of the

AdS space, i.e. that the tensor network lives on the (dual graph) of a regular tiling of AdS,

then the presence of the lattice breaks the continuous isometry group (e.g. SL(2,R) in a 2D

bulk) down to a discrete subgroup of the isometry of AdS. The discrete subgroups preserved

by these regular tilings are Coxeter groups, whose representation theory, to our knowledge,

is not yet strong enough to give a good description of eigenfunctions on the graph.

To gain more symmetry and quantitative control of the graph wavefunctions, we instead

look at tensor networks living on the Bruhat-Tits tree. The Bruhat-Tits tree preserves the

full conformal group SL(2,Qp) — only with the real field R replaced by a different field

completion Qp of the rational numbers. This is a continuous group, and hence much larger

than the discrete subgroup of SL(2,R) preserved by any regular tessellation of the AdS

space. Therefore a tensor network based on the Bruhat-Tits tree would have much more

symmetry than its counterpart living on a regular tessellation.

This is inspired by recent proposals for the p-adic AdS/CFT correspondence [26–28],

which generalize the AdS/CFT dictionary to the situation where the boundary theory lives

1Perfect tensors emerge very naturally in spaces of tensors with large bond dimensions [20].
2See however [21] that initiated the study on symmetries in the tensor network.
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on a space-time that is based on the field Qp (which is continuous), and where the discrete

BT tree plays the role of the bulk AdS space.3 Besides being an interesting holographic

duality that is based on Qp instead of R, p-adic AdS/CFT might also become relevant to

the analysis of the continuous version via the adelic construction.

In this paper we propose to use tensor networks to give concrete realizations of p-adic

AdS/CFT, in some sense analogous to using various D-brane configurations to engineer

corresponding AdS/CFT dualities explicitly. This is in contrast to [26, 27], which assumed

a p-adic AdS/CFT correspondence and then derived various consequences. In our tensor

network construction, we do not assume p-adic AdS/CFT, but aspects of the AdS/CFT

correspondence emerge from the tensor network.

A possible connection between p-adic AdS/CFT and tensor networks was first studied

in [26], whose construction is based on perfect tensors and on embedding the Bruhat-Tits

tree in the geometric tiling (in particular, the HAPPY tiling) of the bulk. The construction

in the current paper is different in that (1) we are not using perfect tensors, building on

earlier work that imperfect tensors are necessary to furnish non-trivial correlation func-

tions [21]; and (2) we view the Bruhat-Tits tree as an abstract tree, and hence do not need

to embed the Bruhat-Tits tree in a real bulk space. Namely, the bulk in p-adic AdS/CFT

is just the Bruhat-Tits tree itself, and the relation to the real AdS/CFT will not come

about by a naive geometric embedding.

The paper is organized as follows. In section 2 we review the basics of tensor networks,

in particular the intuition behind their role as a discrete holographic correspondence. In

section 3 we generalize the operator-pushing technique developed for perfect tensors in [19]

to generic tensors, and then use it to derive a tensor network analogue of the bulk recon-

struction formula.

For generic tensor networks, the results of section 3 lack conceptual power because to

relate to AdS/CFT we need a notion of conformal or at least scaling primaries. Hence in

section 4 we motivate our proposal of studying tensor networks living on the Bruhat-Tits

tree, and show that this allows us to define conformal primaries on tensor networks.

Building on this, in section 5 we show that the bulk reconstruction for tree tensor

networks gives a nice p-adic bulk reconstruction (i.e. HKLL) formula. We also show a

strong parallel between the real and p-adic HKLL formulae and in particular that they can

both be understood in the linear order as wavelet transforms. Section 6 computes p-adic

correlations functions via tensor networks and shows how Witten diagrams emerge in the

bulk of the tensor network. Finally in section 7 we summarize and discuss open questions.

We leave some review and detailed computation to five appendices. Appendix A

reviews the lattice construction of the Bruhat-Tits tree and appendix B reviews the basics

of p-adic analysis. In appendix C we give two explicit examples. Appendix D contains

the proof of an argument for the necessity of going beyond perfect tensors. Appendix E

explains how to realize spacetime symmetry via tensor network transformations.

3The discussion is mainly based on a two-dimensional bulk and a one-dimensional boundary. The

proposed higher-dimensional generalization involves finite algebraic extensions of Qp, for more details

see [26, 27].
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2 Short review of tensor networks

In this section we first review basic aspects of tensor networks to fix notations.4 We then

explain the intuition behind attempts at using them to realize discrete versions of the

holographic duality [19, 20]. Finally we discuss open questions in tensor networks that

motivated this work.

2.1 Tensor network as ansatz for N-body wavefunction

Solving for exact wavefunctions |ψ〉 of a quantum many-body system analytically is in

general a very difficult problem, because of the gigantic dimension of the Hilbert space.

Consider a N -body Hamiltonian Ĥ. Generically, its wavefunction |ψ〉 is given by a

rank-N tensor:

|ψ〉 =
∑
i1···iN

fi1···iN |i1 · · · iN 〉 (2.1)

for 1 ≤ ik ≤ D, where D is the dimension of the Hilbert space at each site.5 Determining

the wavefunction |ψ〉 would therefore involve solving for DN numbers of unknowns, which

scales exponentially with N .

The tensor network was introduced as a “clever” ansatz for |ψ〉 that can greatly simplify

the above problem. In this ansatz, the rank-N tensor fi1···iN in the original wavefunction

|ψ〉 is decomposed into many much smaller tensors T (v) (with rank-rv) contracted together:

fi1···iN =
∑

µ1,µ2···
Ti1··· ;µ1µ2···(1)Tik··· ;µ1µ3···(2) · · · . (2.2)

In the r.h.s. the original indices from i1 to iN remain un-contracted and we will call

them physical or external indices, and µn denotes internal indices that are contracted

between tensors.

The contraction of internal indices in the ansatz (2.2) can be better presented graph-

ically — in terms of a connected graph G (or “network”), where each tensor T (v) (with

rank-rv) is represented by a vertex v with valency rv, each contracted index µn by an edge

between two vertices, and each physical index ik by an external leg at the boundary of G.

One can immediately see that the ansatz (2.2) can greatly simplify the problem by

counting the number of degrees of freedom in the r.h.s. of (2.2). For a network consisting

of M vertices, and for simplicity assuming that they all have the same valency r, the number

of total degrees of freedom is then MDr. Since in a typical tensor network, M ∼ O(Nd)

— here d is a small number that depends on the spacetime dimension and the choice of

network — whereas r ∼ O(1), the tensor network ansatz has far fewer degrees of freedom

than the original N -body problem:

DN �MDr. (2.3)

4For a good review on tensor networks see [29, 30].
5We have assumed that the full Hilbert space of the N -body system can be factorized into direct products

of Hilbert spaces on each site H = ⊗Ni=1Hi.
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Figure 1. Three well-studied tensor networks. (a) Matrix Product State for (1+1)-dim gapped

systems. (b) MERA network for in (1+1)-dim gapless systems. (c) Projected Entangled Pair States

for (2+1)-dim systems. Picture courtesy of [29].

One can then numerically solve for the ground state wavefunction |ψ〉 by minimizing the

energy 〈ψ|Ĥ|ψ〉.
What makes a particular tensor network ansatz (2.2) numerically efficient and yet

remains a good approximation is that the network G needs to be chosen according to

the quantum entanglement structure of the given N -body system. Figure 1 shows three

well-studied tensor network ansätze, according to three different types of entanglement

structures.

2.2 Tensor network as discrete holographic correspondence

What makes tensor network more than a good computational tool in many-body systems

is the realization that certain types of tensor networks can have features of a holographic

correspondence. This was realized by Swingle in 2011 [5], for the case of the MERA

(multi-scale entanglement renormalization ansatz) network.

In the MERA network shown in figure 1b, the physical legs are at the bottom of the

network. Moving upwards in the network are alternating layers of 4-valent vertices (dis-

entanglers) and those with 3-valent vertices (isometries).6 Each set of these twin layers

serves as a linear map that projects the system to a coarse-grained one (hence the “renor-

malization” in the name). As one moves up the graph, a new scale, i.e. an extra dimension,

emerges, which is very similar to AdS/CFT in which the radial direction of the AdS bulk

plays the role of the RG scale.

Moreover, the entanglement entropy of the MERA network is bounded from above [5] by

the length of the geodesic cutting through the network, reminiscent of the Ryu-Takayanagi

formula that computes the entanglement entropy via holography [31, 32].

2.2.1 Bulk and boundary in tensor networks

To establish a more concrete connection between tensor networks and holography, let’s

first define the meaning of bulk and boundary in the context of tensor networks. The

network G plays the role of the (discrete) bulk space. The bulk Hilbert space is defined as

6Without disentanglers, the MERA network reduces to a tree, which (in this naive setting) cannot

reproduce the entanglement structure of a gapless system that the MERA network wants to describe.
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follows. First, assign a D-dim Hilbert space He to each edge,7 and a Dr-dim Hilbert space

Hv ≡ ⊗re(v)=1He(v) to each vertex v. (Here e(v) denotes an edge emitting from vertex v.)

The tensor T (v) then essentially defines a state in Hv

|T (v)〉 ≡
∑
{ai}

Ta1···ar(v)|a1 · · · ar〉. (2.4)

The bulk Hilbert space is then

Hbulk ≡ ⊗Mv=1Hv, (2.5)

where M is the total number of vertices in the network. A generic bulk state is then

|Ψbulk〉 =
∑
{T (v)}

α{T (v)} (⊗v|T (v)〉) . (2.6)

In the simplest case (as in section 2.1), it is a product state |Ψbulk〉 = ⊗v|T (v)〉.
The boundary Hilbert space is just the original H defined at the beginning of this

section:

Hbndy = ⊗Ni=1Hi, (2.7)

where Hi is the Hilbert space living on the external leg i of the network G.

The map from bulk to boundary is via a projection operator that effectively contracts

all the internal indices:

|ψbndy〉 = (⊗all internal edges µ|µ〉〈µ|) |Ψbulk〉. (2.8)

For each internal edge µ (connecting two vertices v and w), |µ〉 is defined as

|µ〉 ≡ |µv,w〉 =
∑

αµv ,ανw

καµvανw |αµv〉 ⊗ |ανw〉, (2.9)

where |αµv〉 denotes the state located at the edge-µ of the vertex v. The boundary wave-

function is thus defined by projecting the edges connecting two vertices into an entangled

state. In most cases considered, such as our example described in (2.2) and in the rest of

the paper, the “metric” καµvανw = δαµvανw .

2.2.2 Perfect tensor code and operator pushing

An important shortcoming of the MERA network as discrete holography is that the Ryu-

Takayanagi formula does not compute its entanglement entropy but only provides an upper

bound. Part of the reason is that its network does not preserve enough of the hyperbolic

isometries expected for the dual theory of a CFT.

The “HAPPY” code in [19] improved this by choosing the network G to be the dual

graph of a regular tessellation of the hyperbolic space. With the further assumption that

the tensors are restricted to be “Perfect Tensors”, the HAPPY code was the first tensor

network that exactly recovers the Ryu-Takayanagi formula [19].

7We assume that the bond dimension D for each edge, i.e. the size of each He, is the same.
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The restriction to “Perfect tensors” greatly simplifies the derivation in [19]. They are

even-rank tensors with the following property: for any partition of the r indices into two

sets n ∈ {µ1, . . . µk} and a ∈ {µk+1, . . . µr} with k ≤ r
2 , Tna is a norm-preserving projection

operator from a to n:

TnaT
†
an′ = D

r
2
−k δnn′ . (2.10)

In particular, when k = r
2 , Tna becomes a unitary map: TnaT

†
an′ = δnn′ .

Another important result in [19] is the exhibition of the causal structure in the HAPPY

code: it was shown that a operator acting on the bulk of the HAPPY code can be recovered

using only boundary operators that act on a subregion of the boundary.8

This was shown using the method of “operator pushing”, invented for the perfect tensor

by [19]. Let’s illustrate this method with a particular example of a perfect tensor code:

the hexagon code (i.e. r=6) with bond dimension D = 2.

A tensor state |T 〉 in the hexagon code is invariant under a set of 6 stabilizers S(a):

S(a)|T 〉hexagon = |T 〉hexagon a = 1, 2, . . . , 6. (2.11)

Since D = 2, S(a) can be expressed in terms of Pauli matrices {X,Y, Z} acting on the 6

edges. We can choose a basis such that9

S(1) = X1 ⊗X2 ⊗X3 ⊗X4 ⊗X5 ⊗X6 etc. (2.12)

where Xi acts on the ith leg of |T 〉. We immediately see that (2.11) with the stabilizer (2.12)

implies

∀v : Xi|T 〉hexagon = ⊗j 6=iXj |T 〉hexagon (2.13)

Namely, applying the operator X one of the legs of |T 〉 is equivalent to applying X on the

other five legs.

Applying other stabilizers gives similar “operator pushing” rules, in which an operator

acting on a given leg of a bulk tensor site can be “pushed” to the other legs of the same

site. Applying the set of rules repeatedly, one can move the effect of a bulk operator all

the way to the boundary, using which [19] showed the emergence of the causal structure in

the perfect tensor code. The main idea can be generalized to general tensors and will be

used later to derive the tensor network analogue of the HKLL formula.

2.3 Some open questions in tensor network as discrete AdS/CFT

For tensor networks to realize a discrete version of AdS/CFT, the following aspects need

to be further developed.

1. Global symmetries of the boundary wavefunction v.s. isometries of the network.

In traditional AdS/CFT, gauge symmetries of the bulk are mapped to global sym-

metries of the boundary theory. In particular, the isometries of the bulk spacetime

8This is analogous to the bulk operator in the Rindler coordinates, in which only the subregion within

the causal wedge containing the original bulk operator is involved.
9For the full list of stabilizers see [19].
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are mapped to global spacetime symmetries of the boundary CFT. How to realize

the interplay between bulk isometries and boundary global symmetries in the ten-

sor network? Further, how to effectively use the symmetry in the tensor network

computation to model discrete AdS?10

2. Going beyond perfect tensors

Though greatly simplifying the computation, perfect tensors are in some sense “too

perfect” — namely too symmetric to allow enough dynamical content. For example,

in a tensor network with only perfect tensors there exists no connected correlation

function between local operators [21].

3. Tensor network analogue of the HKLL formula

As we demonstrate in appendix E, in a tensor network using perfect tensors, a bulk

operator can be reconstructed only as macroscopic products of boundary operators.

This is in sharp contrast with the HKLL formula where in the large N limit, the

leading contribution is linear in the boundary operators. We need to generalize the

operator-pushing technique invented for perfect tensors to more generic tensors, and

find a tensor network analogue of the HKLL formula.

In this paper, we will take some further steps in clarifying these questions.

3 Bulk operator reconstruction

In this section we show how the bulk operator reconstruction is realized tensor networks.

This was initiated for the special case of perfect tensors in [19]. We first show that in order

to have the analogue of the HKLL formula one needs to use more general tensors, then

derive an analogue of the HKLL formula for tensor networks.

3.1 From HKLL to operator pushing

In AdS/CFT, a normalizable local field in the bulk φI(~x, z) can be reconstructed from the

boundary operators via the HKLL formula [34, 35]11

φI(~x, z) =

∫
ddy KI( ~x, z |~y )OI(~y)

+
∑
J,K

λIJK
N

∫
ddx′dz′GI(~x, z|~x′, z′)

∫
ddy1KJ(~x′, z′|~y1)OJ(~y1)

∫
ddy2KK(~x′, z′|~y2)OK(~y2)

+O
(
λ2

N2

)∫
. . . (3.1)

10Some discussion on how tensor networks reproduce such features already appeared in [33].
11Here (~x, z) denotes the Poincaré coordinate with the metric ds2 = 1

z2 (dz2 +d~x2) and ~x is the boundary

d-vector with ~x2 ≡ ηµνxµxν with negative signature.
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where OI is the boundary operator that is dual to the bulk field φI : limz→0 φ
I(~x, z) =

z−∆IOI(~x) (with ∆I the conformal dimension of OI). Here KI( ~x, z |~y ) is the boundary-

bulk kernel (called “smearing function” here) of OI :

KI(~x, z | ~y ) =

(
z

z2 − (~x− ~y)2

)d−∆I

Θ(z2 − (~x− ~y)2) (3.2)

and GI(~x, z|~x′, z′) its bulk-bulk kernel. The “smearing function” and the bulk-bulk kernel

are simply related by limz′→0 z
′∆I−dGI(~x, z|~x′, z′) ∼ KI(~x, z | ~x′ ). Note that the bulk-bulk

kernel here satisfies a different boundary condition from the usual bulk propagator.

For a tensor network to be a (discrete version) of the holographic duality (3.1), it needs

to realize an analogue of the HKLL formula, i.e. an operator acting on the |Ψbulk〉 should

be reconstructed by operators acting on the |ψbndy〉, in a way similar to (3.1). In particular,

it should exhibit the causal structure (i.e. the reconstruction should be possible using only

a subregion) and an expansion in which the linear term dominates in the large-N limit.

The emergence of the causal structure in tensor networks was realized by [19] for a

specific tensor network with “perfect tensors”. Motivated by the observation by [13] that

the causal structure in the HKLL formula (3.1) resembles the error correction code, [19]

showed that a bulk operator in the perfect code can be recovered using only those boundary

operators that live on the subregion that is causally connected to the original bulk operator.

However, in a network with perfect tensors, a bulk operator can be reconstructed only

as a macroscopic product of boundary operators. This is in sharp contrast with the HKLL

formula in which the leading term in the large-N limit is linear in the boundary operators.

Thus a tensor network based on “perfect tensors” does not lead to an analogue of the

HKLL formula.

3.2 Operator pushing

In section 2.2 we briefly reviewed the idea of operator pushing for perfect tensors: using

the stabilizer relations one can “push” the operator acting on a given leg of a tensor to pass

this tensor and become operators acting on the other legs of the same tensor [19]. Now

we generalize this method for more general tensors, in order to derive the tensor network

analogue of the HKLL formula.

3.2.1 Local operator pushing

Given a vertex state |T (v)〉 defined in (2.4) — recall that none of its vertices are contracted,

and hence there is no difference between internal and external legs yet — we apply the

operator PA on its ath leg. Using the non-degenerateness of T (see below), the result can

always be rewritten as

PA(a)|T (v)〉 =
∑
b 6=a

∑
B

αAB(a|b)PB(b) |T (v)〉

+
∑
b 6=c 6=a

∑
B,C

αABC(a|b, c)PB(b)PC(c) |T (v)〉

+
∑

b 6=c 6=d 6=a

∑
B,C,D

αABCD(a|b, c, d)PB(b)PC(c)PD(d) |T (v)〉+ . . . .

(3.3)

– 9 –
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··· PA ···T−1 T

Figure 2. Left hand side of equation (3.5).

Here PA(a) denotes the operator PA acting on the state living on the ath leg of the

vertex v, the sum of b, c, . . . are over the rv legs of vertex v, and the sum of B,C, . . .

is over the operator basis excluding the identity operator. Generically, α depends on

the value of the tensor state |T (v)〉. In the simple example of the hexagon code (2.13),

αXXXXXX(1|23456) = 1 and similarly for the other legs.12

We are using the convention that an identity operator acting on an edge is the same

as nothing acting on it. For example, in αIJ1J2...Jr−1
where r is the rank, if say operators

from J2 to Jr−1 are all identity operators, we then write it as αIJ1 . This is to distinguish

between different orders of operator-pushing coefficients, i.e. the number of non-identity

operators on outgoing legs.13

Next we explain how we can solve for the local operator-pushing coefficients α in (3.3)

systematically. Expressing the tensor state |T (v)〉 explicitly in terms of the rank-rv tensor

(using (2.4)), one can invert the tensor T , and sandwich the operator PA by T and T−1.

Here T−1 is considered an inverse in the sense that it satisfies

T−1
a1 a2 a3...arTã1 a2 a3...ar = δa1 ã1 (3.4)

We can rewrite equation (3.3) as follows:

T−1
a b1···br−1

PAaa′Ta′b′1···b′r−1
=

[∑
b 6=a

∑
B

αAB(a|b)PB(b)⊗r−2 I

+
∑
b 6=c 6=a

∑
B,C

αABC(a|b, c)PB(b)PC(c)⊗r−3 I (3.5)

+
∑

b 6=c 6=d 6=a

∑
B,C,D

αABCD(a|b, c, d)PB(b)PC(c)PD(d)⊗r−4 I + . . .

]
b1···br−1, b′1···b′r−1

This is illustrated in figure 2.

Recall that we assume that the bond dimension D is the same for all edges in the

network. Thus we can simply use the same basis for the set of PA across the network.

First, we only need to consider traceless operators. A convenient choice of basis for the

local operator pushing is the set of D ×D (generalized) Pauli matrices:

Tr(PAPB) = D δAB with A,B = 1, 2, . . . , D2 − 1 (3.6)

12In general these coefficients α are not unique. In the case of perfect tensors, they are defined up to

actions of the list of stabilizers.
13Sometimes it is convenient to consider all operator pushing coefficients on an equal footing, then we

sum over the operator basis including the identity operator and explicitly keep the form αIJ1J2...Jr−1
even

if some operators in {Jk} are identity operators.
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αA
B

1

Dr−1
= T−1 T

PB

PA

···

Figure 3. Linear part of operator pushing coefficient (3.3).

As we will see later, a convenient basis for the global operator pushing will be different

from the set {PA}.
Using the tracelessness of PA,B, we have

αAB(1|2) =
1

Dr−1
PB, a2 ã2 T

−1
a1 ã2 a3...ar

PAa1 ã1 Tã1 a2 a3...ar (3.7)

where we use lower indices to denote the transpose:

PA ≡ (PA)t (3.8)

and similarly for index permutations. We draw this local “operator pushing” matrix (3.7)

in figure 3. We have assumed that the tensor T is non-degenerate to the extent that T−1

satisfying (3.4) exists. Equation (3.4) assumes a normalization whose physical meaning

will be apparent as we inspect correlation functions.14 Eq. (3.7) shows the coefficient

corresponding to pushing the operator PA through the leg-1 to the operator PB acting on

leg-2. Other configurations can be obtained similarly.

Similarly for pushing the operator PA acting on leg-1 into the operator PB acting on

leg-2 together with the operator PC acting on leg-3:

αABC(1|2, 3) =
1

Dr−1
T−1
a1 ã2 ã3 a4...ar

PB, a2 ã2 PC, a3 ã3 P
A
a1ã1 Tã1 a2 a3 a4...ar (3.9)

Higher coefficients can be computed in a similar manner.15

An immediate consequence of the above computations is that for perfect ten-

sors (defined in (2.10)), the first non-zero operator pushing coefficient appears at

αAB1...Br/2−1
(a|b1 . . . br/2−1).

3.2.2 Global operator pushing

Now we can follow the rule of local operator pushing to move an operator acting in the bulk

of the network G all the way to its boundary. Consider an operator P I acting on the ith

leg of the vertex v in the bulk of the network. Using the map from the bulk wavefunction

14It should be noted that the normalization convention we choose in (3.4) is different from (2.10) that is

used in [19].
15To discuss all operator-pushing coefficients on an equal footing, we can append the identity operator

to the list of Pauli matrices {P I} with I = 1, . . . , D2 − 1, and define 1 ≡ P 0; then αAB1,...Br−1
cover all

coefficients.
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O

O∂

Figure 4. Linear operator pushing on a generic tensor network. The red paths indicate all the

paths joining the bulk operator and the boundary operator.

to the boundary one (2.8), we get the effect of P I on the boundary wavefunction:

(⊗all internal edges µ|µ〉〈µ|)P I(v, i)|Ψbulk〉

=
N∑
j=1

∑
J

AIJ(v, i|j)P J(a) |ψbndy〉

+
∑
j 6=k

∑
J,K

AIJK(v, i|j, k)P J(j)PK(k) |ψbndy〉

+
∑
j 6=k 6=`

∑
J,K,L

AIJKL(v, i|j, k, `)P J(j)PK(k)PL(`) |ψbndy〉+ . . .

(3.10)

Each coefficient A is the result of the contributions from every local-operator pushing

coefficient α on each leg of the (branched) path from the initial leg (the ith leg of vertex v)

to the final boundary positions, and then summed over all possible such branched paths

though the bulk. Below we will explicitly compute AIJ(v, i|j) and AIJK(v, i|j, k).

3.3 Linear order in HKLL

Now we compute the tensor network analogue of the linear term of the HKLL formula (3.1),

i.e. the linear global operator pushing coefficient AIJ(v, i|j). It is given by the sum over prod-

ucts of αIJ(vi) collected along all the paths P from the bulk vertex v to the boundary leg j

AIJ(v, i|j) =
∑
P

∑
{I1,...I|P|−1}

∏
vi∈P

α
Ii−1

Ii
(vi), (3.11)

where I0 ≡ I, v0 ≡ v and I|P| ≡ J (here |P| is the length of the path P). See figure 4.

Now comes an important simplification. Since in this paper we are interested in using

tensor networks to model AdS/CFT, the bulk network should be homogenous, therefore

we can drop all the vertex dependence. The equation above simplifies into

AIJ(v, i|j) =
∑
P

[(α)⊗|P(v→j)|]IJ (3.12)
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where α denotes the matrix αIJ that contains the local operator pushing coefficient from

operator P I to operator P J (where {P I} is the Pauli matrix basis) and it takes the same

value throughout the network.

We then diagonalize α and use its eigenvectors (labeled as OI with eigenvalue λI) as

the basis for the bulk dual of primary operators.16 Using this new basis, the linear term

of the global operator-pushing coefficient defined as in (3.10) is simply

AIJ(v, a|i) = δIJ KI(v|i) (3.13)

with the “smearing function” given by

KI(v|i) ≡
∑
P

(λI)
|P(v→i)| (3.14)

where the sum is over all paths connecting the vertex v and the boundary leg i.

Plugging (3.13) into the linear term of the bulk operator reconstruction (3.10) from the

global operator pushing, we see that it has exactly the same form as the HKLL formula:

OI(v, 1) |Ψbulk〉 =
∑
i

KI(v|i)OI(i) |ψbndy〉 (3.15)

Namely, a operator acting OI in the bulk can be “reconstructed”, to linear order, by a

sum over the same operator acting on the boundary edges weighted by the “smearing

function” KI .

3.4 Non-linear orders in HKLL

Now we move on to the non-linear terms in the global operator pushing formula (3.10).

Using the same basis that diagonalizes the linear order global operator pushing in (3.12),

we now compute the coefficient AIJK(v, i|j, k), which corresponds to pushing the operator

OI all the way to the two boundary operators OJ acting on the boundary leg j and OK

on the boundary leg k.

Now we use the same argument as the one for the linear term of the global pushing.

Since there are two operators at the boundary links j, k, the contribution to AIJK(v, i|j, k)

involves splitting the operator OI into OJ and OK , at some bulk vertex w. A contribution

comes from a product of local operator-pushing coefficient αII along the path P that joins

the initial vertex v to the mid-way bulk vertex w. At w we use the local operator pushing

coefficient αIJK obtained in (3.9) to split the operator OI into OJ and OK . Then we push

these operators OJ and OK along paths P(w → j) and P(w → k), respectively. Finally,

we sum over all paths and the mid-way bulk vertex w. (See figure 5.)

The final result is

AIJK(v, i|j, k) =
∑
w

GI(v|w)αIJK KJ(w | j)KK(w | k), (3.16)

where we have defined the bulk-bulk kernel

GI(v|w) ≡
∑
P
λ
|P(v→w)|
I (3.17)

16Their normalization will be fixed by normalizing the two-point correlation functions later.
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OI

OJ OK

w

Figure 5. “Non-linear” contributions to operator pushing. The bulk operator OI splits into OJ

and OK . They are subsequently propagated to 1 (blue) and 2 (red) respectively.

where the sum is over all paths that connect two bulk vertices v and w. Note that the

bulk-bulk kernel GI(v|w) and the “smearing function” KI(v|j) are simply related by taking

the w all the way to the boundary leg j.17 This can be compared with the bulk-bulk

reconstruction kernel in [36] that we quoted in (3.1).

Higher order coefficients AIJKL···(v, i|j, k, ` · · · ) can be obtained in the same way.

For example,

AIJKL(v, i|j, k, `) =
∑
w

GI(v|w)αIJKLKJ(w|j)KK(w|k)KL(w|`)

+
∑
w,u

(
GI(v|w)αIJM KJ(w|j)GM (w|u)αMKLKK(u|k)KL(u|`)

+GI(v|w)αIKM KK(w|k)GM (w|u)αMJLKJ(u|j)KL(u|`)

+GI(v|w)αIMLKL(w|`)GM (w|u)αMJK KJ(u|j)KK(u|k)

)
.

(3.18)

For a tensor network defined on a tree, this is the complete set of contributions. In

a generic network with loops, these contributions will be dressed by loop diagrams. A

complete analysis of these loop diagrams is beyond the scope of the current paper. In the

following, we will focus on tree networks.

4 Tensor networks on p-adic tree

In this section we motivate the study of tensor networks living on the p-adic tree as an

explicit example of discrete AdS/CFT. We emphasize its difference from tensor networks

based on regular tessellations of AdS. It can be viewed as an explicit realization of p-adic

AdS/CFT recently proposed in [26, 27].18

17For infinite networks, we need to regularize this limit.
18Note that the relation of p-adic AdS/CFT to the tensor network was also mentioned in [26], although

it was based on geometric embedding of the p-adic tree in regular tessellation of AdS, as opposed to an

abstract tree.
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(a) (b) (c)

Figure 6. Tensor network embedded in a regular tessellation of Poincaré disk. (a): Hexagon tensor

network, based on W[2, 4, 6] tilling. (b): A 4-valent tree tensor network, based on the spanning tree

of W[2, 4, 6] tilling. (c): 3-valent tree tensor network, based on W[∞, 2, 3] tiling.

4.1 From tessellation to tree

4.1.1 Limitation of tensor networks based on regular tessellation

In the AdS/CFT correspondence, the global symmetries of the boundary CFT are mapped

to isometries of the bulk spacetime. When using tensor networks to model holography, the

network G corresponds to the bulk space. To realize a discrete version of AdS, the most

common approach is to choose G based on a regular tessellation. The bulk isometry is then

the discrete subgroup of SL(2,R) preserved by the particular tessellation.

For example, when the basis tile is a hyperbolic triangle with

Triangle
(π
`
,
π

m
,
π

n

)
with

1

`
+

1

m
+

1

n
< 1 (4.1)

the isometry group of G is the triangle group W [`,m, n]. For generic types of tilings

(made of basic triangles), the isometry group is a reflection group19 (or more abstractly

Coxeter group), i.e. generated by reflections across the edges of the tiles. Figure 6a shows

the hexagon tensor network based on the W[2, 4, 6] tilling. A brief review and relevant

references can be found in [21].

However, the representation theory of Coxeter groups is not strong enough to help find

the bulk solutions (living on the graph G). As a contrast, in the usual AdS/CFT, the bulk

solution can be solved explicitly in terms of irreducible representations of the conformal

group. In particular, one can find the bulk solutions that are dual to primary operators

of the boundary CFT. For tensor networks, to proceed to more quantitive comparisons

between the bulk and the boundary, we need a better handle on the isometry group of the

graph G.20

19Note that rotations can be generated by successive reflections across different edges. For textbooks on

hyperbolic reflection groups see e.g. [37].
20We are not aware of a systematic discussion of graph wavefunctions defined on regular tilings of the

hyperbolic space, or if such solutions exist at all, how they organize themselves into representations of the

Coxeter group.
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4.1.2 Tensor networks on abstract tree

The isometry of the tensor network based on a regular tiling is a discrete subgroup of

SL(2,R) because we insist on the tensor network to be geometrically embedded in AdS2,

respecting its isometry. However, there is no a priori reason that the discretization should

work in this most naive form. Suppose we relax this assumption, i.e. we view the lattice

as an abstract lattice, free from the underlying AdS, then it is possible for the lattice to

furnish a different, possibly bigger, symmetry.

In this paper, we adopt the somewhat radical approach of giving up the geometric

embedding in order to gain more symmetry. Since modeling AdS/CFT is our main goal,

we still want this symmetry to be related to the conformal symmetry in some way. It turns

out that the (p+ 1)-valent tree with p being a prime number can furnish a representation

for the full conformal group of SL(2,Qp) where Qp is the field of p-adic numbers. This is

a continuous group and hence much bigger than a discrete subgroup of SL(2,R).

This consideration is inspired by the recently discussed p-adic AdS/CFT correspon-

dence [26, 27]. The proposed duality is a discrete analogue of AdS/CFT. In the simplest

example where the bulk is two dimensional and the boundary one dimensional, the bulk

geometry is given by the Bruhat-Tits (BT) tree, whereas the boundary is conjectured to

be a theory that is defined on the field Qp i.e. the p-adic numbers, and which preserves the

SL(2,Qp) symmetry.

Before moving on to a review of the p-adic tree, we emphasize that, different from [26],

we do not view it as arising from a regular tessellation of the real AdS. There are two ways a

tree can arise from tessellations. The first is the spanning tree of the graph of a tessellation

— we draw the spanning tree of the tessellation based on W[2, 4, 6] in figure 6b.21 The

second is when the triangle group is W[∞, 2,m], which results in a m-valent tree. Figure 6c

shows an example of the 3-valent tree.

However, the trees that arise from these two ways completely break the scaling sym-

metry of the underlying AdS space.22 In contrast, the p-adic tree we will be considering

furnishes the full SL(2,Qp) symmetry.

4.2 p-adic number field and Bruhat-Tits tree

In this section we review the p-number field Qp and its Bruhat-Tits tree, to prepare for

the discussion of the Bruhat-Tits tree and p-adic AdS/CFT, and to fix notation. For

textbooks on p-adic numbers, see [38, 39]. For its applications in string theory or other

fields of mathematical physics, we recommend [40–46].

21Given a lattice, its spanning tree is a tree that contains all the vertices of the lattice and has the minimal

number of edges.
22For a regular tessellation based on the triangle group W[`,m, n] in which all three numbers are finite,

there are some discrete scaling symmetries preserved by the tessellation. However, this is not enough for

any quantitive calculation we want to do in this paper.
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4.2.1 The field Qp of p-adic numbers

The field of rational numbers Q can be extended to the field of real numbers R, with respect

to the Euclidean norm |x|, which satisfies a few axioms.

(1) : |x| ≥ 0 (2) : |x| = 0↔ x = 0 (3) : |x y| = |x| |y| ∀x, y ∈ R
(4) : |x+ y| ≤ |x|+ |y| ∀x, y ∈ R (triangle inequality)

(4.2)

Starting with the rational field Q, it is possible to extend it in other ways, with respect

to different norms that obey the above axioms.

Given a prime number p, a rational number x ∈ Q can be uniquely expanded in terms

of powers of p:

xp =
∞∑

n=−N
an p

n with an ∈ Fp (4.3)

where Fp denotes the residue field consisting of integers 0, 1, . . . , p−1. The expansion (4.3)

can be rewritten to highlight the congruence of xp with respect to p, i.e. the leading term

of the p-adic expansion:

x = pvp(x)
∞∑
n=0

bn p
n with b0 6= 0 , bn ∈ Fp and vp(x) ∈ Z (4.4)

using which the p-adic norm |x|p of x is defined as

|x|p ≡ p−vp(x) with vp(x) ∈ Z. (4.5)

Namely, the more divisible x is w.r.t. p, the smaller norm it has.

It is then easy to check that the p-adic norm obeys all four axioms for the norm. In

fact, it satisfies an even stronger form of the fourth axiom:23

|x+ y|p ≤ max(|x|p, |y|p) (strong triangle inequality) (4.6)

We thus see that the rational field Q can have infinitely many different norms: the

Euclidean norm |x| together with the p-adic norms |x|p for each prime p.24 The real field

R is only one possible extension of Q, using the Euclidean norm |x|. Now, for each prime

p, we can have a different extension of Q using the p-adic norms |x|p. Given a fixed prime

number p, the field Qp consists of all possible formal expansions of the form:

Qp ≡

{
xp =

∞∑
n=−N

an p
n | an ∈ Fp

}
. (4.7)

The p-adic norm (4.5), in particular |pn|p = 1
pn , ensures that the formal series (4.7) con-

verges.25 The strong triangle inequality (4.6) also implies |x+x|p ≤ |x|p, which violates the

23Note that the original triangle inequality is trivially satisfied by the p-adic norm: |x+ y|p ≤ |x|p + |y|p.
24The Euclidean norm |x| and the p-adic norm |x|p are the only possible norms to complete the rational

field Q (giving R and Qp, respectively), as already shown by Ostrowski in 1919 [47].
25Note that in contrast to the decimal expansion for the real number x ∈ R, for a p-adic number xp ∈ Qp,

we allow the expansion to be infinite in the direction of the positive exponent of p but not along the negative

direction, precisely because a higher power of p has a smaller p-adic norm.
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upper half plane H Bruhat-Tits tree Hp

Isometry group G SL(2,R) PGL(2,Qp)

Isotopy group K SO(2,R) PGL(2,Zp)
Boundary R Qp

Table 1. The parallel between the upper half plane H and the Bruhat-Tits tree Hp.

Archimedes principle |x + x| ≥ |x| — hence the geometry based on p-adic norm is called

non-Archimedean.

The p-adic norm is used to define the following subset of Qp, which will be useful in the

later construction of the Bruhat-Tits tree and the discussion on p-adic integration. First,

the unit sphere in Qp consists of xp with unit norm:

Up ≡ {xp ∈ Qp | |x|p = 1} i.e. x|p = a0 + a1p+ a2p
2 + . . . a0 6= 0 (4.8)

The unit ball of Qp is inside Up:

Zp ≡ {xp ∈ Qp| |x|p ≤ 1} i.e. x|p = a0 + a1p+ a2p
2 + a3p

3 . . . (4.9)

Note that the unit ball Zp is precisely the ring of p-adic integers. However, unlike Z (which

is open in R), Zp is both open and closed (“clopen”) in Qp. Finally, we denote the set of

non-zero elements in Qp as Q∗p ≡ Qp/{0}, which is Q∗p ≡
∐
n∈Z p

nUp.

4.2.2 Bruhat-Tits tree as bulk of p-adic line Qp

In this subsection we summarize the construction of the Bruhat-Tits tree [48, 49], in par-

ticular motivating it from its role as the bulk of Qp (i.e. the analogue of upper half plane

but whose boundary is Qp instead of R) and prepare for the discussion on the SL(2,Qp)

action on the tree.

The real field R is the boundary of the upper half plane H ≡ SL(2,R)/SO(2,R).

With coordinates H ≡ {z = x + i y |x ∈ R, y ∈ R+}, it has SL(2,R)-invariant metric

ds2 = 1
y2

(dx2 + dy2). An SL(2,R) action on a point z = x + i y on H would induce the

same action on its boundary point x. If we replace the boundary space R by the p-adic

field Qp, what would be its bulk, i.e. what is the p-adic version of the upper half plane?

The analogy with the relation between H and its boundary R, shown in table 1, suggests

that one should replace R by Qp in the definition of H to give

Hp ≡
PGL(2,Qp)

PGL(2,Zp)
. (4.10)

We immediately see the difference from the real case. As the maximal compact sub-

group of the isometry group PGL(2,Qp), PGL(2,Zp) is both open and closed (“clopen”)

in PGL(2,Qp). Therefore, although Qp is a continuum, its bulk Hp is actually discrete.

Since Hp has a discrete topology, we cannot simply give Hp the coordinate zp = xp+i yp
in which xp ∈ Qp and yp ∈ Qp+ and write down the PGL(2,Qp) invariant metric on
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it. However, the coset expression (4.10) suggests that one can construct it as a set of

equivalence classes 〈〈~f,~g〉〉 of lattices 〈~f,~g〉 in Qp ⊗Qp, where two lattices are equivalent,

〈~f,~g〉 ∼ 〈~f ′, ~g′〉, iff

(~f ′, ~g′) = (Γ · ~f,Γ · ~g) with Γ ∈ PGL(2,Zp). (4.11)

We leave the details of the construction to the appendix. To summarize, the p-adic analogue

of the upper half plane Hp has the topology of an infinite (p+1)-valence tree (called Bruhat-

Tits tree). The nodes on the tree are defined as equivalence classes 〈〈~f,~g〉〉 of lattices 〈~f,~g〉
and have the form

〈〈

(
pm

0

)
,

(
x(m)

1

)
〉〉 x(m) =

m−1∑
n=−N

anp
n an ∈ Fp. (4.12)

Note that since x(m) truncates at pm, we can think of pm as giving the accuracy level of a

p-adic number x(m), i.e. the node (4.12) represents the equivalence class

x(m) + pmZp. (4.13)

This somewhat formal definition of the Bruhat-Tits tree as equivalence classes of lat-

tices in Qp ⊗ Qp actually connects nicely with the p-adic expansion of the boundary Qp.

First note that the p-adic expansion already has a natural tree structure. Consider a generic

p-adic number

. . . a3 a2 a1 a0 . a−1 a−2 a−3 . . . a−N (4.14)

First, start from level p0, there are p choices for the coefficient a0, draw a node for each

choice. The node with a0 = 0 is then the origin O. Starting from each node (labeled by a0)

at level p0, there are again p choices for a1 — draw these p nodes at level p1 and connect

them to the node they start from. Moving up this way (and also connecting all nodes at

p0 backwards to the node the correspond to 0p−1 + 0), one draws an infinite (p+ 1)-valent

tree starting from level p−1. Moving backwards towards negative powers p−n then gives

the entire Bruhat-Tits tree.

Thus we obtain a one-to-one map between a p-adic number and a branch on the

Bruhat-Tits tree: given a p-adic number, its branch is defined by starting from the lowest

power of the expansion (4.14) and then at each level pn following the twig corresponding

to an in the expansion (4.14). Each node in the bulk Bruhat-Tits tree has two label:

z = x(m) z0 = pm (4.15)

where pm gives the accuracy level and x(m) a p-adic number to the accuracy pm, i.e. it

represents the equivalence class x(m) + pmZp. This precisely agrees with the result from

the lattice construction of the Bruhat-Tits tree.

The non-zero elements in Qp can be grouped according to the leading term in the

p-adic expansion:

Q∗p =
∐
n∈Z

pnUp : x|p = pv u with v ∈ Z and u ∈ Up (4.16)
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i.e. u =
∑∞

n=0 an p
n with a0 6= 0. The set pnUp for each n ∈ Z forms a subtree with the

root at:

Points on the main branch: x
(n)
0 = pn · 0 with accuracy pn (4.17)

The line connecting all the x
(n)
0 is then the main branch, running from n → −∞ to

n→ +∞.

4.3 Conformal primaries for tensor network on Bruhat-Tits tree

Recall that the main disadvantage of viewing the network G as a naive discretization of the

substrate AdS space is that it retains too few symmetries and makes it difficult to organize

operators. We now show that identifying the tree network G as the Bruhat-Tits tree

preserves a full conformal SL(2,Qp) symmetry26 for the tensor network, and in particular

allows us to define conformal primaries for operators acting on the tensor network.

4.3.1 SL(2,Qp) action on Bruhat-Tits tree

The coordinate system (4.12) assigns a vertex on the Bruhat-Tits tree two numbers pm and

x(m). In order to determine the radial direction and the boundary direction, and how to

choose the cutoff surface in a manner suitable to holography (and analogous to the upper

half plane in the real case), we now study their behavior under the bulk PGL(2,Qp) action.

A PGL(2,Qp) transformation acts on the lattice via

〈~f,~g〉 → 〈γ · ~f, γ · ~g〉 with γ =

(
a b

c d

)
∈ PGL(2,Qp). (4.18)

Given a vertex on the Bruhat-Tits tree with coordinate (4.12), under a PGL(2,Qp) action,

it transforms as

〈〈

(
pm

0

)
,

(
x(m)

1

)
〉〉 −→ 〈〈

(
pm
′

0

)
,

(
a x(m)+b
c x(m)+d

1

)
〉〉 (4.19)

where

pm
′

= pm
∣∣∣∣(c x+ d)2

ad− bc

∣∣∣∣
p

. (4.20)

Namely, start with the bulk point x =
∑m−1

n=−N an p
n, with accuracy only up to level pm,

its SL(2,Qp) image is another bulk point at

a x(m) + b

c x(m) + d
=

m′−1∑
n=−N

bn p
n with accuracy pm

′
. (4.21)

It is quite remarkable that the Bruhat-Tits tree, though discrete, can furnish the full

conformal group PGL(2,Qp). This allows us to study the function on the tree which has a

definite quantum number. Given the Iwasawa decomposition G = NAK, where N is the

Borel subgroup, A the dilation, and K maximal compact subgroup SL(2,Zp), it is enough

to look at their actions separately. The most important is the scaling transformation.

26Here we are a bit cavalier in our notation: the actual group that acts is PGL(2,Qp), but we shall often

(in analogy with the table above) refer to it as SL(2,Qp).
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0

x ∈ Qp

p2

p1

p0p0

p−1

pm

p

p2

1

110110

.1

1.10.1

Figure 7. Bruhat-Tits tree for p = 2. The dilatation D on the tree slides the branches along the

main branch.

Under a dilatation by pn, a vertex on the tree transforms as

D =

(
pn/2 0

0 p−n/2

)
: 〈〈

(
pm

0

)
,

(
x(m)

1

)
〉〉 −→ 〈〈

(
pm+n

0

)
,

(
pnx(m)

1

)
〉〉. (4.22)

The action moves the branches along the main branch, shown in figure 7.

4.3.2 Choice of cutoff surface

The construction of a holographic correspondence includes a prescription on how the bound-

ary is approached from inside the bulk, i.e. how to define the cut-off surface which is then

pushed to infinity. For instance, AdS in global coordinates or Poincaré coordinates have

different natural cut-off surfaces and therefore different boundary behaviors. Now we show

that the cut-off surface natural to the Bruhat-Tits tree should be lines of constant pm.

As we go to the boundary, both m and m′ →∞,

x(m) =
m−1∑
n=−N

an p
n −→ x =

∞∑
n=−N

an p
n (4.23)

we have the expected boundary PGL(2,Qp) transformation:

x =

∞∑
n=−N

an p
n −→ a x+ b

c x+ d
=

∞∑
n=−N ′

bn p
n (4.24)

Let’s compare to the real case. Under an SL(2,R) on a point z = x+ i y in the upper

half plane H, x and y transform as

x −→ (a x+ b)(c x+ d) + a c y2

(c x+ d)2 + (c y)2

y→0−−−→ a x+ b

c x+ d

y −→ y

(c x+ d)2 + (c y)2

y→0−−−→ y

(c x+ d)2

(4.25)
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p2

p1

p0p0

p−1

z0

p

p2

1 2 3 4 5 6 7 8

2

2

O O
4

4

Figure 8. A tree tensor network together with its conjugate, glued together (in computation of

correlators) along the common boundary, which is the analogue of the Poincaré cutoff surface in the

BT tree. Tensors move down the tree under a scaling transformation. We indicate with green arrows

a few examples of how the links move. Such a transformation corresponds to a transformation of

operators such that it is sandwiched between a network tensor. This is depicted in the box.

Comparing this with the transformation of x(m) in (4.24) and pm in (4.20), we conclude

that pm should play the role of the holographic direction, the analogue of y in the real case,

whereas x(m) the role of the boundary direction. This also means that the cut-off surface

should be a line of constant pm, as shown in figure 8. This is analogous to the choice of the

z = ε surface as the cut-off surface, where z is the radial direction in Poincaré coordinates.

4.3.3 Conformal primaries for p-adic tensor network

A primary field OI(x) of PSL(2,Qp) with conformal weight ∆I is defined as [50]

OI(
a x+ b

c x+ d
) =

(∣∣∣∣ det γ

(c x+ d)2

∣∣∣∣
p

)−∆I

OI(x) where γ =

(
a b

c d

)
∈ PGL(2,Qp) (4.26)

In particular, for a scaling transformation x→ p x

OI(px) = p∆IOI(x) (4.27)

Let’s translate this condition on operators in the tensor network.
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Consider an operator OI acting on a boundary leg of the tensor network. One im-

portant feature of the constant pm cutoff surface is that the external legs are not evenly

distributed, see figure 8. The distance of the external legs from the main-branch increases

as we move along the cutoff surface. Therefore, under the scaling transformation x→ pn x

with n > 0, an operator acting on a given boundary leg on the cutoff surface would hop

from a branch closer to the main branch to branches further away from the main branch.

For instance, under the boundary scaling x → p x, an operator OI acting on leg 2

is mapped to OI acting on leg 4, and leg 4 to leg 8, and so on. Applying (4.26) to this

particular network, we have

OI(i2) = p−∆IOI(i4) (4.28)

As we will see later in section 6, the condition such as (4.28), together with the as-

sumption on the homogeneity of the network, allows us to explicitly construct a primary

basis starting from the Pauli basis defined in (3.6), and moreover relate it to the “operator

pushing” basis defined in (3.13).

5 p-adic HKLL from tree tensor networks

In section 3 we derived the bulk operator reconstruction formula for generic tensors using

“operator pushing”. In this section we show that for tree tensor networks, it matches nicely

with the expectation from the conjectured p-adic AdS/CFT correspondence.

5.1 HKLL for tree tensor network

When the network G is an r = p + 1 valent tree, the path from a bulk edge (say the first

edge of vertex v) to the boundary edge is unique. Therefore the linear term of the global

operator pushing (3.15) becomes

OI(v, 1) |Ψbulk〉 =
∑
i

(λI)
|P(v→i)|OI(i) |ψbndy〉 (5.1)

where P(v → i) labels the unique path from the bulk vertex v to the boundary edge i, and

|P| measures its length. This is illustrated in figure 9.

It is exactly in the form of the HKLL formula

OI(v, 1) |Ψbulk〉 =
∑
i

KA(v, 1|i)OI(i) |ψbndy〉 (5.2)

with the “smearing function”

KI(v, 1|i) ≡ (λI)
|P(v→i)| = p−σI |P(v→i)| (5.3)

where in the last step we have used the following definition

p ≡ r − 1 and σI ≡ −
lnλI
ln p

(5.4)
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∂

OI(v)

OI(i)

KI(v, 1|i)

Figure 9. Linear contribution of global operator pushing for a tree tensor network.

∂

OI(v)

OJ(j)
OK(k)

w

AI
JK

Figure 10. Non-linear contribution of global operator pushing for a tree tensor network.

Similarly, for the next order in the HKLL formula (3.16), the bulk-bulk kernel defined

in (3.17) is also greatly simplified for a tree tensor network:

GI(v|w) ≡ (λI)
|P(v→w)| = p−σI |P(v→w)| (5.5)

Note that (3.16) is a sum of bifurcated paths from vertex v to the two boundary legs j and

k, with the sum over the bifurcating point w, as illustrated in figure 10.

In both the “smearing function” (5.3) and the bulk-bulk kernel (5.5) for an operator

OI , only one parameter σI (5.4) appears. What is its physical meaning?

To answer this, one first checks that both the “smearing function” (5.3) and the bulk-

bulk kernel (5.5) satisfy the expected EOM for a tree Lagrangian of a scalar [51]:

(�v +m2
I)GI(v|w) = NIδ(v, w) (�v +m2

I)KI(v|i) = 0 (5.6)
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where the graph Laplacian � can be defined for a generic graph as27

�φ(v) =
∑

v′∈nn(v)

(
−φ(v′) + φ(v)

)
(5.7)

The sum is over all nearest neighbours of v. We see that the parameter σI is related to the

mass squared of the bulk scalar by

m2
I = p1−σI + pσI − (p+ 1). (5.8)

For a finite network G, the “smearing function” can be simply obtained by taking the

second bulk vertex in the bulk-bulk kernel all the way to the boundary:

KI(v, 1|i) = limw→iGI(v|w). (5.9)

For an infinite network, a regularization is needed to make KI(v, 1|i) finite.

One can now use the “smearing function” KI and the bulk-bulk kernel GI to explicitly

compute the tensor network analogue of the bulk operator reconstruction. In the following,

we move on to interpret these results in the light of p-adic AdS/CFT.

5.2 p-adic HKLL

The “smearing function” KI (5.3) and the bulk-bulk kernel GI (5.5) were derived using

only “operator pushing” of the tensor network. Now we show that they have clear meanings

if the tree tensor network is interpreted as the bulk of p-adic AdS/CFT, supporting our

proposal that tree tensor network provides a concrete realization of p-adic AdS/CFT.

5.2.1 Reconstruction kernel v.s. propagator

In p-adic AdS/CFT, the bulk propagator gI and the bulk-to-boundary propagator kI of an

operator with conformal dimension ∆I are [27]:28

gI(v|w) =
ζp(2∆I)

p∆I
p−∆I |P(v→w)| and kI(v|i) =

ζp(2∆I)

ζp(2∆I − 1)
p−∆I |P(v→i)| (5.10)

where the conformal dimension ∆I is related to the mass of the scalar living on the bulk

Bruhat-Tits tree by

m2
I = − 1

ζp(∆I − 1)ζp(−∆I)
(5.11)

with the p-adic zeta function ζ(s) ≡ 1
1−p−s .

Comparing our result of the “smearing function” KI (5.3) and the bulk-bulk kernel

GI (5.5), derived here using the “operator pushing” for a tree tensor network, with the

boundary-to-bulk propagator kI and the bulk propagator gI of the p-adic AdS/CFT derived

in [27], we see that29

KI = kI |∆I→σI and GI = gI |∆I→σI . (5.12)

27Note the opposite sign from the usual definition — this is to match the mostly-negative signature.
28In this subsection we will mostly focus on the case with boundary dimension d = 1.
29The normalizations of our smearing function and the bulk-bulk kernel will be fixed later using two-point

correlation functions and will turn out to be consistent with this identification.
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Given that the two pairs satisfy the same EOM, we should match the two expressions

for the bulk mass (5.8) and (5.11) and obtain a relation between the parameter σI in (5.3)

and the conformal dimension ∆I of the operator OI . A priori, there are two solutions

σI = ∆I or σI = 1−∆I .

Recall that in the real case, the “smearing function” (3.2) used for the bulk operator re-

construction is related to the bulk-to-boundary propagator by first replacing the conformal

dimension ∆I in the exponent by d−∆I .
30 Therefore, the natural conclusion is

σI = 1−∆I . (5.13)

The relation (5.13) is valid for boundary dimension d = 1. In generic dimensions, it

should be replaced by

σI = d−∆I . (5.14)

We will prove this relation later in section 6.

5.2.2 Reconstruction kernel in terms of p-adic variables

The relation (5.12) (together with (5.13)) between the reconstruction kernels for tree ten-

sor networks and the propagators of p-adic AdS/CFT shows that the reconstruction ker-

nels (5.3) and (5.5) we derived using the “operator pushing” are consistent with the expec-

tation of the conjectured p-adic AdS/CFT. We now compare these reconstruction kernels

to the HKLL formula for the real AdS/CFT and show that the tensor network provides a

nice p-adic HKLL formula.

To compare with the real HKLL, we first need to rewrite the “smearing function”

KI(v|i) (5.3) in terms of p-adic variables. Interpreting the tree on which the tensor network

lives as the Bruhat-Tits tree, we should assign the bulk point v coordinates that label a

node on the Bruhat-Tits tree as in (4.15). Namely, we start from a point on the boundary

x ∈ Qp, and follow the (unique) path connecting it to the origin of the tree, and label the

bulk point v on the level m as (x, z = pm). For the boundary edge i in KI(v|i), we simply

assign a p-adic number y:

bulk vertex v : (x ∈ Qp, z = pm) and boundary edge i : y ∈ Qp (5.15)

with m ∈ Z denotes the holographic direction in the BT tree, and gives the accuracy of the

p-adic expansion. In particular, |z|p = p−m, and |z|p → 0 as one approaches the boundary.

It was shown in [27] that the distance from a bulk vertex on the Bruhat-Tits tree to a

boundary point, in the coordinates above, is

|P(v → i)| = −logp
|z|p

sup{|z|p, |x− y|p}2
(5.16)

30The Θ function appearing in [52] is introduced as a regularization via analytic continuation of the

bulk integral.
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where the supremum norm is sup{|z|p, |x − y|q} = |z|p if |z|p ≥ |x − y|p and |x − y|p
otherwise. Using (5.16) we have31

KI(x, z | y) =
ζp(2∆)

ζp(2∆− 1)

(
|z|p

sup{|z|p, |x− y|p}2

)d−∆I

(5.17)

Finally, recall that in the real HKLL formula one needs to regularize the bulk integra-

tion to have finite results. In Poincaré coordinates, this is done by dressing the “smearing

function” with a Θ((~x−~y)2−z2) factor. In an actual tensor network computation, the tree

is usually taken to be finite. However, the tensor network modeling p-adic AdS/CFT needs

to live on the infinite Bruhat-Tits tree. Therefore we propose to regularize by dressing the

p-adic smearing function (5.17) with the p-adic analogue of the Θ function — a factor of

γ(x−yz ) where γ is the characteristic function of Zp in Qp defined in equation (B.7):

KI(x, z | y) =
ζp(2∆)

ζp(2∆− 1)

(
|z|p

sup{|z|p, |x− y|p}2

)1−∆I

γ

(
x− y
z

)
. (5.18)

We see the p-adic HKLL formula, derived using the tensor network, uses a p-adic

smearing function (5.18) that is completely parallel to the smearing function (3.2) for the

real HKLL formula. Next we show that the linear term of the bulk operator reconstruction

φp(x, z) =

∫
Qp
dyKp(x, z |y )O(y) (5.19)

can be interpreted as a p-adic wavelet transform.

5.3 Linear term of HKLL as wavelet transform

In this subsection we show that the linear term of the bulk reconstruction can be inter-

preted as a wavelet transform — a technique in signal processing, analogous to the Fourier

transform but with Fourier modes replaced by the wavelet basis.

As will be reviewed later, the wavelet transform has a built-in coarse graining process,

therefore can be regarded as a realization of RG flow. For a comprehensive review of the

subject, see [53]. This underlies the connection between wavelet transforms and AdS/CFT.

In the context of tensor networks, it is recently found to be implementable in MERA [54].

In [24] (see also [25]) the Haar wavelet was used to construct a holographic mapping in a

particular example of tensor network.

We will show that the (linear term) of the bulk reconstruction is exactly a wavelet

transform, with the choice of wavelet determined universally, by AdS/CFT. We further

show that the inverse of the bulk reconstruction is actually not the inverse wavelet trans-

form, but needs to be regularized. We propose a regularization natural to the HKLL

formula. Both the real and the p-adic case work in this manner.

31We emphasize that the HKLL relation here is not to be confused with the bulk reconstruction discussed

in [26], which is the Euclidean version of recovering the bulk field for specified Dirichlet boundary condition,

which use the non-normalizable bulk-to-boundary propagator as in (5.10).
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5.3.1 Wavelet review

We now review basics of wavelet transforms, using the notations in [55], whose discussion

makes the parallels with the HKLL relation particularly transparent.

The wavelet basis containing d+ 1 parameters is defined as follows. First, choose the

mother wavelet ψ(~x), which is a (local) function of d parameters ~x. The set of daughter

wavelets is generated from the mother wavelet by translation by ~a and rescaling by s:

ψ~a,s(~x) ≡ 1

sd/2
ψ

(
~x− ~a
s

)
. (5.20)

These daughter wavelets form the wavelet basis.

Given a signal function f(~x), the wavelet transform using the wavelet ψ is then

defined as32

Wf (~a, s) =

∫
ddx f(~x)ψ†~a,s(~x) , (5.21)

For a generic mother wavelet ψ(~x), the wavelet basis {ψ~a,s(~x)} it gives rise to is over-

complete. However, special types of mother wavelet ψ(~x) can allow an inverse transform.

Relevant to the case at hand is when

ψ̂(~k) = ψ̂(k) , (5.22)

where ψ̂(~k) is the Fourier transform of ψ(~x) and k ≡ |k|. One can show that then the

inverse transform of (5.21) exists and is given by

f(~x) =
1

Cψ

∫ ∞
0

ds

sd+1

∫
ddaWf (~a, s)ψ~a,s(~x) (5.23)

where

Cψ ≡
∫ ∞

0
dk
|ψ̂(k)|2

k
(5.24)

Note that for the inverse transform to be well-defined, we also need the following “admis-

sibility condition”

Cψ < +∞ (5.25)

It is often more convenient to apply the wavelet transform in Fourier space. Consider

Fourier transforming (5.21) w.r.t. ~a. This gives

Ŵf (~k, s) = g(~k, s)f̂(~k) with g(~k, s) ≡ 1

s
ˆ(ψ†)s(−~k) (5.26)

It means that to define the mother wavelet of a wavelet transform, we could equivalently

specify a function g(~k, s) which is a function of the momentum and the scale factor s.

32Using the analogy with the Fourier transform, if ~x is regarded as the spacetime variable, the parameter

~a and s together play the role of momentum variables.
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5.3.2 Real linear HKLL as real wavelet

The linear term of the bulk reconstruction (3.1) is very close to a wavelet transform with

the mother wavelet

ψ∆(~x) =

(
1

1− ~x2

)d−∆

Θ(1− ~x2) (5.27)

where Θ is the step function with Θ(x) = 1 for x ≥ 0 and Θ(x) = 0 for x < 0. Her daughter

wavelets, defined via (5.20), and the HKLL “smearing function” are related by a scaling

K(~x, z | ~y ) = z∆− d
2ψ~x,z(~y) (5.28)

We interpret this result as follows. The AdS/CFT correspondence selects for us a set

of wavelet transform: for each operator O∆ of conformal dimension ∆, there is a mother

wavelet ψ∆ such that the wavelet transform WO(~x, z), which is related to the bulk fields

φ(~x, z) via

φ(~x, z) = z∆− d
2WO(~x, z) (5.29)

becomes a weakly-coupled and semi-classical degree of freedom. The holographic direc-

tion “z” in Poincaré coordinates is identified with the scaling parameter of the wavelet

transform.

Now let’s look at the inverse transform. For the standard inverse wavelet trans-

form (5.23) to exist, the admissibility condition (5.25) needs to be satisfied. For a scalar

field, the conformal dimension is ∆ = d/2+ν with ν =
√
d2/4 +m2. The Fourier transform

of (5.27) is

ψ̂∆(k) =
Jν(k)

kν
(5.30)

which gives

Cψ =

∫ ∞
0

dk
Jν(k)2

k2ν+1
∼ Γ(0)→∞ (5.31)

i.e. Cψ diverges and the inverse wavelet transform (5.23) is no longer valid. However, this

does not pose a problem for us because, although we use the wavelet transform to obtain the

bulk field, we actually do not need to use the (standard) inverse wavelet transform (5.23)

to obtain the boundary operator from the bulk field. We can compute instead∫
ddx dz

√
gAdSd+1

φ(~x, z)K(~x, z|~y) , (5.32)

which has an extra dressing factor of z2ν relative to the integration measure of the (stan-

dard) inverse wavelet transform (5.23). (The scaling parameter “s” there is to be identified

with “z” in the Poincaré coordinate here.) This is a natural choice in AdS geometry.

The Fourier transform of the smearing function is [34]

K(~x, z | ~y) = N
∫

time-like

ddk

(2π)d
zd/2Jν(kz)

kν
ei
~k·(~x−~y) (5.33)

where k =
√
−~k2 and N the normalization constant. The integral is restricted to time-like

momenta so that Jν remains normalizable. Plugging (5.33) into (5.32), and using

C̃ν ≡
∫ ∞

0

dz

z
Jν(kz)2 =

1

2ν
(5.34)
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for time-like momenta k, we are left with

N 2

2ν

∫
time-like

ddk

(2π)d
k−2ν Ô∂(x′) ei

~k·~y. (5.35)

Note that the integral (5.34) is the normalization that replaces Cψ in the wavelet trans-

form (5.23). The normalization condition C̃ν < +∞ in the inverse transform (5.32) replaces

the “admissibility condition” (5.25) that appears in the wavelet transform (5.23). The re-

striction to time-like momenta is due to this normalization condition, without which the

integral is not finite. The restriction however means that the reconstruction of the original

operator O∂ is restricted by causality. Namely, equation (5.35) can be re-written as

N 2

2ν

∫
ddx′O∂(~x′)G(~x′ − ~y), (5.36)

where

G(~x′ − ~y) =

∫
time-like

ddk

(2π)d
k−2νeik·(~y−~x

′). (5.37)

This should be contrasted with the usual wavelet transform where the admissibility condi-

tion is usually satisfied for all k.

5.3.3 p-adic linear HKLL as p-adic wavelet

Just as in the real case, the linear term of the p-adic bulk operator reconstruction can be

regarded as the p-adic wavelet transform of the boundary operator. The wavelet transform

perspective of the HKLL relation can be defined in an analogous manner in the p-adic

version of AdS/CFT. Let’s focus on the one-dimensional case.

p-adic wavelet transform. Given a p-adic mother wavelet ψ(x), which for our purpose

is taken to be a complex function with p-adic argument x, her p-adic daughter wavelets

can be defined in analogue to the continuous case (5.20)

ψa,s(x) =
1√
|s|p

ψ

(
x− a
s

)
x, a, s ∈ Qp (5.38)

This set of daughter wavelets forms the basis for the p-adic wavelet transform. Then the

p-adic wavelet transform of a function f(x) with x ∈ Qp using this wavelet basis is

Wf (a, s) =

∫
Qp
dx

1√
|s|p

ψ†
(
x− a
s

)
f(x) (5.39)

whose inverse transform is given by

f(x) =
1

Cψ

∫
Q×p

ds

|s|2p

∫
Qp
daWf (a, s)ψa,s(x) (5.40)

with

Cψ ≡
∫
Qp
dk
|ψ̂(k)|2p
k

(5.41)
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Note that the integration measure dsda
|s|2p

is precisely the left-invariant measure of the p-adic

affine group (whose action is x→ sx+ a). For the inverse transform to exist, we need the

same “admissibility condition” Cψ < +∞, as in the real case.

Just as in the real case, we can interpret the linear term of the bulk operator recon-

struction

φp(x, z) =

∫
Qp
dyKp(x, z |y )O(y) (5.42)

as a p-adic wavelet transform (5.39).

We first simplify the “smearing function” (5.18) into

KI(x, z | y) = Np |z|∆I−1
p γ

(
x− y
z

)
with Np ≡

ζp(2∆)

ζp(2∆− 1)
(5.43)

Now we see a major difference from the real case. For the p-adic case, the choice of the

mother wavelet does not depend on the conformal dimension ∆ of the boundary operator.

For any operator, there is a “universal” mother wavelet

ψ(x) = Np γ(x) (5.44)

The conformal dimension ∆ only enters through the relation between her daughter wavelets

and the “smearing function”:

Kp(x, z | y ) = |z|∆−
1
2

p ψ†x,z(y) (5.45)

which in turn gives the mapping between the wavelet transform WO(x, z) and the bulk field:

φp(x, z) = |z|∆−
1
2

p WO(x, z) (5.46)

Similar to the real case in (5.31), our mother wavelet (5.44) does not obey the standard

admissibility condition since

Cψ = N 2
p

∫
Qp

dk

|k|p
γ(k)2 = N 2

p

∫
Zp

dk

|k|p
→ +∞ (5.47)

where we have used the fact that γ is self-dual under Fourier transform. Again, this does

not pose a problem for us, because the physical inverse transform we use to obtain the

boundary field O(y) is ∫
Q×p

dz

|z|2p

∫
Qp
dx φ(x, z|y)Kp(x, z|y) (5.48)

which has an extra dressing factor of |z|2∆−1, due to (5.45) and (5.46). We will now show

that this can make the normalization C̃ finite and the inverse transform (5.48) valid. Note

that similar to the real case (5.27), the function γ restricts the integration within the

“causal patch” in the tree. (In the Bruhat-Tits tree, the causal future of a node (x, z) is

defined as the subbranch of the tree rooted at this node.33)

33The causal structure on the Bruhat-Tits tree was first studied in [56], in the context of the hierarchical

structure of inflation.
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First we compute the Fourier transform of the p-adic “smearing” function (5.18), using

the additive character (B.5):

Kp(x, z | y ) = Np |z|∆p
∫
Qp
dk e−2πi[k (x−y)] γ(kz) (5.49)

Note that since the function γ is self-dual under the Fourier transform, in the momen-

tum domain the restriction to time-like momenta is also implemented by the γ function.

Plugging (5.49) into the inverse transform (5.48) we get

(N 2
p C̃p)

∫
Qp
dx′Gp(x

′ − y)O(x′) (5.50)

with

Gp(x
′ − y) ≡

∫
Qp
dk |k|−2ν

p e−2πi[k(x′−y)] (5.51)

the p-adic analogue of the kernel in (5.37), and34

C̃p =

∫
Qp
dz|z|2ν−1

p γ(z)2 =

∫
Zp
dz|z|2ν−1

p =
p− 1

p(1− p−2ν)
for ν > 0 (5.52)

with ν = ∆− 1
2 . Therefore, for all ν > 0, i.e. for massive scalars, the p-adic normalization

C̃p is finite and the inverse transform is valid.

We have thus shown that the p-adic bulk reconstruction works in the same manner as

the real case: the bulk reconstruction can be realized as a continuous wavelet transform,

whereas the inverse, i.e. obtaining the boundary field from the bulk one, is related to the

standard inverse wavelet transform by an extra dressing factor of z2ν .

There is one important difference between the real and the p-adic cases. In the deriva-

tion of the bulk reconstruction via a p-adic wavelet transform, we have used the continuous

wavelet transform. However, in essence, the p-adic wavelet transform is discrete.35 The

reason is the following. First of all, even though we started with a continuous wavelet

transform in (5.39), the resulting scaling parameter is |z|p instead of z. And since the

integration measure in the inverse transform (5.40) is invariant under the affine group, the

integration is actually equivalent to the sum over the Bruhat-Tits tree [27]:∫
Q×p

dz

|z|2p

∫
Qp
dx f(x, z) =

1

ζp(1)

∑
v∈Tp

f(v) (5.53)

Recall that the Bruhat-Tits tree can be viewed as the discrete, holographic bulk whose

boundary is the continuous line of Qp. The emergence of the discrete p-adic wavelet

transform starting from a continuous one can be viewed as the mirror statement of the

above. This strongly supports the connection between the bulk reconstruction and the

wavelet transform, with the coordinate of the holographic direction in the bulk being

identified with the scaling parameter in the wavelet transform.

34Note that the integral in C̃p only converges when ν > 0.
35The coincidence of the continuous and the discrete p-adic wavelet transform was already shown for a

particular type of wavelets in [57].
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6 Correlation functions and emergent Witten diagrams

In this section we compute correlation functions of conformal primaries on a p-adic tree ten-

sor network, and show that dual Witten diagrams emerge automatically in the bulk of the

tensor network. We also explain the connection between the bulk operator reconstruction

in section 5 and the correlation function computation.

6.1 Constructing conformal primaries in p-adic tensor network

An n-point correlation function in a tensor network is defined as

〈ψbndy|OI1(i1)OI2(i2) . . .OIn(in)|ψbndy〉 (6.1)

where the n boundary operators {OIi} are sandwiched between the original “bra” wave-

function |ψbndy〉 defined in (2.8) using the tensors T and its conjugate “ket” 〈ψbndy|.36

To evaluate the n-point function (6.1) explicitly, we first need to construct conformal

primaries {OIi}. The conformal primary for a p-adic CFT was defined in (4.26). We have

already shown that as an operator acting on the tensor network, it obeys conditions in the

form of (4.28). Now we use (4.28) to construct {OIi} using the Pauli basis (defined in (3.6)).

Just as the “operator pushing” basis defined by diagonalizing the linear operator-

pushing coefficient α in (3.12) depends on the value of the tensor T (see eq. (3.7)), the

conformal primary basis also depends on T , though due to a different argument.

Let’s again use the example of the p = 2 tree shown in figure 8. Recall that under the

boundary scaling x → p x, an operator OI acting on leg 2 is mapped to OI acting on leg

4. Applying (4.26) to this particular network, we have

OI(i2) = p−∆IOI(i4). (6.2)

Above is an identify for operators on different positions. To have a local condition, we need

another relation between OI(i2) and OI(i4).

The hint comes from lessons from MERA networks (shown in figure 1(b)), in which

moving through layers of tensors realizes coarse graining. Since the operator is sandwiched

between |ψbndy〉 and its conjugate “ket” 〈ψbndy|, a coarse graining (i.e. moving deeper into

the tree) affects both the bulk network for |Ψbulk〉 and its conjugate 〈Ψbulk|. In the p = 2

example shown in figure 8, along the cutoff surface, OI(i4) is one layer of tensors further

away from the main branch, therefore it is related to OI(i2) as if it is sandwiched between

an extra layer of tensors. (This is illustrated for the case of p = 2 in the box inside figure 8.)

Therefore we have

OI(i2) = Ta1b2b3 O
I
b2b̃2

(i4)T ∗
ã1b̃2b3

. (6.3)

The two equations (6.2) and (6.3) together give a local condition on the conformal

primary OI :37

Ta1b2b3 O
I
b2b̃2

T ∗
ã1b̃2b3

= p−∆I OIa1ã1 . (6.4)

36All other boundary edges are contracted directly between the network and its dual.
37We note that this is similar to MERA tensor networks (shown in figure 1(b)), in which moving through

layers of tensors realizes coarse graining. At a fixed point, the operator acting on the legs of a given layer

is mapped to another “coarse-grained” operator by the tensor. However, for a primary operator OI , it is

simply rescaled at the fixed point, satisfying an equation like (6.5).
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OI

= p−∆I OIT T
?

···

1

Figure 11. Illustration of equation (6.5).

GA
B

1

D
= T T ∗

PB

PA

···

Figure 12. Scaling matrix GA
B for generic r = p+ 1.

For a generic r = p+ 1 valent tree, it is

Ta1b2···br O
I
b2b̃2

T ∗
ã1b̃2b3···br

= p−∆I OIa1ã1 . (6.5)

This is illustrated in figure 11.

Finally, the conformal primaries defined in (6.5) can be constructed starting from the

Pauli basis defined in (3.6), which satisfy

Ta1b1···bp P
A
b1b̃1

T ∗
ã1b̃1b2···bp

= GAB P
B
a1ã1 . (6.6)

Multiplying by PB on both sides and using (3.6), we get

GAB =
1

D
Ta1b1···bp P

A
b1b̃1

PB ã1a1 T
∗
ã1b̃1b2···bp

(6.7)

as shown in figure 12. Diagonalizing the matrix G then gives the set of eigenvectors as

the conformal primary basis {OI}, each with eigenvalue p−∆I where ∆I is the conformal

weight. This gives the spectrum of the theory defined by the tensor network.

6.2 Two-point functions

Having constructed conformal primaries from the Pauli basis, we can now evaluate their

correlation functions. We start with the two-point function

〈OI(i)OJ(j)〉 ≡ 〈ψbndy| OI(i)OJ(j) |ψbndy〉 (6.8)

The computation takes two steps.38 First, use the coarse graining equation (6.5) to

move both operators down, until they reach the edges of a common bulk vertex v, which

produces a factor

p−∆Id(i→v)−∆Jd(j→v) (6.9)

where the distance d(i → v) counts the number of edges between the boundary leg i and

the bulk vertex v. This step is shown in figure 13.

38This computation is similar to computing correlators from MERA.
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0

x ∈ Qp

p2

p1

p0p0

p−1

pm

p

p2

O1 O2

Figure 13. Pushing down the boundary operators to compute the two-point correlation function,

shown for the 2-adic tree.

Then one can use the fact that the conformal primaries OI and OJ diagonalize the

scaling matrix G defined in (6.7) and get

〈OI(i)OJ(j)〉 = δIJ Ap−∆Id(i→j), (6.10)

with

A ≡ Ta1a2b3···bp+1
OIa1ã1 O

I
a2ã2 T

∗
ã1ã2b3···bp+1

(6.11)

as shown in figure 14, and d(i→ j) counts the number of edges in the (unique) path that

connects the boundary leg i and j.

The two point function (6.10) is the result of a tensor network computation and given

in terms of bulk quantities. Now we need to translate it into boundary p-adic variables.

In the Bruhat-Tits tree, the distance d(i→ j) diverges. Using the regularization proposed

in [26] we have

p−∆Id(i→j) → 1

|xi − xj |2∆I
p

(6.12)

Remarkably, this p + 1 valent tensor network recovers precisely the form of the two point

function dictated by the SL(2,Qp) invariance:39

〈OI(xi)OJ(xj)〉 = δIJ
CI

|xi − xj |2∆I
p

. (6.13)

Finally, in this tensor network computation, as shown in figure 13, the two boundary

operators are pushed deep into the bulk tensor network to meet at the unique bulk vertex

— a “Witten diagram” has emerged in the tensor network. The scaling relations (6.4)

and (6.15) led to (6.10), and the r.h.s. corresponds to the boundary limit of the bulk-

bulk propagator which solves the scalar Klein-Gordon equation. The mass of the scalar is

determined by the scaling dimension exactly according to the AdS/CFT dictionary.

39We can further normalize OI such that CI = 1 by OI(x)→ N (x)OI(x) with N (x) ≡ p∆Id(x→O)√
Tr(OI )2

where

O is the origin of the Bruhat-Tits tree (z0, x) = (p0, 0).
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OI

OJ

T T
?

···

Figure 14. Contraction in equation (6.10).

=T T
?

···

Figure 15. Consistency condition (6.15).

6.3 Higher point functions

These considerations can be readily generalized to computing three and higher point func-

tions, each related to an emergent Witten diagram. This can be compared with [58]. For

instance, the three point vertex is given by

λIJK = Ta1a2a3b4···bp+1O
I
a1ã1OJ a2ã2OK a3ã3T

∗
ã1ã2ã3b4···bp+1

. (6.14)

They coincide with αIJK(1|2, 3) in (3.9) up to an overall normalization dependent on D,

which can be absorbed into the definition of the reconstruction kernel. Having got this

far, one is tempted to believe that an interacting scalar theory living in the discrete graph

has emerged.

6.4 Conformal primaries basis v.s. operator pushing basis

A priori, it is not clear whether the primary basis obtained here coincides with the HKLL

basis obtained by diagonalizing (3.7). We now show that they are actually the same basis.

Using this we can then prove the relation (5.13) in the weakly interacting limit.

First of all, since in the computation of the n-point function (6.1), all boundary edges

— except for the n pairs that are linked by {OIi} — are contracted directly between the

network and its dual, the identity operator should scale trivially under (6.4), which imposes

a consistency condition on the tensor:

Ta1b1···bp T
∗
ã1b1···bp = δa1ã1 , (6.15)

see figure 15 for the example with p = 2.

Recall that the tensors describing a homogenous space should be permutation invariant.

Comparing with the T−1 defined in (3.4), we have

T−1
a1...ap+1

= T ∗a1...ap+1
(6.16)

Now compare the “operator pushing matrix” defined in (3.7) and shown in figure 3 and

the “scaling matrix” defined in (6.7) and shown in figure 12. With the identity (6.16), they
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OI = OI = αI
J1J2J3

OJ1

OJ2

OJ3

=αI
J1J2J3

GJ1J2J3
K OKT T ∗ T T ∗

Figure 16. Chain of argument in the proof of (6.20) for p = 3.

are proportional up to a transpose:

αAB =
1

Dp+1
GBA (6.17)

Therefore the basis used in the bulk operator reconstruction and the one used in computing

correlation functions are exactly the same basis.

Now we prove the identity (5.13) in the weakly interacting limit (in the bulk). First of

all, similar to the higher operator pushing coefficients as in (3.9), we also need the higher

scaling matrix that generalizes GAB defined in (6.7). Sandwiching a tensor product of p

operators between T ∗ and T defines the higher scaling matrix by:

Ta1b2···br P
A1

b2b̃2
PA2

b3b̃3
· · ·PAp

bpb̃p
T ∗
ã1b̃1b̃2···b̃p

=: G
A1···Ap
B PBa1ã1 . (6.18)

Finally, inverting PB in (6.18) we get

G
A1···Ap
B =

1

D
Ta1b2···br PB a1ã1 P

A1

b2b̃2
PA2

b3b̃3
· · ·PAp

bpb̃p
T ∗
ã1b̃1b̃2···b̃p

. (6.19)

Similar to the operator pushing coefficients, to discuss all scaling matrices on an

equal footing, we append the identity operator to the list of Pauli matrices {P I} with

I = 1, . . . , D2 − 1, and define 1 ≡ P 0. The scaling matrix (6.19) then includes all lower

rank ones as special cases, in particular the scaling matrix (6.6) in which p − 1 of the

operators are the identity operator.

Consider all operator pushing coefficients and scaling matrices collectively allows us to

prove a useful identity:

OIaã = OIac Tcb1···cp T ∗ãb1···cp = αIJ1···Jp Tcb1···bp O
J1
b1b̃1
OJ2
b2b̃2
· · · OJp

bpb̃p
T ∗
ã1b̃1b̃2···b̃p

= αIJ1···JpG
J1···Jp
K OKaã,

(6.20)

where OI,J,K spans the list of conformal primaries (or equivalently the operator pushing

basis) together with the identity matrix, i.e. I, J,K = 0, 1, . . . D2−1. As shown in figure 16,

we have first used the identity (6.15), then the identity between T−1 and T ∗ (6.16), and

finally the “operator pushing” from one leg to the remaining p legs.

Equation (6.20) then gives

αIJ1···JpG
J1···Jp
K = δJK . (6.21)

In the weakly interacting limit, where non-linear couplings α and G involving more than

two non-zero indices I, J,K · · · are suppressed relative to “linear couplings” αIJ and GIJ ,
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we are left with40

pd αIJ G
J
K = δIK (6.22)

where we have used permutation invariance of the indices of each tensor.

Diagonalizing (6.22) thus gives a relation between the eigenvalues λI ≡ p−σI of the

operator pushing matrix α, and the eigenvalue p−∆I of the scaling matrix G:

σI + ∆I = d (6.23)

which is precisely the relation between the conformal weights of the normalizable and non-

normalizable solutions of the free KG equation of bulk scalar fields. We emphasize again

that this relation emerges automatically in the tensor network.

7 Summary and discussion

In this paper, we examined the tensor network/geometry correspondence in further detail.

Our aim was to read off a bulk interacting theory by inspecting the properties of constituent

tensors in the tensor network. This was done via two routes. First by inspecting tensor iden-

tities satisfied by individual tensors, one can expand any bulk operator in terms of a sum

over boundary operators. By organizing the sum systematically, each term acquires an in-

terpretation as a Witten-like diagram in the bulk, in direct correspondence with the HKLL

relation found in the AdS/CFT correspondence. This also allowed us to read off the field

content in the bulk, and determine the masses of these fields and their interaction couplings.

Then we applied our methods in a specific context — the p-adic AdS/CFT correspon-

dence. We constructed a tensor network based on the Bruhat-Tits tree, and demonstrated

that our method recovers the HKLL relation appropriate for p-adic AdS/CFT. With the

bulk isometries exactly matching the boundary symmetries SL(2,Qp), it implied extra phys-

ical requirements on the constituent tensors. These physical constraints allow us to compute

boundary correlation functions exactly. Once again, bulk Witten diagrams emerge, from

which one can read off the field content and interaction couplings. We demonstrated that

in the “free field” limit in the bulk, the correlation functions follow from non-normalizable

bulk-boundary propagators, as opposed to the normalizable ones that feature in the HKLL

relation. Moreover their scaling behaviours are related in precisely the same way as in

the AdS/CFT dictionary, a relation now derived based purely on properties of the ten-

sor network. It gives strong quantitative support that the tensor network is an explicit

embodiment of the AdS/CFT correspondence.

Unlike the construction of MERA, we did not demand from the very beginning that

T should be a unitary or isometry, although a very similar condition (6.15) was later

imposed for other physical requirements. A priori, there is no reason that the constituent

tensors of a tensor network should be unitaries or isometries. This was imposed for efficient

numerics. As far as a tensor network construction of wave-function is concerned, the only

physically relevant condition is to provide as accurate an approximation as possible to the

40d = 1 for a one dimensional boundary given by Qp. For higher boundary dimensions d, the boundary

is given by Qpd , hence each tensor in the tree carries pd + 1 legs [27].
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actual wave-function after auxiliary indices are contracted. A “stochastic MERA” where

all tensors take only positive definite elements was recently constructed in [69].

It was noted in [26] that the tree tensor networks do not recover the Ryu-Takayanagi

formula. In other words, the length of the geodesic through the Bruhat-Tits tree connecting

two given end points at the boundary in general does not give the entanglement entropy of

the region bounded by the two points. Given that a tree tensor network in fact produces

the correct correlation functions, it suggests that this is in fact a feature of p-adic CFT.

We also commented on the precise relationship between the wavelet transform and the

AdS/CFT correspondence. Beyond its philosophical value, the relationship provides a

guiding principle for future attempts at constructing tensor networks that are dual to

some target (p-adic) CFT’s.

Before we close our summary, we note that there is one potential confusion concerning

the signature of the theory. In the usual discussion of the tensor network, such as the

MERA and the MPSs, they are descriptions of wavefunctions, which are defined on a given

time slice. In the p-adic version of AdS/CFT [26, 27], the construction is a generalization

of the Euclidean version of AdS/CFT. How then should the tensor network be understood

in this case?

To understand what happens, we recall works in the tensor network literature where

classical partition functions of statistical models admit a tensor network description, see

for example [59, 60]. These tensor network representations of partition functions, which

are equivalent to Euclidean path-integrals of the quantum model in one higher dimension,

can also be coarse grained, which are linear maps of the constituent tensors. If every step

of the coarse graining is kept so that those linear maps form layers of tensors in an extra

dimension, we obtain a tensor network in one extra dimension.

In other words, there is no mystery about the Euclidean version of the tensor net-

work/geometry correspondence. It would have the same form as MERA except that what

were previously physical dangling legs are now contracted among themselves in the Eu-

clidean path-integral. The bulk operator boundary operator reconstruction is clearly in-

dependent of whether the boundary layers of legs are contracted among themselves. We

acknowledge that the computation of the correlation functions as they are discussed in

the current paper is rooted in the wave-function interpretation. There is some tension in

directly interpreting the tensor network as a generating function of correlation functions.

This however can be resolved by modifying our tensor network into a form that is more

readily interpretable as a path-integral. We have made progress in this direction, and will

report an alternative construction in a future publication.

The current work is only the first step in elucidating the relation between tensor

networks and the AdS/CFT correspondence. We list some of the imminent questions and

generalizations in the following.

7.1 Implication to p-adic AdS/CFT

One reason that p-adic AdS/CFT is much less developed than the real version is that

there hasn’t been a well-defined, but non-trivial, “p-adic CFT”. With recent develop-

ments [61, 62], the situation is quickly evolving. One of the main difficulties that remain
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intriguing is that the ordinary derivative ∂z of the real case does not exist for the p-adic

field Qp. To proceed, there are two alternatives. One is to use the “Vladimirov derivative”:

Dpf(x) ≡
∫
Qp
dy
f(y)− f(x)

|y − x|2p
(7.1)

which defines the derivative via integration, and hence can be regarded as the p-adic ana-

logue of Cauchy’s contour integral in complex analysis. The resulting field theory with a

Lagrangian based on the “Vladimirov derivative” is therefore highly non-local [63–65].

The other choice is to simply forgo the use of derivative, as in [50]. The “p-adic CFT”

defined this way would have only primary fields (defined using global SL(2,Qp) as in (4.26)),

and no descendants. The unitary condition is then automatically satisfied and therefore

cannot impose any constraints on the conformal weights of allowed primaries. In fact,

the form of all correlation functions is fixed and the crossing symmetry is automatically

satisfied. Therefore it also cannot impose any constraints on the allowed primaries.41

With the result of the present paper, we can regard the tensor network living on the

Bruhat-Tits tree as a concrete realization of a “p-adic CFT”, with different choices of the

tensors corresponding to different matter content and interaction couplings. Since a priori,

any conformal dimension is allowed, and we do not need the derivative or Lagrangian to

define the theory, this is more in line with the second, more algebraic, approach.

This then allows us to go beyond the free massless scalar. The next simplest example

would be the WN,k minimal model,42 which also has the benefit that it is dual, by a

weak/weak AdS/CFT correspondence, to a bulk higher spin gravity [66]. The existence of a

weakly-coupled bulk dual living on the Bruhat-Tits tree then imposes additional constraints

on the boundary “p-adic CFT”. This is currently under investigation.

7.2 Further explorations in tensor networks

In this paper, we have studied very specific types of graphs. Namely they are unweighted

graphs with a fixed valency. Our language should admit generalizations to more general

types of graphs. Let us comment briefly on two interesting extensions.

• For tree graphs with multiple valency, it can be described by a substitution matrix.

A substitution matrix M is a N ×N dimensional matrix, where N is the number of

different species, and Mij is the number of descendants belonging to vertices of type

j branching out from a vertex of type i. For example, if we have only two kinds of

vertices, we have

M =

(
a b

c d

)
(7.2)

where the matrix elements are positive integers. One solution to the (unweighted)

graph Laplacian is

GO(a) = Nhmkn, (7.3)

41The modular invariance on higher genus Riemann surfaces might impose more constraints but this has

not been studied.
42Tensor networks have been used to study the Ising model and three-state Potts model in the real

case in [59].
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where N is some suitable normalization and m+ n = d(a,O), which is the distance

between a node a and the root of the graph O.43 To satisfy the graph Laplacian

equation with the same mass, we need to put in an extra constraint so that the

function satisfies the same equation independently of the type of node the Laplacian

acts on. The constraint is given by

ch+ dk +
1

k
− (c+ d+ 1) = ah+ bk +

1

h
− (a+ b+ 1). (7.4)

It is not yet clear what such constraints could mean as far as the bulk interacting

theory is concerned. It should be studied systematically.

• Another generalization is to include weighted graphs. In this paper, we have assumed

that the network is a homogenous network and preserves as much symmetry as the

graph. In general when we start discussing fluctuations around a background, then

it seems natural that different edges should in general have different weights. A first

step has been taken in [28], where the weights are interpreted as metric fluctuations.

The Laplacian also depends on these weights by

�φ(v) =
∑
u∼v

Juv(φ(u)− φ(v)), (7.5)

where Juv is the weight on the edge connecting the vertices u and v. It is an impor-

tant question to understand how these degrees of freedom emerge from the tensor

network.

• Time dependent evolution of the wavefunctions and dynamics in the bulk.

While a wavefunction can be evolved using any Hamiltonian that acts on the bound-

ary legs, it is not clear whether we can interpret that evolution as some local dynamics

of bulk degrees of freedom.

Apart from these generalizations, there are other important questions. In particular,

it is evident that to recover a bulk theory that can be interpreted as a local interacting

theory, there are many constraints that need to be imposed on the tensors. It is necessary

to study these constraints systematically, and ask for the minimal set of data needed to

define the bulk theory. Such a discussion is pertinent to understanding when a large gap

in conformal dimension is emerging, which is an essential condition for the emergence of a

semi-classical and local holographic dual [67].

Second, we need a theory of gravity in the bulk, and to that end, we need to find a

systematic way to describe fields carrying spin. As far as gravity is concerned, one way

to identify fluctuations of these tensors with gravitational excitations is based on diffeo-

morphism. The idea is that the bulk graviton is supposedly dual to the boundary stress

tensor. One could therefore ask the following question: for a given local diffeomorphism at

the boundary, such as a local translation that can be effected by inserting the (exponen-

tiated) stress tensor ei
∫
dx ε(x)T0x , we can look for the corresponding transformation in the

43Roughly speaking, a rooted tree contains a special point from which the tree grows outwards.
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bulk that would have (approximately) the same effect. This would recover δgµν according

to the Tµν inserted. The bulk transformation in general corresponds to the exchange of

edges (which is particularly apparent in the case of a tree). It thus fits with a metric

carrying two indices. This is currently under investigation.

Last but not least, as we already mentioned in section 2.3, recovering bulk dynamics

from boundary dynamics is an extremely important question. We hope to return to these

issues in the near future.
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A Lattice construction of Bruhat-Tits tree

Since Hp has a discrete topology, we cannot simply give Hp the coordinate zp = xp + i yp
in which xp ∈ Qp and yp ∈ Qp+, and write down the PGL(2,Qp) invariant metric on

it. However, the coset expression (4.10) suggests that one can construct it in terms of

equivalence classes of lattices in Qp ⊗Qp.

A lattice in Qp ⊗Qp generated by basis vectors ( ~f,~g)

~f ≡

(
f1

f2

)
~g ≡

(
g1

g2

)
with fi, gi ∈ Qp (A.1)

which satisfy ~f 6= c~g for ∀c ∈ Qp is defined as44

〈~f,~g〉 ≡ {a~f + b~g | a, b ∈ Zp}. (A.2)

A PGL(2,Qp) transformation acts on the lattice via

〈~f,~g〉 → 〈γ · ~f, γ · ~g〉 with γ =

(
a b

c d

)
∈ PGL(2,Qp). (A.3)

44Here we see an important difference between the lattices on R⊗R and the p-adic lattices. Since a, b ∈ Zp
(the unit ball inside Qp), which is continuous, the p-adic lattices form a continuum, whereas the R ⊗ R
lattices are discrete.
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0

x ∈ Qp

p2

p1

p0(f, g)

(f, 2g)

pm

(2f, g)

(4f, g)

(2f, g + f)

Figure 17. Bruhat-Tits tree for p = 2. Here f ≡ ~f0 and g ≡ ~g0.

The numerator PGL(2,Qp) in (4.10) acts transitively on the space of lattices in Qp ⊗Qp,

and the denominator PGL(2,Zp) is the stabilizer of the integer lattice Zp ⊗ Zp. Therefore

Hp defined as coset (4.10) is identical to the set of equivalence classes {Λ} of lattices in

Qp ⊗Qp, where two lattices are equivalent, 〈~f,~g〉 ∼ 〈~f ′, ~g′〉, iff

(~f ′, ~g′) = (Γ · ~f,Γ · ~g) with Γ ∈ PGL(2,Zp) (A.4)

Note that since we use PGL instead of SL, we have

〈~f,~g〉 ∼ λ〈~f,~g〉 with λ ∈ Q∗p (A.5)

We denote the equivalence class of a lattice generated by (f, g) as 〈〈f, g〉〉.
Now we are ready to define the metric on Hp, i.e. the distance between two points in

Hp, i.e. two equivalence classes of lattices Λ and Λ′ in Qp⊗Qp. First, Λ and Λ′ are defined

as incident (i.e. directly connected) if and only if45

pΛ ⊂ Λ′ ⊂ Λ. (A.6)

We connect such a pair of nodes by an edge, which has distance d(Λ,Λ′) = 1. One can

immediately check that each node has exactly (p+1) nearest neighbors, i.e. that Hp has the

topology of an infinite (p+1)-valent tree (shown in figure 6c for p = 2), instead of a Qp⊗Qp

continuum. Figure 17 shows the Bruhat-Tits tree for p = 2. Then the distance between

any two points is defined as the number of edges connecting them, which is invariant under

PGL(2,Qp).

45To check that this definition is reflective, we note that since pΛ is equivalent to Λ, multiplying the

equation above by p gives pΛ′ ⊂ Λ ⊂ Λ′.
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For the real case, it is easy to visualize the relation between the upper half plane H
and its boundary R. In the coordinate z = x + i y (with which the hyperbolic metric is

ds2 = 1
y2

(dx2 + dy2)), taking limy→0 gives the boundary point x and increasing y moves

deeper in the bulk. An SL(2,R) action on a point z = x+ i y on H would induce the same

action on its boundary point x, see (4.25). In particular, in the study of holography, the

constant y = ε� 1 line is taken to be the cut-off surface. (The choice of the cut-off surface

is particularly crucial in the tensor network construction.) What is the analogous situation

for the p-adic case here?

The lattice construction earlier only gives the topology of the tree. We would like to

have a good coordinate system on the Bruhat-Tits tree Hp such that its boundary is the

p-adic field Qp, and the PGL(2,Qp) action on a vertex in the bulk Hp induces the same

action on its boundary point. In particular, the natural cut-off surface from this coordinate

system behaves well in the tensor network construction.

To fix a coordinate system in Hp, first choose the origin O. Since the tree is infinite

and homogeneous, we can choose an arbitrary point as the origin O. We can then use

the isomorphism PGL(2,Qp) to make O the equivalence class of integer lattice, i.e. its

generators are

O ≡ 〈〈~f0, ~g0〉〉 with ~f0 ≡

(
1

0

)
~g0 ≡

(
0

1

)
. (A.7)

One first checks that the (p+ 1) neighbors of O are

〈〈

(
1

0

)
,

(
0

p

)
〉〉 〈〈

(
p

0

)
,

(
n

1

)
〉〉 with n = 0, 1, . . . , p− 1. (A.8)

Note that these are precisely the neighbors that would arise when applying the Hecke

operator

T̂p(m) = m ·

(
1 0

0 p

)
+m ·

p−1∑
n=0

(
p n

0 1

)
(A.9)

on the node 〈〈f0, g0〉〉. Now we use the projective equivalence (A.5) to fix the second vector

g to g0, i.e. rewrite the first node in (A.8) into 〈〈

(
1
p

0

)
,

(
0

1

)
〉〉.

Applying Hecke operator iteratively then generates the entire tree, with all nodes

having the form

〈〈

(
pm

0

)
,

(
x(m)

1

)
〉〉 x(m) =

m−1∑
n=−N

anp
n an ∈ Fp, (A.10)

where we have used the projective equivalence (A.5) to fix g2 = 1. Figure 17 shows

the Bruhat-Tits tree for p = 2, with the coordinate system (4.12). Note that since x(m)

truncates at pm, we can think of pm as giving the accuracy level of a p-adic number x(m),

i.e. the node (4.12) represents the equivalence class x(m) + pmZp.
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B Basics of p-adic analysis

In this appendix we review some basics on p-adic integration, p-adic Fourier transform,

and p-adic wavelet transform, which will be needed when we discuss the bulk operator

reconstruction in p-adic AdS/CFT in section 5.2. For more on p-adic analysis see the

textbook [38]. The summary on p-adic integration and Fourier transform here follows

mainly the chapter 3 of [68].

B.1 p-adic integration

The integration measure is not unique. There are several commonly used measures for

p-adic integration. First, the additive measure dx over the Qp line is defined by demanding

the following translation and scaling behavior

d(x+ a) = dx and d(ax) = |a|p dx (B.1)

Usually it is normalized over the “unit ball” (defined in (4.9))∫
Zp
dx = 1 (B.2)

Not surprisingly, the integration over the entire Qp using the additive measure dx diverges.

The multiplicative measure d×x over Q×p can be defined by

d×(x) ≡ p

p− 1

dx

|x|p
(B.3)

which satisfies d×(ax) = d×x and
∫
Z×p d

×x = 1. Finally, the Patterson-Sullivan measure

dµ(x) over P1(Qp) is defined as

dµ(x) =

dx x ∈ Zp
dx
|x|2p

otherwise
(B.4)

The distance as seen by this measure agrees with the one computed by counting steps in

the BT tree.

B.2 p-adic Fourier transform

To define the p-adic Fourier transformation, we need the analogue of e2πikx, i.e. the additive

characters on Qp. This is defined as46

χk(x) ≡ e−2πi [kx] (B.5)

where [x] is the “fractional part” of the p-adic number x, defined as

[x] ≡
−1∑

n=−N
anp

n (B.6)

46The sign difference in the exponent between the real character and the p-adic one is important for

constructing the adelic product.
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and [x] = 0 for x ∈ Zp, i.e. |x|p ≤ 1 (hence the name “fractional part”). It is easy to check

that χk(x)χk(y) = χk(x + y) and |χk(x)|p = 1. Integrating the additive character χk(x)

over the unit ball Zp gives the characteristic function γ(k) of Zp in Qp:∫
Zp
dx e−2πi [kx] ≡ γ(k) =

{
1 k ∈ Zp
0 otherwise

(B.7)

Note that both the additive character χk and the characteristic function γ(k) of Zp in Qp

are locally constant functions.47

For the study of the p-adic Fourier transform, we summarize a few useful integrals,

which are interesting in their own right. First, the integration over bigger balls pnZp gives

the characteristic function of pnZp in Qp, i.e. γ(pnk):∫
pnZp

dx e−2πi [kx] =
1

pn
γ(pnk) (B.8)

From this we can compute the integration over “shells”

∫
pnUp

dx e−2πi [kx] =


p−1
pn+1 |k|p < pn+1

−1
pn+1 |k|p = pn+1

0 |k|p > pn+1

(B.9)

where Up is the “unit sphere” of p-adic numbers defined in (4.8). This in turn gives∫
Qp\Zp

dx e−2πi [kx] = −γ(k) (B.10)

The p-adic functions that allow a well-defined (i.e. invertible) Fourier transform are

locally constant (i.e. constant within each pnZ×p ) functions with compact support or suffi-

ciently fast asymptotic decay. The p-adic Fourier transform and its inverse is then

f̂(k) =

∫
Qp
dx f(x)e−2πi[kx] and f(x) =

∫
Qp
dk f̂(k)e2πi[kx] (B.11)

The characteristic function γ(x) of Zp in Qp is invariant under the Fourier trans-

form, i.e.

γ̂(x) = γ(x) (B.12)

hence γ(x) is also called p-adic Gaussian.

C Some examples

C.1 GHZ tensor

One very simple example that satisfies permutation invariance and (6.15) at the same time

is given by the GHZ state, which can be defined for arbitrary valency r and bond dimension

D. The only non-vanishing components are given by

Ta···a = 1, 1 ≤ a ≤ D. (C.1)

47As a contrast, recall that for a function from R to R, “locally constant” implies “constant”.
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For simplicity, let us consider D = 2 and r = 3 explicitly. There, the Pauli basis

is simply given by the Pauli matrices σx,y,z. Therefore we can check that only σz has a

linear term under operator pushing. The linear pushing coefficient defined in (3.7) and the

scaling relation defined in (6.6) are given by

αZZ =
1

2
=
GZZ
2
. (C.2)

This means that σz has scaling dimension ∆ = 0. In this case, the cubic coupling αABC and

GABC vanish. We can then explicitly see that 2αZZ ×GZZ = 1, satisfying (6.22).

The other two Pauli operators σx,y however, have infinite scaling dimension. The GHZ

state for general dimensions generates unfortunately either operators with vanishing or

infinite scaling dimensions. Despite not having a physical spectrum, it does illustrate in

very simple terms the ideas described in this paper.

C.2 Random tensors

Consider the coupling constants in a generic tensor network built from r leg tensors with

large bond dimensions D. We can use Haar weighted random tensors to estimate how the

non-linear couplings scale with D in the large D limit.

First, we compute two point functions to appropriately normalize the operators. From

the requirement that (6.15), we require

N 4tr(|T 〉〈T | ⊗ |T 〉〈T |) = D. (C.3)

Now using results from [20], we have

tr(|T 〉〈T | ⊗ |T 〉〈T |) = tr
I + F

D2r +Dr
= 1, (C.4)

where F is the swap operator swapping the two copies i.e. F|T1〉 ⊗ T2〉 = |T2〉 ⊗ T1〉.
Therefore N =

√
D.

Then

(GAB)2 =
D2

D2

tr((PA
2
)tr((PB

2
)(tr(1)D−2)

D2r +Dr
∼ 1

Dr
. (C.5)

On the other hand, three point couplings are given by exactly the same value. i.e.

(GABC)2 =
1

Dr
. (C.6)

We therefore have

(GABC)2

(GAB
2
)3/2

=
D−r

D−3r/2
= Dr/2, (C.7)

which diverges in the large D limit, as expected.
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αA
B1..Bn

1

Dr−1
=

PA

PB1

PBn

···

··· r − 1− n

T̂−1 T̂

Figure 18. This depicts how the expansion coefficients αA
B1···Bn

can be computed.

D Bulk operator reconstruction in the vicinity of the perfect code

In this appendix, we will demonstrate how the discussion of HKLL-like relations and fusion

matrices in equation (3.10) are related to the discussion in [21]. To that end, like [21], we

will have to work in the limit where every tensor is close to being a perfect tensor. Recall

that a perfect tensor is one satisfying (2.10). Now we will consider tensors at each site

taking the form

T̂ = T + ε t , (D.1)

where T is a perfect tensor, and t is some arbitrary tensor and ε an infinitesimal parameter.

We would like to extract the index αAB1···Bn . This can be obtained by multiplying

both sides by the set of out operators ⊗iPBi , and then taking the trace. This is depicted

in figure 18.

To order ε0, T−1 is indeed just T ∗. Using (2.10) and (3.6), one can readily show that

the first coefficient that would show up at ε0 has to be αAB1,···Br/2 . This is indeed the case

in every explicit example of a perfect tensor.

E Boundary global space (time) symmetry via tensor transformations

In this appendix, we would like to make explicit how the spacetime symmetries are realized

via tensor transformations. We note that the tensor network has so far only been used as

a description of wavefunctions. Therefore symmetries related to boosts are not explicitly

respected. However, if we focus on space-like symmetries, or take the tensor network as a

Euclidean bulk, then the statement of symmetries can be taken as follows.

For a state invariant under some space-symmetry transformation g, it means

g|Ψ〉 = |Ψ〉. (E.1)

For example, g could correspond to quantum operators implementing translations, rotation

or scaling in a CFT. The state |Ψ〉 however is constructed from contraction of tensors in

a network. This means that the description of the state in terms of these tensors involves

a large amount of redundancy — any contracted leg between two neighboring tensors T I

and T J can be rotated by a unitary transformation:48

· · ·T IaαT Jα b · · · = · · ·T IaαUαβU
†
βγT

J
γ b · · · . (E.2)

This transformation U is often also referred to as a gauge symmetry in the standard tensor

network literature.
48We use capital Latin letters to label tensors on individual sites of the network, Greek letters for con-

tracted indices, and small Latin letter for boundary legs.
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Therefore the symmetry transformation is defined up to a gauge transformation

gabT (v)b,i′e1 ,i
′
e2
,··· = T (ĝ.v)a,ie1 ,ie2 ,···W

g
ie1 ,i

′
e1

(e1)W g
ie2 ,i

′
e2

(e2) · · · . (E.3)

Here we made the distinction between the symmetry transformation of the CFT wavefunc-

tion, denoted g, and the geometric transformation ĝ of the tensor network graph. In a

holographic type tensor network, this is very interesting. In addition to inducing gauge

transformations, the tensor at the top level has moved elsewhere. It means that the tensor

on the r.h.s. of the equation has to move to a different vertex ĝ.v, which is precisely one

dictated by the action of the transitive action of the symmetry in the bulk. In the case of

the Bruhat-Tits tree, ĝ.v would be defined by equation (4.19).

The above equation only considers the simple situation in which motion of the vertices

in the bulk suffices. This is the case if we impose also permutation invariance of all the

legs of an individual tensor. In general, the symmetry transformation might also involve

the permutation between legs. This would require a systematic study. In the following, we

will only briefly illustrate this proposal in a 3-qutrit code discussed also in [19].

It is interesting to contrast space-symmetries with global internal symmetries. In the

latter, it is known in the literature that it is convenient to impose invariance of individual

tensors under the action of the global symmetry group. As a result, the global symmetry

is enhanced to a gauge symmetry in the bulk, precisely as expected in the AdS/CFT

dictionary. Here, the “gauge transformations” appearing in the r.h.s. of (E.3) are probably

related to the bulk diffeomorphism. But it probably does not recover the full scope of

diffeo-invariance of the bulk. A proper description would amount to recovering all the

redundancy in the tensor network, and subsequently the closest analogue of gravity in the

discrete space-time. This is certainly beyond the scope of the current paper, and we will

restrict our attention to global bulk isometries.

E.1 Example using the 3-qutrit code

We now study the example of the pentagon code. We will consider two different types of

wavefunctions to illustrate the above point. For concreteness, one can take the 3-qutrit

code [19]. Then each tensor T Iαβγ has 4 indices, each taking 3 values {0, 1, 2}. The index I

is treated as a bulk index. To illustrate how the symmetry acts, we can take these tensors

to populate the 2-adic tree.

Consider for simplicity performing a scaling transformation. As described in

section 4.3.1, this corresponds to a translation of branches along the main branch, see

figure 7. Therefore, a scaling transformation of the wave function would correspond to

moving the tensors in exactly the same fashion as the nodes of the tree, while preserving

the orientation of each tensor (if they are not already permutation invariant).

Practically, to effect a translation in this tree, we can make use of the following

operator:

T =
∏

l,<vil ,vil+1>

Ivil ⊗ Ivil+1 +
D2−1∑
M=1

(P vlM ⊗ P
vil+1

M )

 , (E.4)
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where the superscript v denotes the site index. P
vil
M are the generalized Pauli matrices as

described in (3.6) and Iv is the identity matrix that acts on the bulk index of the tensor

located at vertex v. For the 3- qutrit code therefore, D = 3. Each term in the product

exchanges the vil site and the vil+1 site. The product runs over the sequence of vertices,

i.e. the set of vertices {vil} which transforms as vil → vil+1, and where l is a “layer”

index. Translation is effected within each layer l. The wave function generated by this

transformation is one in which the boundary sites are transformed according to x→ px.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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[39] F.Q. Gouvêa, p-adic Numbers: An Introduction, 2nd edition, Springer (1997).

[40] P.G.O. Freund and M. Olson, Nonarchimedean strings, Phys. Lett. B 199 (1987) 186

[INSPIRE].

[41] L. Brekke and P.G.O. Freund, p-adic numbers in physics, Phys. Rept. 233 (1993) 1 [INSPIRE].

[42] L. Brekke, P.G.O. Freund, M. Olson and E. Witten, Nonarchimedean String Dynamics, Nucl.

Phys. B 302 (1988) 365 [INSPIRE].

[43] P.G.O. Freund and E. Witten, Adelic string amplitudes, Phys. Lett. B 199 (1987) 191

[INSPIRE].

[44] B. Dragovich, Zeta strings, hep-th/0703008 [INSPIRE].

[45] B. Dragovich, A.Yu. Khrennikov, S.V. Kozyrev and I.V. Volovich, On p-Adic Mathematical

Physics, Anal. Appl. 1 (2009) 1 [arXiv:0904.4205] [INSPIRE].

[46] Y.I. Manin and M. Marcolli, Holography principle and arithmetic of algebraic curves, Adv.

Theor. Math. Phys. 5 (2002) 617 [hep-th/0201036] [INSPIRE].
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